Nosé–Hoover thermostat

From Department of Theoretical and Applied Mechanics
Revision as of 18:54, 24 October 2015 by Kuzkin (talk | contribs) (References)

Jump to: navigation, search
Virtual laboratory > Nosé–Hoover thermostat


Description

Nosé–Hoover thermostat is used to keep the temperature constant in the system. Thermostat is given by:

[math] \left\{ \begin{array}{ll} v' =\omega^2_{\rm 0} x - \gamma v \\ \displaystyle \gamma' = \frac{1}{\tau^2} \left( \frac{T}{T_{\rm 0}} - 1\right)\\ \end{array} \right. [/math]

где

  • [math] {\omega}_{\rm 0} = \sqrt{ \frac{c}{m}} [/math] - frequency
  • [math] {T_{\rm 0}} [/math] - the initial temperature of the system
  • [math] {T} [/math] - temperature of the system at the current time
  • [math] {v} [/math] - speed of body
  • [math] {\tau} [/math] - parameter of the thermostat
  • [math] {tau}_{\rm 0} = 1 [/math] - scale for [math] {\tau} [/math]
  • [math] {c}_{\rm 0} = 1 [/math] - scale of stiffness for [math] {c} [/math]

Graphics Options

The graph below has three parameters:

1) tau = [math] {\tau} [/math] - parameter of the thermostat

2) stiff = [math] {c} [/math] - stiffness of the system

3) scale - scale of graph

Last slider - the number of pre-configured experiment.

The graph shows the phase plane - dependence [math] V(x) [/math]

Links