Difference between revisions of "Virtual laboratory"

From Department of Theoretical and Applied Mechanics
Jump to: navigation, search
Line 1: Line 1:
 
[[ru:Виртуальная лаборатория]]
 
[[ru:Виртуальная лаборатория]]
 
{{DISPLAYTITLE:<span style="display:none">{{FULLPAGENAME}}</span>}}
 
{{DISPLAYTITLE:<span style="display:none">{{FULLPAGENAME}}</span>}}
<center><h1>Welcome to Virtual laboratory page!</h1></center>
+
<center><h1>Welcome to the Virtual laboratory page!</h1></center>
  
Here you can see projects, that allow you to conduct experiments online in an interactive mode. You can investigate all possible systems: mathematical, mechanical, physical, biological, etc. Also, you can learn online programming and visualization.
+
 
 +
Here you can see computer experiments in interactive online format. Various systems can be investigated: mathematical, mechanical, physical, biological, etc. Also, you can learn online programming and visualization. More experiments are available on the Russian page (see the link at the left panel).
 
__NOTOC__
 
__NOTOC__
 
<div style="float:left; width:33%">
 
<div style="float:left; width:33%">
Line 15: Line 16:
 
</td></tr>
 
</td></tr>
 
<tr><td style="height:100px; text-align:center">
 
<tr><td style="height:100px; text-align:center">
The program, representing a classic game [https://en.wikipedia.org/wiki/Conway's_Game_of_Life "Conway's Game of Life"] with the ability to draw cells on the field by cursor.
+
The program, representing a classic [https://en.wikipedia.org/wiki/Conway's_Game_of_Life "Conway's Game of Life"]. The cells can be drawn on the field by cursor.
 
</td></tr>
 
</td></tr>
 
</table>
 
</table>
Line 31: Line 32:
 
</td></tr>
 
</td></tr>
 
<tr><td style="height:100px; text-align:center">
 
<tr><td style="height:100px; text-align:center">
This model demonstrates the real attitude of the orbital periods of the planets. The radiuses of the planet orbits, as well as the sizes of the planets and the sun are shown in a logarithmic scale.
+
This model demonstrates the real attitude of the orbital periods of the planets. The radiuses of the planet orbits, as well as the sizes of the planets and the Sun are shown in a logarithmic scale.
 
</td></tr>
 
</td></tr>
 
</table>
 
</table>
Line 41: Line 42:
 
<table>
 
<table>
 
<tr><td style="height:40px;">
 
<tr><td style="height:40px;">
<div style="font-size:135%; text-align:center; font-weight:bold">[[:ru:Движение материальной точки в центральном поле | The motion of a particle in a central field]]</div>
+
<div style="font-size:135%; text-align:center; font-weight:bold">[[:ru:Движение материальной точки в центральном поле | Dynamics of a particle in a central field]]</div>
 
</td></tr>
 
</td></tr>
 
<tr><td style="height:260px; background-color:#F8F8F8; text-align:center">
 
<tr><td style="height:260px; background-color:#F8F8F8; text-align:center">
Line 47: Line 48:
 
</td></tr>
 
</td></tr>
 
<tr><td style="height:100px; text-align:center">
 
<tr><td style="height:100px; text-align:center">
That application allows you to study the trajectory of a particle in a central power-law gravitational field.
+
The application allows you to study a particle trajectory in a central power-law potential field.
 
</td></tr>
 
</td></tr>
 
</table>
 
</table>
Line 57: Line 58:
 
<table>
 
<table>
 
<tr><td style="height:40px;">
 
<tr><td style="height:40px;">
<div style="font-size:135%; text-align:center; font-weight:bold">[[:ru:Динамика взаимодействующих частиц | The dynamics of interacting particles]]</div>
+
<div style="font-size:135%; text-align:center; font-weight:bold">[[:ru:Динамика взаимодействующих частиц | Dynamics of interacting particles]]</div>
 
</td></tr>
 
</td></tr>
 
<tr><td style="height:260px; background-color:#F8F8F8; text-align:center">
 
<tr><td style="height:260px; background-color:#F8F8F8; text-align:center">
Line 63: Line 64:
 
</td></tr>
 
</td></tr>
 
<tr><td style="height:100px; text-align:center">
 
<tr><td style="height:100px; text-align:center">
The program simulates the dynamics of interacting particles. Each particle represents a viscoelastic sphere.
+
The program simulates dynamics of interacting particles. Each particle represents a viscoelastic sphere.
 
</td></tr>
 
</td></tr>
 
</table>
 
</table>
Line 78: Line 79:
 
</td></tr>
 
</td></tr>
 
<tr><td style="height:100px; text-align:center">
 
<tr><td style="height:100px; text-align:center">
The program simulates the dynamics of one-dimensional crystal.
+
The program simulates dynamics of a 1D harmonic crystal.
 +
See also [[Heat transfer in a 1D harmonic crystal]].
 
</td></tr>
 
</td></tr>
 
</table>
 
</table>
Line 87: Line 89:
 
<table>
 
<table>
 
<tr><td style="height:40px;">
 
<tr><td style="height:40px;">
<div style="font-size:135%; text-align:center; font-weight:bold">[[:ru:Моделирование структуры кристаллических решеток | The crystal lattices structure modeling]]</div>
+
<div style="font-size:135%; text-align:center; font-weight:bold">[[:ru:Моделирование структуры кристаллических решеток | Periodic vacancies in a crystal lattice]]</div>
 
</td></tr>
 
</td></tr>
 
<tr><td style="height:260px; background-color:#F8F8F8; text-align:center">
 
<tr><td style="height:260px; background-color:#F8F8F8; text-align:center">
Line 93: Line 95:
 
</td></tr>
 
</td></tr>
 
<tr><td style="height:100px; text-align:center">
 
<tr><td style="height:100px; text-align:center">
The program simulates different crystal lattice structures.
+
The program demontrates different crystal lattice structures.
 
</td></tr>
 
</td></tr>
 
</table>
 
</table>
 
}}</div>
 
}}</div>
 
<br style="clear: both" />
 
<br style="clear: both" />
 
* [[Heat transfer in a 1D harmonic crystal]]
 

Revision as of 14:50, 11 October 2015


Welcome to the Virtual laboratory page!


Here you can see computer experiments in interactive online format. Various systems can be investigated: mathematical, mechanical, physical, biological, etc. Also, you can learn online programming and visualization. More experiments are available on the Russian page (see the link at the left panel).

Cellular automaton

The program, representing a classic "Conway's Game of Life". The cells can be drawn on the field by cursor.

Solar System

This model demonstrates the real attitude of the orbital periods of the planets. The radiuses of the planet orbits, as well as the sizes of the planets and the Sun are shown in a logarithmic scale.

The application allows you to study a particle trajectory in a central power-law potential field.


 Balls

The program simulates dynamics of interacting particles. Each particle represents a viscoelastic sphere.

Chain

The program simulates dynamics of a 1D harmonic crystal. See also Heat transfer in a 1D harmonic crystal.

Lattice

The program demontrates different crystal lattice structures.