From Department of Theoretical and Applied Mechanics

Alexey V. Porubov

## Contents

## Education[edit]

- M.S. in Mechanics of fluid and gas, Leningrad Polytechnical Institute, 1987

Thesis: "Nonlinear Boussinesq equation wave solutions on inviscid liquid layer surface" (with Prof. A. M.Samsonov)

- Ph.D. in Mechanics of fluid, gas and plasma, St.Petersburg Technical University, 1996

Thesis: "Nonlinear waves on thin viscous inhomogeneous liquid layer" (with Prof. A. M.Samsonov)

- Doctor of Sciences in Mechanics of deformable solids, Institute for Problems in Mechanical Engineering RAS, 2007

Thesis: "Generation of strain solitary waves in nonlinear solids"

## Employment[edit]

- Leading research fellow Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, (IPME RAS) (2007-2016)

- Head of Laboratory of micro-mechanics of materials Institute for Problems in Mechanical Engineering, (IPME RAS) (since 2016)

- Part-time Professor Saint-Petersburg Polytechnical University (Peter the Great Saint-Petersburg Polytechnic University) (since 2013)

## Current Research Interests[edit]

- Analytical description of nonlinear waves in fluids and solids including soft biological tissues. Derivation of exact, asymptotic and numerical solutions to nonlinear nonintegrable equations. Continuum limits of discrete systems. Feedback control for nonlinear partial differential equations.

## Books and collective monographs[edit]

- A.V. Porubov Localization of nonlinear strain waves: asymptotic and numerical methods, Fizmatlit, Moscow, 2009, 208 p. in Russian.

- A.V. Porubov Amplification of nonlinear strain waves in solids, World Scientific, Singapore, 2003, 213p.

- A. V. Porubov, E. L. Aero and B. R. Andrievsky, Nonlinear Generalizations of the Born-Huang Model and Their Continuum Limits, In: H. Altenbach et al. (eds.), Generalized Continua as Models for Materials, Advanced Structured Materials (Springer, New York, 2013) P. 283–290.

- A.V. Porubov, B. R. Andrievsky, Localized nonlinear strain waves in media with internal structure, In: Vibration Problems ICOVP 2011: the 10th International Conference on Vibration Problems, Springer Proceedings in Physics 139, J. N´aprstek et al. (eds.), (Springer, 2011) P. 687–692.

- A.V. Porubov, B. R. Andrievsky, E. L. Aero, Nonlinear Dynamic Properties in Media with Internal Structure, In: Mechanics of Generalized Continua, H. Altenbach, G.A. Maugin, V.I. Erofeyev (Eds.) (Springer, New York, 2011) P. 245–254.

- A.V. Porubov,E. L. Aero and B. R. Andrievsky, Dynamic Properties of Essentially Nonlinear Generalized Continua, In: Mechanics of Generalized Continua One Hundred Years After the Cosserats, G.A. Maugin, A.V. Metrikine (Eds.) (Springer, New York, 2010) P. 161–168.

- A.V. Porubov, Essentially Nonlinear Strain Waves in Solids with Complex Internal Structure. In: Mechanics of Microstructured Solids Cellular Materials, Fibre Reinforced Solids and Soft Tissues, J.-F. Ganghoffer and Franco Pastrone (Eds.)(Springer, Berlin, 2009) P. 119–126.

- A.V. Porubov, Dissipative nonlinear strain waves in solids. In : ”Selected Topics in Nonlinear Wave Mechanics”, C.I. Christov and A. Guran, Editors (Birkh¯auser 2001)P.223-260.

- A.M. Samsonov, G.V. Dreiden, A.V. Porubov and I.V. Semenova. Longitudinal strain solitons in nonlinearly elastic rod. In: Russian Science: Withstand and Revive, Collection of best popular science articles written for the contest, organized by the International Science Foundation (Nauka, Moscow 1997) P. 33-41 (in Russian)

- A.V. Porubov, A.M. Samsonov, Amplification of longitudinal strain soliton in a nonlinearly elastic rod. In:”Problems of Applied Mathematics and Mathematical Physics” (St.Petersburg, Ioffe Institute, 2001) pp.212-225. in Russian

- A.M. Samsonov, G.V. Dreiden, A.V. Porubov, I.V. Semenova and E.V. Sokurinskaya. Theory and observation of strain solitons in solids. In:Ioffe Institute Prize Winners’96(St.Petersburg 1997)P. 5-14. See also: www.ioffe.rssi.ru

## Publications in Refereed Journals[edit]

- A.V. Porubov, A.L. Fradkov, R.S. Bondarenkov and B.R. Andrievsky, Localization of the sine- Gordon equation solutions Commun. Nonlinear Sci Numer Simulat 39 (2016) 29–37. DOI: 10.1016/j.cnsns.2016.02.043

- V. A. Eremeyev, A.V. Porubov, L. Placidi, Special issue in honor of Eron L. Aero, Mathematics and Mechanics of Solids, 21 (1) (2016) 3–5, DOI: 10.1177/1081286515588690

- A.V. Porubov, I.E. Berinskii, Two-dimensional nonlinear shear waves in materials having hexagonal lattice structure, Mathematics and Mechanics of Solids, 21 (1) (2016) 94–103, DOI: 10.1177/1081286515577040

- A.V. Porubov, I.V. Andrianov, B. Markert, Transverse instability of nonlinear longitudinal waves in hexagonal lattices, Proceedings of the Estonian Academy of Sciences , 64 , No 3S, (2015)349-355 DOI: 10.3176/proc.2015.3S.04

- A.V. Porubov,A.L.Fradkov, B.R.Andrievsky, Feedback control for some solutions of the sine-Gordon equation, Applied Mathematics and Computation 269 (2015) 17–22. DOI: 10.1016/j.amc.2015.07.040

- A.V. Porubov, I.E. Berinskii, Non-linear plane waves in materials having hexagonal internal structure, Int. J. Non-Linear Mech. 67 (2014) 27-33 DOI: 10.1016/ j.ijnonlinmec.2014.07.003

- A.V. Porubov, Description of kink evolution by means of particular analytical solutions, Mathematics and Computers in Simulation (2014) in press DOI:

10.1016/j.matcom.2013.11.006

- A.V. Porubov, Modeling of strongly nonlinear effects in diatomic lattices, Archive of Applied Mechanics 84, Issue 9 (2014), 1533–1538. DOI: 10.1007/s00419-014-0859-5

- A.V. Porubov, I.V. Andrianov, Nonlinear waves in diatomic crystals, Wave Motion 50 (2013) 1153-1160. DOI information: 10.1016/j.wavemoti.2013.03.009

- A.V. Porubov, D. Bouche, G. Bonnaud, Analytical solutions to detect the scheme dispersion for the coupled nonlinear equations. Commun. Nonlinear Sci Numer Simulat 18 (2013) 2679–2688.

- A.V. Porubov, I.V. Andrianov, V.V. Danishevskyy, Nonlinear strain wave localization in periodic composites. International Journal of Solids and Structures 49 (2012) 3381–3387.

- A.V. Porubov, B. R. Andrievsky, Kink and solitary waves may propagate together. Phys. Rev. E 85, 046604 (2012) [5 pages].

- A.V. Porubov, B.R. Andrievsky, Nonlinear dynamic variations in internal structure of a complex lattice. Nanosystems: physics, chemistry, mathematics 2 (3) (2011) P.65–70.

- A.V. Porubov, G.A. Maugin, B.R. Andrievsky, Solitary wave interactions and reshaping in coupled systems, Wave Motion 48 (2011) 773-781, doi:10.1016/j.wavemoti.2011.04.012

- A.V. Porubov, B.R. Andrievsky, Influence of coupling on nonlinear waves localization.Commun. Nonlinear Sci Numer Simulat 16 (2011) 3964-3970.

- A.V. Porubov, G.A. Maugin, Application of nonlinear strain waves to the study of the growth of long bones Int. J. Non-Linear Mech. 46 (2011) 387-394.

- A.V. Porubov, Models for essentially nonlinear strain waves in materials with internal structure Proceedings of the Estonian Academy of Sciences 59 , No 2 (2010) 87 – 92.

- A.V. Porubov, D. Bouche, G. Bonnaud, Compensation of the Scheme Dispersion and Dissipation by Artificial Non-linear Additions Trans. on Comput. Sci. VII, LNCS 5890, (2010) 122-131

- A.V. Porubov, Model equations for essentially nonlinear longitudinal strain waves Nonlinear world, 7, No 10 (2009) 796-801. [in Russian]

- A.V. Porubov, E.L. Aero, G.A. Maugin, Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials, Phys. Rev. E, 79, 046608 (2009) [12 pages]

- A.V. Porubov, G.A. Maugin, Cubic non-linearity and longitudinal surface solitary waves, Int. J. Non-Linear Mech., 44 (2009) 552-559 , doi: 10.1016/j.ijnonlinmec. 2008.09.003

## Reviewer[edit]

- Physics Letters A, Wave Motion, Physica Scripta, Physica Status Solidi, Technical Physics Letters, Journal of Applied Physics, Journal of Physics and Chemistry of Solids, Ocean Engineering, International Journal of Non-linear Mechanics, Communications in Nonlinear Science and Numerical Simulation, Proceedings of the Estonian Academy of Sciences, Physica D, Journal of Acoustic Society of America, Journal of Sound and Vibrations, ZAMM, Chaos, Applied Mathematical Modeling, International Journal of Engineering Science, Journal of Mathematical Analysis and Applications, Continuum Mechanics and Thermodynamics, Mathematics and Computers in Simulation, Proceedings of the Royal Society A