Difference between revisions of "Heat transfer in a 1D harmonic crystal"

From Department of Theoretical and Applied Mechanics
Jump to: navigation, search
Line 32: Line 32:
 
where <math>\varrho_i</math> are independent random values with zero expectation and unit variance; <math>\sigma</math> is variance of the initial velocities of the particles, which is a slowly varying function of the spatial coordinate <math>x=ia</math>, where <math>a</math> is the lattice constant. These initial conditions correspond to an instantaneous temperature perturbation, which can be induced in crystals, for example, by an ultrashort laser pulse. Periodic conditions are used at the boundaries.
 
where <math>\varrho_i</math> are independent random values with zero expectation and unit variance; <math>\sigma</math> is variance of the initial velocities of the particles, which is a slowly varying function of the spatial coordinate <math>x=ia</math>, where <math>a</math> is the lattice constant. These initial conditions correspond to an instantaneous temperature perturbation, which can be induced in crystals, for example, by an ultrashort laser pulse. Periodic conditions are used at the boundaries.
  
== Kinetic temperature: link between micro and macro ==
+
== Kinetic temperature (link between micro and macro) ==
  
 
The kinetic temperature <math>T</math> is defined as  
 
The kinetic temperature <math>T</math> is defined as  
Line 43: Line 43:
 
angle brackets stand for mathematical expectation.
 
angle brackets stand for mathematical expectation.
  
== Macroscopic equations ==
+
== Continuum description (macrolevel) ==
  
{{oncolor||blue|—}} Reversible (Krivtsov): <math>\ddot T +\frac1t\dot T = c^2 T''</math> [http://arxiv.org/abs/1509.02506]
+
{{oncolor||blue|—}} Reversible heat equation (Krivtsov): <math>\ddot T +\frac1t\dot T = c^2 T''</math> — the equation derived as direct consequence of the discrete microscopic equations [http://arxiv.org/abs/1509.02506]
  
== Macroscopic equations ==
+
Notations:
 +
<math>t</math> is time (variable),
 +
<math>c</math> is the sound speed.
 +
 
 +
== Classic continuum equations ==
  
 
{{oncolor||red|—}} Heat (Fourier): <math>\dot T = \beta T''</math> [https://en.wikipedia.org/wiki/Heat_equation]
 
{{oncolor||red|—}} Heat (Fourier): <math>\dot T = \beta T''</math> [https://en.wikipedia.org/wiki/Heat_equation]
Line 54: Line 58:
  
 
{{oncolor||#00ff00|—}} Wave (d’Alembert): <math>\ddot T = c^2 T''</math> [https://en.wikipedia.org/wiki/Wave_equation]
 
{{oncolor||#00ff00|—}} Wave (d’Alembert): <math>\ddot T = c^2 T''</math> [https://en.wikipedia.org/wiki/Wave_equation]
 
  
 
Notations:
 
Notations:
<math>t</math> is time (variable),
 
 
<math>\tau</math> is the relaxation time (constant),
 
<math>\tau</math> is the relaxation time (constant),
 
<math>\beta</math> is the thermal diffusivity,
 
<math>\beta</math> is the thermal diffusivity,
 
<math>\kappa</math> is the thermal conductivity,
 
<math>\kappa</math> is the thermal conductivity,
<math>c</math> is the sound speed,
 
 
<math>\rho</math> is the density,
 
<math>\rho</math> is the density,
 
MCV stands for Maxwell-Cattaneo-Vernotte.
 
MCV stands for Maxwell-Cattaneo-Vernotte.
Line 67: Line 68:
 
== Related publications ==
 
== Related publications ==
  
* [[A.M. Krivtsov]]. '''On unsteady heat conduction in a harmonic crystal.''' ArXiv:1509.02506 ([http://arxiv.org/abs/1509.02506 abstract], [http://arxiv.org/pdf/1509.02506v2.pdf pdf], [[Heat transfer in a 1D harmonic crystal|simulation]])  
+
* [[A.M. Krivtsov]]. '''On unsteady heat conduction in a harmonic crystal.''' ArXiv:1509.02506 ([http://arxiv.org/abs/1509.02506 abstract], [http://arxiv.org/pdf/1509.02506v2.pdf pdf])  
  
 
* [[A.M. Krivtsov]]. '''Energy oscillations in a one-dimensional crystal.''' Doklady Physics, 2014, Vol. 59, No. 9, pp. 427–430. (Download pdf: [[Media: Krivtsov_2014_DAN_eng_corrected.pdf| 162 Kb]])
 
* [[A.M. Krivtsov]]. '''Energy oscillations in a one-dimensional crystal.''' Doklady Physics, 2014, Vol. 59, No. 9, pp. 427–430. (Download pdf: [[Media: Krivtsov_2014_DAN_eng_corrected.pdf| 162 Kb]])

Revision as of 23:59, 9 October 2015

Virtual laboratory > Heat transfer in a 1D harmonic crystal
A.M. Krivtsov (analytical silution, simulation algorithms), D.V. Tsvetkov (programming, calculation algorithms).


Heat transfer in the simplest discrete systems doesn’t obey the known macroscopic laws. Recently experimentalists have observed the similar behavior at nanolevel, in molecular and atomic systems. The simulation below demonstrates heat transfer process in a 1D harmonic crystal. Two graphs are shown: results of molecular dynamics simulation and corresponding continuum solution. You can also compare the results with predictions of other continuum models. The analysis of the system and derivation of the continuum solution are presented in paper: A.M. Krivtsov, On unsteady heat conduction in a harmonic crystal. ArXiv:1509.02506 (abstract, pdf).

Use the Restart button to see the process from the beginning.

Discrete model (microlevel)

We consider a one-dimensional crystal, described by the following equations of motion:

[math] \ddot{u}_i = \omega_0^2(u_{i-1}-2u_i+u_{i+1}) ,\qquad \omega_0 = \sqrt{C/m}, [/math]

where [math]u_i[/math] is the displacement of the [math]i[/math]th particle, [math]m[/math] is the particle mass, [math]C[/math] is the stiffness of the interparticle bond. The crystal is infinite: the index [math]i[/math] is an arbitrary integer. The initial conditions are

[math] u_i|_{t=0} = 0 ,\qquad \dot u_i|_{t=0} = \sigma(x)\varrho_i , [/math]

where [math]\varrho_i[/math] are independent random values with zero expectation and unit variance; [math]\sigma[/math] is variance of the initial velocities of the particles, which is a slowly varying function of the spatial coordinate [math]x=ia[/math], where [math]a[/math] is the lattice constant. These initial conditions correspond to an instantaneous temperature perturbation, which can be induced in crystals, for example, by an ultrashort laser pulse. Periodic conditions are used at the boundaries.

Kinetic temperature (link between micro and macro)

The kinetic temperature [math]T[/math] is defined as

[math] T(x) = \frac m{k_{B}}\langle\dot u_i^2\rangle, [/math]

where [math]k_{B}[/math] is the Boltzmann constant, [math]i=x/a[/math], angle brackets stand for mathematical expectation.

Continuum description (macrolevel)

Reversible heat equation (Krivtsov): [math]\ddot T +\frac1t\dot T = c^2 T''[/math] — the equation derived as direct consequence of the discrete microscopic equations [1]

Notations: [math]t[/math] is time (variable), [math]c[/math] is the sound speed.

Classic continuum equations

Heat (Fourier): [math]\dot T = \beta T''[/math] [2]

Heat wave (MCV): [math]\ddot T +\frac1\tau\dot T = \frac\beta\tau T''[/math]

Wave (d’Alembert): [math]\ddot T = c^2 T''[/math] [3]

Notations: [math]\tau[/math] is the relaxation time (constant), [math]\beta[/math] is the thermal diffusivity, [math]\kappa[/math] is the thermal conductivity, [math]\rho[/math] is the density, MCV stands for Maxwell-Cattaneo-Vernotte.

Related publications

  • A.M. Krivtsov. Energy oscillations in a one-dimensional crystal. Doklady Physics, 2014, Vol. 59, No. 9, pp. 427–430. (Download pdf: 162 Kb)