
                             Elsevier Editorial System(tm) for International Journal of Engineering Science 
                                  Manuscript Draft 
 
 
Manuscript Number: IJES-D-15-00792 
 
Title: Asymptotic approach to transient thermal shock problem with variable material properties
  
 
Article Type: Full Length Article 
 
Keywords: thermal shock problem; variable material properties; generalized thermoelasticity; 
asymptotic solutions; layer method; qualitative evaluation 
 
Corresponding Author: Dr. Yingze Wang, ph.D 
 
Corresponding Author's Institution: Jiangsu University 
 
First Author: Yingze Wang, ph.D 
 
Order of Authors: Yingze Wang, ph.D; Dong Liu; Qian Wang, Professor; Chang Shu, Professor 
 
Abstract: In this paper, we present an asymptotic approach for solving the transient thermal shock 
problem with variable material properties. The governing equations of isotropic elastic medium with 
temperature-dependent properties are derived in the context of generalized theory of thermoelasticity 
with one thermal relaxation time. The asymptotic solutions of one-dimensional problem with bounded 
boundaries are derived firstly with the assumption that each material parameter is the function of the 
specific temperature, where the Laplace transform technique and its limit theorem are introduced for 
solutions. Then these asymptotic solutions are expanded to the case that material properties are the 
functions of real temperature by means of a space and time discrete of temperature via a layer method, 
where the temperature of each layer is seems to be constant for the specific time step. This asymptotic 
approach is employed for solving the thermoelastic response of a thin plate with finite thickness and 
variable material properties, whose boundary is subjected to a sudden temperature rise. The 
distributions of displacement, temperature and stresses are obtained, and the comparison with the 
results obtained from the case with constant properties is also conduced to qualitatively evaluate the 
effect of temperature dependency on each studied field. 
 
 
 
 



Acknowledgments 

This research was supported by the National Natural Science Foundation of 

China (Grant Nos. 11102073, 51206062), the Jiangsu Overseas Research & Training 

Program for University Prominent Young & Middle-aged Teachers and Presidents, 

and the Priority Academic Program Development of Jiangsu Higher Education 

Institutions. 

 

Acknowledgements



Asymptotic approach to transient thermal shock 

problem with variable material properties 

Ying-Ze Wang
* 

Energy and Power Engineering Department, Jiangsu University, Zhenjiang 212013, China, 

e-mail: wyz3701320@ujs.edu.cn 

Dong Liu
*
 

Energy and Power Engineering Department, Jiangsu University, Zhenjiang 212013, China, 

e-mail: liudong@ujs.edu.cn 

Qian Wang 

Energy and Power Engineering Department, Jiangsu University, Zhenjiang 212013, China, 

e-mail: qwang@ujs.edu.cn
 

Chang Shu 

Mechanical Engineering Department, National University of Singapore, 117575, Singapore, 

e-mail: mpeshuc@nus.edu.sg 

 

*
Corresponding author: wyz3701320@ujs.edu.cn, liudong@ujs.edu.cn 

 

Title page with author information



Asymptotic approach to transient thermal shock 

problem with variable material properties 
 

Abstract In this paper, we present an asymptotic approach for solving the transient thermal 

shock problem with variable material properties. The governing equations of isotropic elastic 

medium with temperature-dependent properties are derived in the context of generalized 

theory of thermoelasticity with one thermal relaxation time. The asymptotic solutions of 

one-dimensional problem with bounded boundaries are derived firstly with the assumption 

that each material parameter is the function of the specific temperature, where the Laplace 

transform technique and its limit theorem are introduced for solutions. Then these asymptotic 

solutions are expanded to the case that material properties are the functions of real 

temperature by means of a space and time discrete of temperature via a layer method, where 

the temperature of each layer is seems to be constant for the specific time step. This 

asymptotic approach is employed for solving the thermoelastic response of a thin plate with 

finite thickness and variable material properties, whose boundary is subjected to a sudden 

temperature rise. The distributions of displacement, temperature and stresses are obtained, and 

the comparison with the results obtained from the case with constant properties is also 

conduced to qualitatively evaluate the effect of temperature dependency on each studied field.      

Keyword thermal shock problem; variable material properties; generalized thermoelasticity; 

asymptotic solutions; layer method; qualitative evaluation    

1 Introduction 

Recently the thermo-mechanical properties of materials are facing severely tests with the 

extensive applications of aerospace engines, nuclear reactors, pressure vessels, and pipes in 

engineering practice. The research of elastic response takes place in some severe conditions 

liking severe temperature rise or high heat flux, especially the prediction of thermal stresses 

induced by these severe conditions, which is very important to evaluate the material life, has 

drawn great attention (Wetherhold & Wang, 1996). Experiments (Mitra, Kumar, Vddavarz & 

Moallemi, 1995) have proven that thermal signal propagates in an elastic medium with a 
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finite speed when heat conduction takes place in a short interval or induced by high heat flux, 

which would give rise to some abnormal heat phenomena and can’t be predicted by the 

classical Fourier’s law. This also means that the conventional coupled theory of 

thermoelasticity (Biot, 1956) constructed on the assumption with infinite speed of thermal 

signal is not effective any longer. In order to reveal the themoelastic behavior involving finite 

speed of thermal signal, some modified theories or known as generalized theories of 

thermoelasticity are proposed by Lord and Shulman (L-S theory, 1967), Green and Lindsay 

(G-L theory, 1972), Green and Naghdi (G-N theory, 1993), Youssef (2006, 2010), Sherief, 

El-Sayed and Abd El-latief (2010), and Povstenko (2011), respectively. For these generalized 

theories, a wave-type equation of heat conduction admitting a finite speed of heat wave is 

introduced to replace the initial diffusion-type equation. 

Many problems involving abnormal heat conduction have been investigated by means of 

these generalized theories (Hetnarski & ignaczak, 1999; Tian & Shen, 2012). It is noted that 

most investigations are conducted on the assumption with constant material properties, which 

limits the applicability of results obtained from these investigations to certain ranges of 

temperature. For most of materials, the material properties are changed with temperature, and 

these temperature-dependent properties would have some effect on thermoelastic behavior 

(Ezzat, El-Karamany & Samaan, 2004). It is very necessary for the research of thermoelstic 

behavior, especially involving abnormal heat conduction, to take into consideration the real 

behavior of material properties.   

Due to the different generalized theories, Ezzat, El-Karamany and Samman (2004), 

Youssef (2005), Aouadi (2006), Othman and Kumar (2009), Allam, Elsibai and Aboudlregal 

(2010), and Abbas (2014) studied the effect of variable material properties on thermoelastic 

response, where variable material parameters with temperature such as the modulus of 

elasticity, Poisson’s rate, the thermal conductivity and the specific heat are considered by 

various problems with different boundary conditions.  

In view of the complexity of governing equations included in these generalized theories, 

especially involving the variable material properties, which would lead to the nonlinear 

equations, how to have an effective solution for these complicated equations is very important 

to reveal the real behavior involving finite propagation speed of thermal signal in the absence 



of experimental supports. Although some valuable results have been obtained from above 

studies, the assumption that each material parameter is the linear function with reference 

temperature was used to simplify the solution, which limits the applicability of results 

obtained from these studies to the specific case that material properties are the functions of 

constant temperature.  

Xiong and Tian (2011), He and Shi (2014), Zenkour and Abbas (2014) and Sherief and 

El-Latief (2013) considered the variation of material properties with real temperature, and 

solved the thermoelastic problems with different boundary conditions by the finite element 

method (Tian, Shen, Chen & He, 2006) and the integral transform method, respectively, 

where the linear function or exponential function with real temperature was used to obtain 

some more interesting results. It is noted that some numerical solutions are used to deal with 

these nonlinear equations, where the truncation error and discrete error, especially the 

artificial dissipation introduced to eliminate the numerical oscillations of wavefronts would 

smooth the discontinuous of solutions and can’t accurately predict the propagations of thermal 

waves. Meanwhile, the accurate mathematical relations of each physical quantity with 

variable material parameters can’t be obtained by these numerical results, which is harder to 

evaluate the effect of variable material properties on thermoelastic response.  

In this paper, an asymptotic approach is proposed to deal with the thermoelastic problem 

with the variable material properties in the context of L-S generalized theory. The analytical 

solutions of one dimensional problem are firstly derived with the assumption that each 

material parameter is the function of specific temperature, where the method of integral 

transform combining with approximate solutions (Balla, 1991; Sherief, Elmisiery & Elhagary, 

2004; Wang, Zhang & Song, 2012) are introduced, which is very effective to analyze the 

thermoelastic response induced by transient thermal shock. Then a layer method is introduced 

to deal with the temperature distribution, and a constant temperature condition is obtained to 

assure the material properties of each layer are the functions of constant temperature. Finally 

the discrete solutions for each layer involving the variation of material properties with real 

temperature can be obtained from these analytical solutions. The same strategy is employed to 

the solution of the thermal shock problem with temperature-dependent properties, and the 

thermoelastic response involving the variation of material properties with real temperature is 



obtained and discussed.  

2 Formulations of the problem 

For an isotropic elastic medium with temperature-dependent properties, the basic 

equations in the context of the L-S theory (Lord & Shulman, 1967) in absence of body forces 

and heat source are given by 

The linear strain-displacement relations 

 , ,

1

2
ij i j j iu u            (1) 

The constitutive equations  

2ij kk ij ij ij              (2) 

The equation of motion  

,i ij ju           (3) 

The energy balance equation 

, 0i i p kkq c T             (4) 

 The heat conduction equation 

0 ,i i iq q k            (5) 

where , 1,2,3i j   refer to general coordinates, iu  are the components of the displacement 

vector, iq  are the components of the heat flux vector, ij  are the components of the stress 

tensor, ij  are the components of the strain tensor, 0T T    is the increment temperature, 

T  is the absolute temperature, 0T  is the reference temperature,   is the mass density, k  

is the thermal conductivity, pc  is the specific heat at constant strain,  3 2 T      is 

the thermal-mechanical coefficient, T  is the coefficient of linear thermal expansion,   

and   are the Lame’s constants, 0  is the relaxation time constant for L-S theory. 

Meanwhile, the superscript dot   and the subscript comma  , denote the derivatives to the 

time t and coordinates  1,2,3ix i  , respectively. 



Considering the temperature dependency of material properties, each material parameter,  

such as the modulus of elasticity E , Poisson’s ratio v , the coefficient of linear thermal 

expansion T , the thermal conductivity k  and the specific heat 
pc , are variable with 

temperature, which also leads to the Lame’s constants   and  , the thermal-mechanical 

coefficient   be changed with temperature. The functions of these material parameters with 

temperature can be expressed as following forms: 

                  
00 0 0 0, , , , , , , ,p pT T T k T c T k c f T        (6) 

where 0 , 0 , 0 , 0k  and 
0pc  are constants,  f T  is a function of temperature and has 

the following forms for ceramic and metal materials (Tanigawa, Matsumoto & Akai, 1997): 

  2 3

1 2 31f T T T T             (7) 

in which 1 , 2  and 3 are some material constants decided by experiments of material 

properties. 

Now we consider an insulated thin plate of thickness L  composed of Titanium material 

with temperature-dependent properties, whose boundaries are traction free and keep the 

uniform temperature 0T  initially. For time the surface of boundary 0x   is suddenly raised 

to constant temperature 1T . 

From the physics of the problem, it is clear that all the physical quantities will depend on 

x  and t  only. Thus, the displacement vector has the components: 

 ,xu u x t , 0y zu u          (8) 

Taking account into the linear strain-displacement relations (1), we have 

xx

u

x






, 0yy zz xy xz yz             (9) 

Substituting these strain components into the constitutive equations (2), the non-zero 

stress components can be derived as 

     2xx

u
T T T

x
    


     

     (10) 

   yy zz

u
T T

x
    


  


      (11) 

Substituting these non-zero stress components into equation of motion (3) results in 
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  (12) 

Combining Eq. (4) with Eq. (5) to derive the temperature equation as 

 

 
 

   
   

2

2

2 3 2 2

0 0 0 0 02 2

p

p

k T
k T

x x x

c T Tu u u
c T T T T

t t t x t x t t t t x

 

  
     

 
 

  
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               

(13) 

The initial and boundary conditions take the forms: 

0t  : 0u  , 0
u

t





, 0T T , 0

T

t





      (14) 

0x  :    0 1 0T T T T H t   , 0xx        (15) 

x L : 0T T , 0xx          (16) 

where  H t  is the Heaviside unit function. 

For convenience of following solutions, some non-dimensional variables are introduced: 

*

ex av x , *

eL av L , * 2
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0T


  , * 0 0

0 0

2
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T

 




 ,  *

0 0

ii
ii

T





  

Substituting these non-dimensional variables into above equations (10)-(13) and dropping 

the asterisks for convenience, we have 

   1 2xx

u
f f

x
   


 


        (17) 
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x
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
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
       (18) 
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     (19) 
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3 2
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  
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 (20) 

where 0

0

pc
a

k


  is the thermal viscosity constant, 0 02

ev
 




  is the standard speed of 

thermoelastic wave, 
 

0

2

0 0

0 02p

T

c




  



 is the thermoelastic coupling constants, 



0

0 02
k



 



 is the non-dimensional constants, and   1,2,3,4if i   are the 

non-dimensional forms of functions  f T  for each material parameter. 

3 Asymptotic solutions of the problem 

3.1 Analytical solutions with assumption that material properties are the functions of 

specific temperature  

To simplify the solutions of governing equations, the assumption that each material 

parameter is the function of specific temperature, such as the reference temperature 0T , is used 

in previous investigations (Ezzat, El-Karamany & Samman, 2004; Youssef, 2005; Aouadi, 

2006; Othman & Kumar, 2009; Allam, Elsibai & Aboudlregal, 2010; Abbas, 2014). For this 

assumption, the governing equations (17)-(20) can reduce as 

   1 0 2 0xx

u
f f

x
   


 


       (21) 

   1 0 2 0yy zz

u
k f f

x
    


  


       (22) 

   
2 2

1 0 2 02 2

u u
f f

t x x


 

  
 

  
       (23) 

     
2 2 3 2

3 0 4 0 0 2 0 02 2 2

u u
f f f

x t t t x t x

  
     

       
      

         
   (24) 

where 0  is a non-dimensional constant.  

Applying the Laplace transform for the both sides of Eqs. (21)-(24), which is defined as 

     
0

dstL t f s e f t t


    

Considering the homogeneous initial condition (14), we have 

   1 0 2 0

d

d
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u
f f

x
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d

d
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u
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x
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   
2

2
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d d

d d

u
s u f f

x x


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2
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d d

d d

u
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x x


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Eliminating terms u  and   separately by combining Eq. (27) and Eq. (28) results in 
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 (29) 

The general solution of Eq. (29) can be expressed as 

       
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    

    (30) 

where  iA s ,  iB s ,  iC s  and   1,2iD s i   are coefficients depending on parameter 

s  and are determined by the given boundary conditions. 1R  and 2R  are the negative roots 

of the following characteristic equation: 
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Substituting the solution (30) into Eq. (27) or Eq. (28) results in  
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Substituting these expressions (31) into general solution (30) and combining with stress 

component (25), we have 
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Applying the Laplace transform to the boundary conditions (15) and (16), we have 

0x  : 1T s , 0xx        (33) 

x L : 0T  , 0xx           (34) 



where 1 0
1

0

T T

T



 . 

Applying these boundary conditions to general solutions (30) and (32) results in 

 
   
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1 2 2

1 2 11 exp 2

R f f
A s
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 

   

, 

     1 1 1expC s A s LR ,      1 1 1expD s B s LR          (35) 

Utilizing these expressions, the general solutions of displacement, temperature and 

stresses in the transform domain can be obtained as 
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(36) 

where 1vk k  . 

Theoretically corresponding solutions in the time domain can also be derived from these 

transformed solutions (36) by means of directly inverse Laplace transform. However, it is 

practically impossible to construct the exact solutions in a closed form in the time domain for 

the complicated expressions of roots 1R  and 2R  defined by characteristic equation. Thus, 

some approximations of roots  1R  and 2R  are introduced by means of limit theorem of 

Laplace transform, where transient property of thermal shock problem is considered to obtain 

the following approximations (Balla, 1994; Sherief, Elmisiery & Elhagary, 2004; Wang, 

Zhang & Song, 2012; Wang, Zhang & Liu, 2013): 

1,2 1,2 1,2R k s m           (37) 

where 
 

 

 

 
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1 2
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2
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, 



 
 

 
   

2

4 0 2 0

3 0 1 0 3 0

1,2

1,24

f f b
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m

k
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
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 
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2
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, 
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 
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2
2 2
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. 

Substituting these approximations of roots 1R  and 2R  to the expressions of 

coefficients  1A s ,  1B s ,  1C s
 
and  1D s , then, the forms are convenient to inverse 

Laplace transform can be obtained. Using the standard results of Laplace transform technique, 

the asymptotic solutions ofu , T  and  1,2,3ii i   in the time domain can be derived as 
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   
 

 

 
 

   
 

 

1 1 2 2

1 1 2 2

1 1

1 1

1 1
2 2

1 ! 1 !

1 1
2 2 2 2 2 2

1 ! 1 !

n n

k k k k
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 (38) 
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 (41) 

where 
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3.2 Discrete solutions for the case that material properties are the functions of real 

temperature  

The solutions (38)-(41) obtained in preceding section limit their application to the case 

that each material parameter is the function of constant temperature. In fact, the temperature 

of each position is changed during the heat transfer, which leads to corresponding change for 

each material parameter. In order to expand these solutions to the reality, a layer method 

(Tanigawa, Matsumoto & Akai, 1997) is introduced to deal with the relations of each material 

parameter with real temperature.  

For easy analysis, a layered structure is shown in Figure 1. It has n distinctive layers with 



isotropic material properties of the ith layer
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. We 

assume that temperature  ,i j t
T


 in each layer is constant for given time t j t  , where the 

distribution of temperature can be replaced with the boundary temperature for the thickness of 

each layer 0x  , meanwhile the thermoelastic wave and thermal wave generating from the 

boundary plane propagate in the x direction. We now start our formulation of the problem 

from each layer.  

Since each physical quantity u ,   and  1,2,3ii i   of each layer satisfies the 

governing equations (21)-(24) with the condition of constant temperature, which also means 

each material parameter is the function of constant temperature. Thus, the solutions of ith 

layer for given time should have the following forms: 
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,  

1,2k  , 3,4k  , 5,6k  , 1,2m , 3,4m , a  and b  can be obtained from 1,2k , 3,4k , 5,6k , 1,2m , 3,4m , 

a  and b by replacing constant 0  with constant  ,i j t  , respectively, ix i x  , x  is 

the thickness of layer, and t  is the unit time step. 

It is obvious that solutions (42)-(45) for each layer can satisfy the following 

non-dimensional boundary condition and constitutive conditions: 

  1, 1.0j t    ,  , 0.0L j t    ,  1, 0.0xx j t    ,  , 0.0xx L j t      (46) 

   , 1,u i j t u i j t     ,    , 1,i j t i j t      ,    , 1,xx xxi j t i j t      (47) 

where the superscript “” and “ ” indicates the left and right boundaries of each layer, 

respectively, and 1i ix x 

  for 0x  .  

4 Numerical examples and discussion 



Now for the illustration of these asymptotic solutions obtained in preceding sections, the 

thin plate composed Titanium material with temperature-dependent properties Ti-6Al-4V, 

whose material properties are given in Table 1 (Tanigawa, Matsumoto & Akai, 1997), is used 

to the calculations. 

Table 1. Material properties of Ti-6Al-4V 

Material Property 1  2  3  

Ti-6Al-4V 

E (Pa) -4.60e-4 0.0 0.0 

v 1.11e-4 0.0 0.0 

α (K
-1

) 7.48e-4 -3.62e-7 0.0 

K (w/mk) 1.55e-2 0.0 0.0 

cp (J/kgK) 2.51e-3 -2.78e-6 1.27e-9 

Furthermore, the other non-dimensional constants for calculation are taken as: 

0 0.5  , 0.0046  , 0.4k  , 0.6vk   , 1 1  , 2L  , 0 300KT   

Due to the properties of Heaviside unit function included in solutions (42)-(45), two 

waves named thermoelastic wave and thermal wave, respectively, would generate in the effect 

of thermal shock at boundary. The propagation velocities of two waves at the given time can 

be derived as 

 1,2 1,2, 1v i j t k          (48)  

Obviously the above layer expressions would approach to the propagation velocities for 

continuous case for 0x  . Combining with the expressions of parameter 1,2k  , the 

propagations of two waves are dependent on the thermal relaxation time 0 , the themoelastic 

coupling coefficient   and variable material functions   1,2,3,4if i  , which means the 

temperature dependency has also effect on the propagation of thermoelastic wave and thermal 

wave. Furthermore, if 0 0  , which means the delay effect between heat flux and 

temperature gradient has disappeared and reduces to the Flourier heat conduction, we have 

 1 1v f   and 2v  . Consequently we can conclude that 2v  indicates the propagation 

velocity of thermal wave, which is infinite in the Fourier heat conduction, and 1v  is the 



propagation velocity of thermoelastic wave.    

Figures 2-4 display the non-dimensional of displacement u , temperature , and stress 

components  1,2,3ii i   along the thickness direction for different time t . The general 

phenomenon involving the finite propagation velocity of thermal signal can be observed 

clearly, which is all of u ,   and ii  vanish at all positions beyond the faster wavefront 

( 1 2v v  for the given calculation conditions). The displacement has a continuous distribution 

for the continuum hypothesis, but the distributions of the temperature and stresses are 

discontinuous for the different propagation velocities of two waves, where two jumps would 

generate in each wavefront, although the first jump for temperature distribution is very small. 

This is an important phenomenon and can’t be captured by other methods used in previous 

investigations. Especially each jump of stress distribution corresponds to a peak stress, and 

the expressions of these peak stresses can be obtained by substituting the wavefront 

1,2 1,2t k  into stress solutions (44) and (45), which can reveal clearly the relationships 

between peak stress and variable material properties and is very important for the evaluation 

of the material life.  

Due to Eq. (7), if the material function ( ) 1f T  (    1 1,2,3,4if i   ), all the material 

parameters are constants, which corresponds the case of constant material properties. Figures 

5-7 display the comparisons of each distribution for different cases at specific time 1.0t  , 

where 1p   ( ( ) 1f T  ) corresponds the constant material properties,  p f T  and 

 1p f T correspond the material parameters are the functions of real temperature and 

specific temperature, respectively. The latter is usually to be used in previous investigations to 

simplify the solution.  

For the given Titanium material Ti-6Al-4V, the thermal conductivity and specific heat are 

increased with temperature but the modulus of elastic is decreased, the former leads to the 

more heat transfer than the case with constant material properties, but the latter gives rise to a 

reduce of magnitude for peak stress. These are consistent with the results obtained from 

previous investigations with the same temperature dependency (Ezzat, El-Karamany & 

Samman, 2004; Youssef, 2005; Abbas, 2014).  



Due to the variation of temperature distributions plotted in Fig.6, the values of 

temperature for all positions behind the faster wavefront are less than the boundary 

temperature 1T , that is, the temperature dependency is enhanced for the case  1p f T  than 

that of the case  p f T
 
and leads to the displacement and stresses distributions for the 

case  p f T  are between two other cases. This means the assumption that material 

parameters are the functions of specific temperature, such as the reference temperature 0T  

(most used in previous) or the boundary temperature 1T  is the specific case only and would 

leads to the larger or smaller effect on thermoelastic response. 

Furthermore, the variation of wavefront position for each wave at different cases is also 

observed from the stress distribution illustrated by Fig.7, which reflects the effect of 

temperature dependency on propagation velocities of each wave in according with the 

relationship between the propagation velocity and wavefront position. Due to the expressions 

(48), the distributions of propagation velocity for each wave along thickness direction at given 

time 1.0t   are displayed in Fig. 8. It is observed clearly that the propagation velocities of 

two waves for the cases with constant properties 1p   and variable properties  1p f T  

are constants in the whole thickness range, but that for the case with variable properties 

 p f T  are changed in the positions behind the faster wavefront for the different 

temperature distribution, where the propagation velocity of thermoelastic wave is increased 

but is decreased for thermal wave until they equal the corresponding propagation velocities of 

constant properties case in the positions beyond the faster wavefront.  

5 Conclusions 

In this paper, an asymptotic approach for solving generalized thermoelastic problem with 

variable material properties is proposed. Firstly, the analytical solutions are derived by means 

of Laplace transform and its inverse transform, where the assumption that material parameters 

are the functions of specific temperature is introduced to linearize the governing equations 

with temperature-dependent properties. Next, a layer method is used to discretize the 

temperature distribution in space, and a constant temperature condition in each layer is 



obtained to expand these solutions to each layer with different material parameters. Finally, 

the calculation has been conducted from each layer to approach the results of the case that 

material parameters are the functions of real temperature. The problem of thin plate composed 

of Titanium material with temperature-dependent properties, whose boundary is subjected to a 

sudden temperature rise, has been solved by this method, and we can draw the following 

conclusions: 

 1) The explicit expressions describing the propagations of thermoelastic wave and 

thermal wave induced by thermal shock are obtained by this asymptotic approach. For these 

explicit expressions, the accurate mathematics relations of propagation velocities with 

characteristic parameters 0  and   and variable material parameters  ip f T  are 

obtained, which can clearly reveal the effect of temperature dependency on propagations of 

two waves.    

2) The jumps of temperature and stresses generating in the locations of each wavefront 

can be observed clearly, even the expressions are also obtained by substituting these 

wavefront locations into the solutions of temperature and stresses, which decide the 

magnitudes of peak stresses and can’t be obtained by other methods used in previous 

investigations but is important to evaluate the effect of temperature dependency on material 

life. 
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