From Department of Theoretical and Applied Mechanics
Revision as of 17:49, 1 June 2016 by Кошелева Ксения Александровна (talk | contribs)
Alexey V. Porubov
Education
- M.S. in Mechanics of fluid and gas, Leningrad Polytechnical Institute, 1987
Thesis: "Nonlinear Boussinesq equation wave solutions on inviscid liquid layer surface" (with Prof. A. M.Samsonov)
- Ph.D. in Mechanics of fluid, gas and plasma, St.Petersburg Technical University, 1996
Thesis: "Nonlinear waves on thin viscous inhomogeneous liquid layer" (with Prof. A. M.Samsonov)
- Doctor of Sciences in Mechanics of deformable solids, Institute for Problems in Mechanical Engineering RAS, 2007
Thesis: "Generation of strain solitary waves in nonlinear solids"
Books and collective monographs
- A.V. Porubov Localization of nonlinear strain waves: asymptotic and numerical methods, Fizmatlit, Moscow, 2009, 208 p. in Russian.
- A.V. Porubov Amplification of nonlinear strain waves in solids, World Scientific, Singapore, 2003, 213p.
- A. V. Porubov, E. L. Aero and B. R. Andrievsky, Nonlinear Generalizations of the Born-Huang Model and Their Continuum Limits, In: H. Altenbach et al. (eds.), Generalized Continua as Models for Materials, Advanced Structured Materials (Springer, New York, 2013) P. 283–290.
- A.V. Porubov, B. R. Andrievsky, Localized nonlinear strain waves in media with internal structure, In: Vibration Problems ICOVP 2011: the 10th International Conference on Vibration Problems, Springer Proceedings in Physics 139, J. N´aprstek et al. (eds.), (Springer, 2011) P. 687–692.
- A.V. Porubov, B. R. Andrievsky, E. L. Aero, Nonlinear Dynamic Properties in Media with Internal Structure, In: Mechanics of Generalized Continua, H. Altenbach, G.A. Maugin, V.I. Erofeyev (Eds.) (Springer, New York, 2011) P. 245–254.
- A.V. Porubov,E. L. Aero and B. R. Andrievsky, Dynamic Properties of Essentially Nonlinear Generalized Continua, In: Mechanics of Generalized Continua One Hundred Years After the Cosserats, G.A. Maugin, A.V. Metrikine (Eds.) (Springer, New York, 2010) P. 161–168.
- A.V. Porubov, Essentially Nonlinear Strain Waves in Solids with Complex Internal Structure. In: Mechanics of Microstructured Solids Cellular Materials, Fibre Reinforced Solids and Soft Tissues, J.-F. Ganghoffer and Franco Pastrone (Eds.)(Springer, Berlin, 2009) P. 119–126.
- A.V. Porubov, Dissipative nonlinear strain waves in solids. In : ”Selected Topics in Nonlinear Wave Mechanics”, C.I. Christov and A. Guran, Editors (Birkh¯auser 2001)P.223-260.
- A.M. Samsonov, G.V. Dreiden, A.V. Porubov and I.V. Semenova. Longitudinal strain solitons in nonlinearly elastic rod. In: Russian Science: Withstand and Revive, Collection of best popular science articles written for the contest, organized by the International Science Foundation (Nauka, Moscow 1997) P. 33-41 (in Russian)
- A.V. Porubov, A.M. Samsonov, Amplification of longitudinal strain soliton in a nonlinearly elastic rod. In:”Problems of Applied Mathematics and Mathematical Physics” (St.Petersburg, Ioffe Institute, 2001) pp.212-225. in Russian
- A.M. Samsonov, G.V. Dreiden, A.V. Porubov, I.V. Semenova and E.V. Sokurinskaya. Theory and observation of strain solitons in solids. In:Ioffe Institute Prize Winners’96(St.Petersburg 1997)P. 5-14. See also: www.ioffe.rssi.ru
Publications in Refereed Journals
- A.V. Porubov, A.L. Fradkov, R.S. Bondarenkov and B.R. Andrievsky, Localization of the sine- Gordon equation solutions Commun. Nonlinear Sci Numer Simulat 39 (2016) 29–37. DOI: 10.1016/j.cnsns.2016.02.043
- V. A. Eremeyev, A.V. Porubov, L. Placidi, Special issue in honor of Eron L. Aero, Mathematics and Mechanics of Solids, 21 (1) (2016) 3–5, DOI: 10.1177/1081286515588690
- A.V. Porubov, I.E. Berinskii, Two-dimensional nonlinear shear waves in materials having hexagonal lattice structure, Mathematics and Mechanics of Solids, 21 (1) (2016) 94–103, DOI: 10.1177/1081286515577040
- A.V. Porubov, I.V. Andrianov, B. Markert, Transverse instability of nonlinear longitudinal waves in hexagonal lattices, Proceedings of the Estonian Academy of Sciences , 64 , No 3S, (2015)349-355 DOI: 10.3176/proc.2015.3S.04
- A.V. Porubov,A.L.Fradkov, B.R.Andrievsky, Feedback control for some solutions of the sine-Gordon equation, Applied Mathematics and Computation 269 (2015) 17–22. DOI: 10.1016/j.amc.2015.07.040
- A.V. Porubov, I.E. Berinskii, Non-linear plane waves in materials having hexagonal internal structure, Int. J. Non-Linear Mech. 67 (2014) 27-33 DOI: 10.1016/ j.ijnonlinmec.2014.07.003
- A.V. Porubov, Description of kink evolution by means of particular analytical solutions, Mathematics and Computers in Simulation (2014) in press DOI:
10.1016/j.matcom.2013.11.006
- A.V. Porubov, Modeling of strongly nonlinear effects in diatomic lattices, Archive of Applied Mechanics 84, Issue 9 (2014), 1533–1538. DOI: 10.1007/s00419-014-0859-5
- A.V. Porubov, I.V. Andrianov, Nonlinear waves in diatomic crystals, Wave Motion 50 (2013) 1153-1160. DOI information: 10.1016/j.wavemoti.2013.03.009
- A.V. Porubov, D. Bouche, G. Bonnaud, Analytical solutions to detect the scheme dispersion for the coupled nonlinear equations. Commun. Nonlinear Sci Numer Simulat 18 (2013) 2679–2688.
- A.V. Porubov, I.V. Andrianov, V.V. Danishevskyy, Nonlinear strain wave localization in periodic composites. International Journal of Solids and Structures 49 (2012) 3381–3387.
- A.V. Porubov, B. R. Andrievsky, Kink and solitary waves may propagate together. Phys. Rev. E 85, 046604 (2012) [5 pages].
- A.V. Porubov, B.R. Andrievsky, Nonlinear dynamic variations in internal structure of a complex lattice. Nanosystems: physics, chemistry, mathematics 2 (3) (2011) P.65–70.
- A.V. Porubov, G.A. Maugin, B.R. Andrievsky, Solitary wave interactions and reshaping in coupled systems, Wave Motion 48 (2011) 773-781, doi:10.1016/j.wavemoti.2011.04.012
- A.V. Porubov, B.R. Andrievsky, Influence of coupling on nonlinear waves localization.Commun. Nonlinear Sci Numer Simulat 16 (2011) 3964-3970.
- A.V. Porubov, G.A. Maugin, Application of nonlinear strain waves to the study of the growth of long bones Int. J. Non-Linear Mech. 46 (2011) 387-394.
- A.V. Porubov, Models for essentially nonlinear strain waves in materials with internal structure Proceedings of the Estonian Academy of Sciences 59 , No 2 (2010) 87 – 92.
- A.V. Porubov, D. Bouche, G. Bonnaud, Compensation of the Scheme Dispersion and Dissipation by Artificial Non-linear Additions Trans. on Comput. Sci. VII, LNCS 5890, (2010) 122-131
- A.V. Porubov, Model equations for essentially nonlinear longitudinal strain waves Nonlinear world, 7, No 10 (2009) 796-801. [in Russian]
- A.V. Porubov, E.L. Aero, G.A. Maugin, Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials, Phys. Rev. E, 79, 046608 (2009) [12 pages]
- A.V. Porubov, G.A. Maugin, Cubic non-linearity and longitudinal surface solitary waves, Int. J. Non-Linear Mech., 44 (2009) 552-559 , doi: 10.1016/j.ijnonlinmec. 2008.09.003