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Oscillations of the kinetic and potential energies in
a one�dimensional crystal (the chain of particles) are
considered. An analytical solution for the linear inter�
action of particles, random initial velocities, and zero
initial displacements is derived. It is shown that the
time dependence of energies is expressed by the Bessel
function, and the period and the damping rate of oscil�
lations are determined. Analytical conclusions are
confirmed by computer modeling. According to the
results found, in order to describe high�speed transient
processes, apart from the consideration of velocities
dispersion (which determines the temperature in the
equilibrium statistical mechanics), the correlations of
velocities of different particles should be considered.
In particular, the damping of energy oscillations is
associated with the fact that correlations associating
the motion of remote particles are excited.

In recent decades, the methods of mechanics of
discrete media have widely been used to describe non�
equilibrium processes in matter [1–3]. Interest in dis�
crete approaches has especially risen in connection
with the development of nanotechnologies [4, 5].
However, the analysis of nonequilibrium thermal pro�
cesses in discrete media even for such a simple model
as ideal crystals under classic (nonquantum) descrip�
tion remains a serious problem. For example, for one�
dimensional crystal the thermal elasticity equations
can be derived in the adiabatic approximation [3, 6],
however the description of heat transfer can diverge
with the conclusions of classic heat conductivity the�
ory [7, 8].

One of the theoretical questions in the mechanics
of discrete media is associated with high�frequency

oscillations of the kinetic and potential energies,
which are known well by the results of numerical mod�
eling [9]. In particular, if at the initial instant the par�
ticles are ordered into the ideal crystal lattice and their
velocities are specified randomly, then the dynamic
transition of the kinetic energy into the potential
energy of the bonds deformation is initiated in the
crystal. This transition leads to the distribution of the
internal energy between the kinetic and deformation
degrees of freedom, which are determined by the virial
theorem [10]. However, the transition is accompanied
by high�frequency oscillatory process with decreasing
amplitude, which still has no theoretical interpreta�
tion.

In this study, in order to investigate the mentioned
processes, we selected the model of a one�dimensional
crystal. This is a simple model, which makes it possi�
ble, on the one hand, to obtain the transition from the
discrete system to a continual one, and on the other
hand, to demonstrate radical distinctions, which are
implemented for such systems [11–13]. Below we pro�
pose a method for the analytical description of such
energy oscillations and give an exact solution of the
corresponding mathematical problem as well as per�
form a comparison with the results of numerical mod�
eling.

Let us consider a one�dimensional crystal in the
form of a chain of identical particles with mass m,
which are connected by identical linear springs with
stiffness C. The dynamic equations of the chain have
the form

(1)

where uk is the displacement of the kth particle and k
is the integer index. Let us consider that periodicity
conditions are fulfilled: uk + N = uk, where N � 1 is the
number of independent particles.

u··k ω0
2 uk 1– 2uk– uk 1++( ), ω0

C
m
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Let us introduce the operator of averaging by the
index for arbitrary quantity fk, which characterizes the
motion of the kth particle,

(2)

In this case, the specific (per particle) kinetic, poten�
tial, and total energy can be determined by the formu�
las

(3)

where particle velocities vk =  and deformations of
bonds εk = uk – uk – 1 are introduced. It is evident that
the total energy is constant, while the kinetic and
potential energies depend on time t.

Let us admit that the displacements of particles
equal zero at t = 0, while the velocities are distributed
randomly, which corresponds to Π = 0, K = E. The
dynamics of varying the energies obtained by the
numerical integration of Eqs. (1) under the mentioned
initial conditions is shown in Fig. 1. The variation in
energies is calculated for N = 106 and 0 ≤ t ≤ 5T0, where

T0  . Even for such a short time interval, the con�

vergence of energies to the limiting value E/2 is quite
noticeable, which agrees with the virial theorem [10].
In this case, the variation in energies has an oscillatory
character with the period close to T0/4.

Let us derive the analytical expressions that make it
possible to describe the energy oscillations. In order to

fk〈 〉 1
N
��� fk.

k 1=

N

∑=

K 1
2
��m vk

2〈 〉 , Π 1
2
��C εk

2〈 〉 , E K Π,+= = =

u· k

=
def 2π

ω0

�����

do this, following [14], let us introduce generalized
energies

(4)

where averaging is performed by repeating index k.
Formulas (4) at n = 0 give usual energies (3). If the lat�
ter are determined by the dispersions of velocities and
deformations, then the generalized ones are deter�
mined by correlations of the same quantities for parti�
cles, the index of which differs by n.

Differentiation of the generalized energies with the
use of dynamic equations (1) allows us to derive the
following identities:

(5)

(6)

Identity (5) means that the conservation law similar to
the conservation law of the total mechanical energy is
fulfilled for the generalized energies; quantity En serves as
a generalized total energy. When deriving identities (5)
and (6), we used a postulate that the values of average
quantities calculated for the chain are invariable with
its reflection. This postulate is valid for N → ∞ and
makes it possible to use equality 〈 fk gk + n〉 = 〈fk gk – n〉
for any fk, gk, and any integer n.

Excluding quantities Kn and Πn from identities (5)
and (6), we derive the differential�difference equation
for the generalized Lagrangian function Ln:

(7)

which coincides in form with the dynamic equation of
chain (1) and differs only by the value of the coeffi�
cient on the right side. By virtue of the periodicity of
the chain and the properties of the averaging operator,
quantities Ln are periodic and even by index n: Ln + N =

Ln, L–n = Ln. The initial values of quantities Ln and ,
which are determined by dispersion and correlations
of velocities and displacements of particles at t = 0,
serve as the initial conditions for Eq. (7).

Let us assume that the initial velocities of various
particles are independent and the initial displacements
are absent. Then, using definitions (4), we derive at t = 0

(8)

where δn is the Kronecker symbol equal to the unit at
n = 0 and equal to zero in all other cases.

Considering (7) as the set of linear differential
equations with initial conditions (8), we can derive the

Kn
1
2
��m vkvk n+〈 〉 , Πn

1
2
��C εkεk n+〈 〉 ,= =

def def

K· n Π· n+ 0 En⇒ Kn Πn+ const,= = =
def

Π·· n 2ω0
2 Ln 1– 2Ln– Ln 1++( ), Ln– Kn Πn.–= =

def

L··n 4ω0
2 Ln 1– 2Ln– Ln 1++( ),=

L· n

Ln Eδn, L· n 0, 0 n N,<≤= =
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Fig. 1. Oscillations of the (1) kinetic and (2) potential
energies in a one�dimensional crystal.
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analytical solution, which takes the form in the limit
N → ∞:

(9)

where Jk(τ) is the first�order Bessel function [15].
According to the derived solution, the Lagrangian
function L = L0(t) satisfies the differential Bessel
equation

(10)

which can be interpreted as the equation of oscilla�
tions of the material point under the effect of a linear
spring and viscous friction force with the coefficient
inversely proportional to time. At large t, formula (9)
can be presented [15] in the form

(11)

Thus, oscillations occur with frequency 4ω0, while the
amplitude of oscillations is inversely proportional to
the root of time. With the use of solution (9), the spe�
cific kinetic and potential energies can be represented
in the form

(12)

Figure 2 presents the results of calculating the
Lagrangian function L(t): for the numerical solution
of the initial problem for chain (1); for the numerical
solution of initial problem (7), (8) for the generalized
Lagrangian; and analytical solution (9). The numeri�
cal solution of Eqs. (1) and (7) was undertaken by the
method of central differences with an integration step
of 0.01T0. The initial velocities for the chain (1) were
specified using a randomizer with a uniform distribu�
tion. It is seen from Fig. 2 that all three plots are almost
indistinguishable in the accepted scale. We note that in
contrast to N = 106 steps necessary to attain the
required accuracy in the course of the numerical solu�
tion of chain (1), it was sufficient to have N = 102 for
Eqs. (7).

Thus, we derived an exact analytical solution,
according to which the Lagrangian function for the
chain with the stochastic initial conditions varies fol�
lowing the same law, according to which the central
particle for the chain with the deterministic initial
conditions moves. The variation in the kinetic and
potential energies of the system under consideration is
described by the Bessel function, the oscillation period
of which is T0/4, while the amplitude of oscillations is

Ln t( ) EJ2n 4ω0t( ),=

Ln t( ) 1–( )n E

2πω0t
��������������� 4ω0t π

4
��–⎝ ⎠

⎛ ⎞cos O t 3/2–( ).+=

K t( ) E
2
��� 1 J0 4ω0t( )+( ),=

Π t( ) E
2
��� 1 J0 4ω0t( )–( ).=

inversely proportional to the root of time. It follows
from the found solution that the damping of oscilla�
tions of energies is determined by excitation of corre�
lations, which associates the motion of the particles
remote from each other. The oscillation period of
energies is very small; therefore, it is more correct to
associate the temperature in the course of these oscil�
lations with the total energy rather than with the
kinetic energy, which constantly transforms into the
potential energy and vice versa. The temperature can
be associated with the kinetic energy as is accepted in
equilibrium statistical mechanics only after damping
the transient process, for which times of about ten
periods T0 are required.

The derived solution, on the one hand, makes it
possible to describe the oscillations of energies, which
appear when solving the problems by the molecular
dynamics methods. On the other hand, similar oscilla�
tions can appear in actual solids during fast transient
processes, for example, under the effect of femtosec�
ond laser pulses. According to [13], oscillations of a
similar nature can cause destruction in discrete sys�
tems. In addition, processes considered in the article
can serve for the description of heat conductivity and
internal friction in crystalline solids.
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Fig. 2. Oscillations of the Lagrangian function.
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