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Summary

In a multiwell pad, the chance of interwell communication increases because of the creation of primary and secondary fractures during
hydraulic-fracture stimulation. The flow behavior associated with communicating wells is significantly different from that of a single
isolated well, because of interplay of flow caused by the interconnected fractures, complex connections, and multiple production condi-
tions. The main purpose of this paper is to develop a rigorous and efficient flow model and quantify flow characteristics of multiple pad
wells communicating through primary and secondary fractures.

In the model, matrix and primary- and secondary-fracture flows are captured. Fractures are explicitly represented by discrete seg-
ments. The Laplace-transform finite-difference (LTFD) method is used to numerically model fracture flow, with sufficient flexibility to
consider arbitrary fracture geometries and fracture-conductivity distributions. The analytical matrix-flow model, derived with the line-
source function in the Laplace domain, is dynamically coupled with the fracture-flow model, by imposing the continuity of pressure
and flux on the fracture surface. Thus, a hybrid model in the Laplace domain is constructed. The main advantage of the solution occur-
ring in Laplace domain is that computations can be performed at predetermined, discrete times, and with grids only for fractures. Thus,
stability and convergence problems caused by time discretization are avoided, and the burden of gridding and computation is decreased
without loss of important fracture characteristics.

The model is validated through comparison with a fully numerical simulator and a semi-analytical model. Detailed flow-regime
analysis reveals that pressure interference caused by communication significantly alters the flow signature compared with single (iso-
lated) wells. Before interference, the communicating wells behave as single isolated wells, and will exhibit a fracture linear-flow period
and possibly even a matrix linear-flow period. After interference, the flow behavior of the system will vary largely with different pro-
duction strategies. When the communicating wells all operate under the constant-rate condition, the transient responses of the wells will
gradually merge to develop another matrix linear-flow period. If the wells are operated under the constant-bottomhole-pressure (BHP)
conditions, the response deviation caused by interference will increase with production; therefore, one of the wells will undergo a rate
loss. The results of a sensitivity analysis for a two-well system demonstrate that the time to well interference is primarily determined by
secondary-fracture conductivity, number of connections, and communicating-well operating conditions. With larger contrasts in these
properties, interference time is accelerated. However, for different production strategies, the effects on the flow behavior after interfer-
ence are variable.

Introduction

In recent years, with the downturn in oil prices, improvement in hydraulic-fracturing-stage design and well-location optimization has
received widespread attention in unconventional reservoirs. One of the most common field developments is infill drilling into drill-to-
hold leases. With high well density, the chance of multiwell communication will increase because of the occurrence of complex fracture
connections, also known as “fracture hits” (Lawal et al. 2013; Yaich et al. 2014; Marongiu-Porcu et al. 2016), as illustrated in Fig. 1.
The “fracture hits” are also apparently indicated by the observation of field data (wellbore-pressure perturbation or production-rate drop
for no apparent reason). As shown in Fig. 2, a rate decrease in the producing well (shown in black) occurs at Day 72, which corresponds
to the same time an offset well (shown in red) was hydraulically stimulated. As a result, the producing well (shown in black) exhibits a
rate loss of approximately 1,300 Mscf/D. This rapid change in production rate is believed to be the direct result of flow between com-
municating fractures (Lawal et al. 2013). In this situation, primary hydraulic fractures of each well (between at least two wells) will pos-
sibly be connected by secondary fractures (e.g., activated pre-existing natural fractures). This phenomenon in a multiwell pad has
increased the complexity of well and stage location optimization. Therefore, modeling the flow behavior of multiwell communication is
important for evaluating the effects of multiwell interference and how well performance is affected.

Currently, the most common approach to simulate the production of multiple wells is full numerical simulation. Well performance
of multiple wells communicating through interconnected fractures has been extensively investigated by use of commercial reservoir
numerical-simulation software (Gupta et al. 2012; Martinez et al. 2012; Lawal et al. 2013; Yaich et al. 2014; Malpani et al. 2015). Also,
transient-pressure analysis of a multiwell pad has been used to identify well communication (Portis et al. 2013; Sardinha et al. 2014;
Sani et al. 2015). In the previous studies with these techniques, the authors used single or multiple transverse fractures to perform pre-
dictions of multifractured-horizontal-well performance, caused by the difficulties in modeling arbitrary fracture geometries in commer-
cial software. Historical studies have often approximated complex hydraulic-fracture networks as planar, symmetric biwing fractures
and lose some details of fracture characteristics. Recently, Marongiu-Porcu et al. (2016) investigated interwell-fracture interference by
use of a state-of-the-art modeling work flow. A multidisciplinary approach is successfully implemented to capture formation properties,
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hydraulic-fracture propagation, and interactions with pre-existing natural fractures. Production simulation with the work flow essen-
tially follows the idea of an unconventional fracture model (UFM) developed by Cipolla et al. (2011), which integrates an extensive
adaptive gridding scheme and numerical simulation to forecast the performance of complex-fracture networks. Nevertheless, because
of the complexity of the UFM and associated grid discretization, the approach may involve a more difficult model setup and increased
computation time caused by a large number of cells and small timesteps required to obtain sufficiently accurate results.

Permeability (md)
‘ 1,000.00000000
| 100.00000000

~10.00000000

~1.00000000
0.10000000
0.01000000
0.00100000

0.00010000

Fig. 1—lllustration of interwell communication. (Left) Fracture geometry of a parent well and a child well (infill well); purple rectan-
gles depict the fracture-interconnecting region. (Right) Magnified view of the largest fracture-interconnecting region to better illus-
trate the fracture geometry. Dashed red lines are used to indicate some interconnected fractures (modified from Marongiu-Porcu
et al. 2016).
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Fig. 2—Production-rate profile of one existing producing well and one stimulated well for indication of well communication
through secondary fractures (modified from Lawal et al. 2013).

By use of Green’s function provided by Gringarten and Ramey (1973), Awada et al. (2016) adopted a simple analytical solution to
investigate multiwell communication with connected fractures from two adjacent wells. The model assumed biwing uniform-conductiv-
ity vertical fractures within a closed rectangular reservoir (Earlougher and Ramey 1973). Awada et al. (2016) concluded that fracture
conductivity significantly influences the timing and pressure response of interference. However, the analytical model was restrictive,
assuming a single planar fracture for each well with uniform- or infinite-conductivity fractures. Hence, their approach is difficult to
extend to the simulation of production for the case of multiple fractures with varying fracture conductivity connected by complex frac-
tures (e.g., some secondary fractures with different inclinations).

Yu et al. (2016) built a comprehensive semianalytical model to quantitatively simulate the rate response of multiwell interference
with fracture hits. The model essentially used a node-analysis approach to discretize the complex-fracture network into grids for numer-
ical simulation, and adopted Green’s function in the real domain to derive an analytical reservoir flow solution. The multiwell case was
simulated with constant BHP constraint. The study provided and improved understanding of the performance of well-interference
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through fracture hits. The disadvantage of solutions on the basis of Green’s function in the real domain is that the simulation results are
still dependent on timesteps, and the speed of computation will decrease with simulation time, because of the need for pressure superpo-
sition of previous timesteps. Further, the assumption of steady-state flow within fractures in the model may affect the accuracy of time
and pressure responses caused by interference. Awada et al. (2016) pointed out that interference responses will occur within the first 10
minutes for a fracture permeability greater than 1,000 x 10 >um?. In addition, although significant efforts have been made to develop
efficient models for simulation of complex-fracture networks (Hazlett and Babu 2014; Zhou et al. 2014; Jia et al. 2015), most studies
only focus on single wells, and the effects of multiwell interference are not accounted for or discussed.

Therefore, there is still a need to develop a more-efficient and -rigorous approach to model the transient-flow behavior of multiwell
communication through interconnected fractures and to investigate the flow signatures of communicating wells. In this paper, we there-
fore develop a Laplace-domain hybrid model to simulate production from such a system more efficiently and rigorously. In the model,
flow from the matrix to the wellbore is assumed to occur by means of fracture flow and matrix flow. We use the LTFD method to
numerically model fracture flow in discrete fracture segments. The analytical matrix-flow model, derived with the line-source function
in the Laplace domain, is dynamically coupled with the fracture-flow model by use of production boundary conditions. The main
advantage of the hybrid solution in the Laplace domain is that computations can be performed at predetermined, discrete times, and
with grids only for fractures. The use of discrete fracture segments provides sufficient flexibility to consider complex fracture geome-
tries and varying conductivities. Thus, stability and convergence problems caused by time discretization are avoided, and the burden of
gridding and computation is decreased without loss of important fracture characteristics. In addition, unsteady-state flow in fractures is
considered, and each well can operate with different production constraints: constant rate or constant BHP. By use of the new model,
type curves are plotted, and flow behavior is analyzed in detail. The effects of secondary-fracture conductivity, number of fracture con-
nections, and operating conditions are also discussed.

Importantly, the new model developed in this work can be used to diagnose well communication though history-matching and fore-
casting of production data. The analysis of transient responses of communicating wells with the new-model match to field data, an im-
portant contribution of this work, provides a basic and rigorous framework for the industry to diagnose whether wells (at least two) are
communicating through fractures, and is less subjective than previous approaches.

Physical Model

Multiple horizontal wells are drilled and completed with multiple fractures in a uniform reservoir. Fig. 3a illustrates a system of two
horizontal wells, each completed in three hydraulic-fracture stages. Branching fractures are assumed to propagate away from the pri-
mary hydraulic fractures. The primary hydraulic fractures, because they are propped, are assumed to have a higher conductivity than
the branching (secondary) fractures. The secondary fractures, including activated pre-existing natural fractures, are often partially
propped or unpropped, leading to their lower conductivity. As illustrated in Fig. 3a, the secondary fractures connect the isolated primary
fractures of each well. Although well communication identified by “fracture hits” can occur either indirectly through secondary frac-
tures or directly through primary hydraulic fractures, our rationale for developing the model to include the secondary-fracture case is
that it gives the model more flexibility. For example, by setting the conductivity of secondary fractures to be the same as that of primary
hydraulic fractures, the secondary fractures will become part of the primary-fracture system, allowing the case of interconnection
between the wells through primary fractures to also be modeled. As a result, the new model can simulate different fracture geometries
and conductivity distributions. All the fractures in the system can be configured with different length, conductivity, and inclination.
Fully penetrating fractures are assumed, and the flow convergence to the wellbore in the primary fractures is modeled with a flow-chok-
ing skin. The following assumptions are also made:

e The reservoir is isotropic, horizontal, and of uniform thickness with impermeable lower and upper boundaries.

e Flow in the system is assumed to be single-phase flow of a slightly compressible fluid of constant viscosity.

e Reservoir fluid entering the wellbore(s) flows only through the primary fractures, and the pressure loss in the wellbore is

neglected.

e Each horizontal well can be operated under different production conditions: constant rate or constant BHP.

As illustrated in Fig. 3b, the fracture system, including primary and secondary fractures, is discretized and represented by Ng seg-
ments. The intersections created by fracture interconnection are removed by use of the Star-Delta transformation. Thus, the involved
fracture segments will be directly connected. The Star-Delta transformation will be discussed in a later section. The segments are num-
bered sequentially, from bottom-left to top-right. The discretization should capture the fracture geometry but not assume too many seg-
ments, which could slow down the simulation.

Mathematical Model

Fluid production from the reservoir is a result of flow first occurring from the matrix into the fractures, then into the wellbore(s).
Neglecting pressure loss in the wellbore, there are two distinct flow processes governed by different mechanisms: matrix flow and frac-
ture flow. In the following sections, we first describe the mathematics behind matrix and fracture flow, respectively, and then dynami-
cally couple these two flow models by imposing continuity conditions.

Analytical Matrix-Flow Model. With the assumption of fully penetrating fractures, unsteady-state flow in the matrix will be a 2D
problem. Then, single-phase fluid flow in the matrix can be expressed as

@pp  Ppp _ Ipp
oxh  Oyh O’

and is subject to initial and boundary conditions.

A uniform reservoir pressure at initial conditions is assumed. During production, matrix pressure will drop because of the flow of
the reservoir fluid into the discrete fracture segments. Hence, the fracture segments can be considered as planar sinks of different
strengths. One of the most efficient methods to solve Eq. 1, which is subject to a number of sources/sinks, is based on the line-source
function in Laplace domain. Application of the Laplace transformation with respect to time to Eq. 1 yields

&pp | pp
/7.7 = R 2
ax% + (9))% SPp ( )
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where s is a Laplace-transform variable. The dimensionless variables in Eqs. 1 and 2 are defined in Appendix A. An extensive library
of Laplace-domain line-source functions for various boundary conditions has been provided by Ozkan and Raghavan (1991). In this pa-
per, we assume that the reservoir has infinite boundaries. Finite-boundary cases, such as circular or rectangular boundaries, will be
investigated in the future. For the fracture system, some fractures (secondary fractures in Fig. 3a) may not align with the x- or y-axis.
Fig. 4 shows fracture segment j with an inclination of 0; to the x-axis with the dimensionless midpoint of (xp;, yp;).
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Fig. 3—Physical model for multiple wells communicating through interconnected fractures.
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Fig. 4—Fracture segment j with inclination of 0;.

Then, the dimensionless pressure in the Laplace domain at point M(xp,yp) generated by the line-source with strength ¢gp; is given by

PDM = SGDDDM, s+ + + - oot e e e (3)
where
_ 1
PDM,,-(XDJ’D,S%XD/JD/', 9_/7ALD,',) = T
ALp; /2 5 5
J ) Ko[\V/f(s) \/(xD —xpj—&-costy)”+ (yp —ypj — E-sind)7|dE L (4)
—ALp;/2
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In Eqgs. 3 and 4, pp), is the dimensionless pressure in the Laplace domain at point M(xp,yp). Ppy,; is the planar sink function of frac-
ture segment j. gp; is a sink term that represents fluid flow from the matrix to the fracture segment ; (¢p; = 2¢,{/q,, where g; is the flow
rate entering into segment j unit fracture length,  is reference length, and g, is reference production rate). ALy, is the dimensionless
length of segment j (ALp; = AL;/(). f(s) is the transfer function in the reservoir and for the matrix, which is a single-porosity medium,
f(s) =s. Ky is the zeroth-order modified Bessel function of the second kind.

By use of the superposition principle, the dimensionless pressure at point M caused by Ng planar sinks (all the fracture segments in
Fig. 3a) can be given by

_ Ne  _ _
Doy = Z[:l SADIDDM,j+ + + + @ e e (5)

On the basis of Eq. 5, we can obtain the dimensionless pressure of fracture segment i:

—_ Ne _ _ ,
Dpi = Z};I SqpPpijs fori=1---Ng. . (6a)

Applying Eq. 6a to the fracture system in Fig. 3a, we obtain the following linear system containing Ng equations correlating the
dimensionless pressure and the dimensionless flow rate of all the fracture segments:

A (6b)
where
51?01,1 Slle,z e SIEDLNS dp1 Ppi
Ppoi SPp22  SPpang [ P2
H=| Pos1  SPps2 = Poans | gp=| 903 |, pp=| Pp3 |, ... (7)
SPpNng,i SPDNs2 ... SPDNgNs qpns P pny

and I is a Ny x N identical matrix and o is a Ng X 1 zero vector.

An observation from Eq. 7 is that evaluation of the coefficient matrix, H, is only related to the geometry of the fracture system,
including the fracture-segment length, location, inclination, and number. It is independent of the fracture conductivity and multiwell
operating conditions. This provides a better understanding of the flow behavior of multiple wells with interconnected fractures, and sim-
plifies programming.

Numerical-Fracture Flow Model. Compared with a single well with single/multiple planar fractures, multiwell communication
through interconnected fractures (as illustrated, for example, in Fig. 3a) will exhibit two different flow phenomena: One is the complex
interplay of flow caused by the interconnected fractures, and the other is the multiple inner-boundary conditions introduced by multi-
well production. For the discrete fracture segments illustrated in Fig. 3b, these two flow phenomena exist in the interconnected seg-
ments and segments that are adjacent to the wellbores, respectively. Here, we first derive the general form of the fracture-segment flow
equation, and then discuss the approach to address the special segments. For the fracture flow, we consider unsteady-state (transient)
flow in fractures. Although, wellbore-storage effects may be pronounced at early times, it is very necessary to consider the unsteady-
state flow in fractures, to investigate the time to observe interference and the deviation of transient responses more accurately and
theoretically. From the discussions and results, it can be concluded that the earliest time for interference is at the end of the fracture
linear-flow period, when the transient-pressure pulses meet in secondary fractures. If we assume steady-state flow in the factures, then
the earliest time will be at the beginning of production, because as soon as the wells produce, flow in fractures will reach a steady-state
and the matrix will feed the fractures. Thus, the facture transient period will be absent. This is not considered to be realistic flow behav-
ior of fractures.

As mentioned previously, we adopt the LTFD method to model unsteady-state flow in the fractures. Moridis et al. (1994) were the
first to demonstrate the application of the LTFD method for simulation of single-phase compressible fluid flow through porous media.
Habte and Onur (2014) then applied the LTFD method to investigate the transient-pressure behavior of oil/water flow associated with
water-injection/falloff tests. The main feature of the LTFD method is the use of the finite-difference approach in the space discretization
of the Laplace-transformed flow equation, instead of the raw equations in the real domain. Hence, it eliminates the need for time discre-
tization, and removes the issues of stability and convergence resulting from the time discretization in conventional semianalytical or
fully numerical methods. In the following section, we first present the diffusivity equation to describe the transient flow in the fractures,
and then apply the Laplace transform of the equations with respect to time, and finally derive the linear system to solve for the fracture-
segment pressure and flow rate.

The primary and secondary fractures are represented by finite, slab, porous media. We introduce the subscript / to facilitate the for-
mulation derivation of fracture flow. For the flow equation of primary fractures, / = p, and for secondary fractures, / = s. Thus, the equa-
tion governing unsteady-state flow in the fracture can be given by

Ppy 1 qrlet)  bycardpy ®)
52 T h LR TR P L L P TP E L PP EE R PEESPPPRERRPPRERRRE

The initial condition is defined by

Pr(Et =0) = Pi o 9)

The fracture tips are assumed to be closed; thus, for the closed outer-boundary condition,

aplf(87t)
Oe

e=Tips
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If the multiwell system contains N¢g horizontal wells producing with constant rate, for the /th constant-rate well with production
rate ¢,,;, the inner-boundary condition can be described as

0 t y
Oy (&:1) e e Ty N R (11)

Oe c=WCR, kprwprh®

Also, if the system contains N¢p horizontal wells producing with constant BHP, for the Jth constant-BHP well with pressure p,,;, the
inner-boundary condition will be expressed as

p,,f(s, t)|H:WCPj :pw.hfor J=1-- 'NCP~ ......................................................... (12)

In Egs. 11 and 12, with the assumption that formation fluid entering wellbores flows only through the primary fractures, p is
replaced by p,. WCR; and WCP; represent the wellbore of the Ith constant-rate well and that of the Jth constant-BHP well,
respectively.

Using the dimensionless variables defined in Appendix A and applying the Laplace transform of Eqs. 8 through 12 with respect to
time, we can obtain dimensionless forms in the Laplace domain:

82ﬁlfD T 1
— — —— Gy (EDyS) = DD e 13
8812) C[fD qlfD( b ) ’71/1) plfD ( )

In Eq. 13, if non-Darcy flow in fractures is considered, the approach provided by Zeng and Zhao (2010) can be used to modify the
flow equation in the Laplace domain by introducing the dimensionless non-Darcy number and pseudotime.
Boundary conditions are

aﬁ[]@(gDv‘Y) —0 (14)
dep ep=Tips '

Op,p(ep,s 12

M :—7—nqwm(t:0),for1: Lo NCR, e e (15)
dep ep=WCR, S Cpp

_ 1

P (e 5)|oy—wep, = Ewa](t =0),forJ =1---Nep. oo (16)

We then approximate Eqs. 13 through 16 to obtain a linear system that can be solved for dimensionless fracture pressure or flow
rate. The finite-difference form of Eq. 13 is given by

TDi—l‘iﬁlfDi—l (S) - (TDi—l,i + TD,'+1J' + aDi)ﬁ[jDi(s) + TDiJrl,iﬁl/DH—l (S) — ﬂDi?l/Di(s) = 0, ......................... (17)

where Tp, is the dimensionless transmissibility of the adjacent segments. Tp;_1 ;, op;, and fp; are defined as

To Api=1Api Go— (S
Di—1.i ;bDi—l +;LDi7 Di ALD/2
i AL Pt 18
oy = 5| CPALD (18)
My
Bpi = mALp;

Eq. 17 is the basic form of the LTFD flow equation for the fracture segments. The form of a certain segment will change with the
segment location, including the interconnected fracture segments, the segments connected to the wellbores, and the segments in the
fracture tips. In the following section, the flow equation of these three types of special fracture segments will be discussed in detail.

Flow Equation of Special Fracture Segments. Fig. 5 illustrates the scenarios of a fracture segment in fracture tips and that segment
adjacent to the wellbore. These two segment types obey the boundary conditions given by Eqs. 14 through 16. For the segment in Fig.
5a, combining with Egs. 14 and 17, we can derive the flow equation as

TDi*I,l‘ﬁl_fDifl(S) - (TDifl,i + aD[)ﬁ[fDi(S) - :BDiqlfDi(s) BT T (19)
1 i i i+1
| [ ] ] [ ] Fracture Wellbore [ ] @
tip
Closed boundary Constant rate/constant BHP boundary
(a) Fracture segment in fracture tip (b) Fracture segment connected to wellbore

Fig. 5—Fracture segments in boundaries.

In Fig. 5b, the fracture segment is connected to the wellbore. For the case of a constant-rate well, we introduce its dimensionless
BHP, which is an unknown, instead of applying the boundary condition described by Eq. 15. Eq. 15 is coupled with the matrix- and
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fracture-flow equation to solve the BHP of the constant-rate well directly. Thus, if the fracture segment i is connected to the /th con-
stant-rate well, the finite difference form of the flow equation is given by

;LD[ﬁW,D[(S) — (;LDi + Tpiy1,i + aDi)ﬁljDi(s) + TDi+11iﬁlfDi+]( ) ﬁqulfDl( ) 0. (20)

In a similar way, if the fracture segment j is connected to the Jth constant-BHP well, we can obtain the finite-difference form of the
flow equation by use of the boundary condition associated with Eq. 16:

) _ _ _ L,
7(/L[)j + TDj+1,j + OCDj)p[ﬂ)j(S) + TDj+1,jp]ij+] (S) - ﬁqulij(s) = — E/LDjwaJ (f = 0) ........................... (21)

For the interconnected fracture segments, the situation may be somewhat complex. Fig. 6 illustrates two scenarios in which several
fracture segments are interconnected with an intermediate intersection. To facilitate these scenarios, we assume that the interconnected
fracture segments in Fig. 6b are numbered sequentially and label the intersection as cell zero. The complex interplay of flow in this sit-
uation has been comprehensively discussed in previous papers (Jia et al. 2015, 2016). In the numerical fracture-flow model, pressure of
the intersection should be obtained for determination of flow redirection and flux redistribution between the interconnected fracture seg-
ments. However, in the analytical matrix-flow model, the intersection cannot be considered as line-source because of its significantly
small size compared with that of the fracture segments. That is, the intersection and its unknown (pressure and flow rate) cannot be
introduced into the matrix-flow model. Therefore, it will pose a problem when coupling the flow equations of the matrix-flow model
and those of fracture-flow model, because of different ranks of the linear system of these two models. One of the efficient methods to
tackle this situation is to remove the intersection in the fracture-flow model.

7\

a) Three interconnected segments (b) Four interconnected segments

Fig. 6—Examples of cases in which several fracture segments are interconnected with an intermediate intersection (modified from
Jia et al. 2015).

In this paper, we adopt the Star-Delta transformation to solve the previous problem. The transformation is essentially a direct alge-
braic elimination of the unknown associated with the intersections that couple directly the involved fracture segments. King (1989) first
used this method to evaluate the average permeability of a heterogeneous formation. Karimi-Fard et al. (2003) and Jia et al. (2015) used
the approach to remove intermediate control volumes in flow simulation of discrete-fracture networks. The concept of the Star-Delta
transformation for four interconnected fracture segments is illustrated in Fig. 7. For the case in Fig. 6b, after the transformation, the
intersection is eliminated, and the involved fracture segments will be directly connected. Therefore, the transmissibility of the two arbi-
trary segments is given by

. TpioTpjo
et T S P (22)

E T,
g IDKkO

where T, is the dimensionless transmissibility of the intersection and fracture segment k and Ty 0= Apy. It is worth noting that Jia
et al. (2015) have demonstrated that the Star-Delta transformation is also applicable to scenarios consisting of any number of intercon-
nected fracture segments.
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Fig. 7—lllustration of the Star-Delta transformation.
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Fracture Segment 4 in Fig. 6b is used as an example of how to derive the flow equation of the interconnected fracture segments after
application of the Star-Delta transformation. We assume that another fracture segment, which is adjacent to Fracture Segment 4, is
numbered 5. Thus, according to Eq. 17, the flow equation of Segment 4 is expressed as

TD3,4ﬁ[fD3 (S) - (TD314 + TD5,4 + O(D4)]7”D4(S) + TD5,417[fD5 (S) — :[))D4glfD4(s) = U e (23)

Eq. 23 changes to the following form after the transformation:

Tpia Pypr + Tpoa Pypz + Tpsa Pyps — Tpra+ Tpoa + Tpsg + Tpsa + apa) - Pypa + Tosa - Pyps — Boadypa =0, - ... (24)

where the dimensionless transmissibility Tp, 4, T, 4 and T}, 4 can be evaluated by use of Eq. 22.
Next, for all the fracture segments in the system, on the basis of Egs. 17 through 24, we can obtain a linear system containing Ng flow
equations, which correlate the fracture-segment pressure p,y;,, fracture-segment flow rate g, and BHP p,,, of Ncg constant-rate wells:

qu+Tﬁw+RﬁMD:b, .............................................................. (25)

where G = [yp1, > Tyons | Py = Pypis- > Pyows]” a0d Bup = [Pupis -+ s Pupnge]' - B is a N x N diagonal matrix, and the ele-
ment on the main diagonal in row i is equal to —fp;. T is a Ng X Ng sparse matrix in which all the elements are the coefficients of fracture-
segment pressure, and it can be determined by Eqgs. 17 through 19 and 24. R is a Ng X N¢p sparse matrix, and the element R(i,/) is equal to
Api, if fracture segment i is connected to the Ith constant-rate well; otherwise, the element is zero. And b is a Ng X 1 vector, and the element

1
b(j,1) will be — — Zp;pyps(t = 0), if the fracture segment j is connected to the Jth constant-BHP well; otherwise, the element is zero.
s

In the previous derivations, the constant-rate boundary conditions described by Eq. 15 are not used. For the involved fracture seg-
ments, the flow equation with the constant-rate condition can be given by

2n

> nilPyi(s) = Pupi(s)] = == quoi(t=0), for I =1---Neg, oo (26a)
i€Ywer,
or
, _ 2n
Z /LDiplfDi(S) + | — Z )VDI' waI(S) = *?qul(l = 0),f01’ I=1-- 'NCR7 ............................ (26b)
i€ycr, i€ycr,

where g, is a set which has elements that are the neighboring fracture segments of the /th constant-rate well. Eq. 26b can be rear-
ranged in the following matrix form:

RU-Pup+L Pup =T o (27)
In Eq. 27, R is same as in Eq. 25. L is a Ncg X Ncg diagonal matrix, and the element on the main diagonal in row [ is equal to
. 27 27 r
— Z Api. Finally: r = qule (t=0),---, *TﬁleNCR (t=0)
i€Vycr,

Solution of Transient Responses. Transient responses are obtained by coupling the analytical matrix-flow model and the numerical
fracture-flow model, along with the constant-rate boundary conditions. Because of the continuity of pressure and flow rate on the frac-
ture surface, the following conditions must be imposed on each fracture segment:

DD DD (28)
qirp = 4p

Then, combining Eqgs. 6a, 25, and 27 generates a (2 Ng+ Ncg) X (2 Ng+ N¢g) linear system to be solved for the fracture-segment
pressure py,, fracture-segment flow rate g, and BHP p,,, of Ncg constant-rate wells:

H -1 0 am 0
B T R|-|pp|=|b|, (29)
o' RT L Db r

where O is a Ng X Ncp zero matrix. Eq. 29 can be solved with the Gauss elimination method. Appendix B provides the detailed deriva-
tion of Eq. 29. Then, production rate of the Jth constant-BHP well can be calculated by

_ 1 1 _
Gwps =5 Z Apj {zpwm(l =0) =Dyp;(s)|,forJ =1---Nep, oo (30)

J€¥wer,

where Yycp, is a set which has elements that are the neighboring fracture segments of the Jth constant-BHP well.

Finally, the transient pressure and rate of the multiwell communication system in the real domain can be obtained by applying the
Stehfest numerical-inversion algorithm (Stehfest 1970). In the algorithm, the approximate value of the inverse function is evaluated by
the summation of the Laplace transform of the inversion function. The number of the summation, N, must be even. Theoretically, the
approximate value becomes more accurate for greater values of N. Practically, however, rounding errors worsen the results if N
becomes too large. For the problem of flow in porous media (diffusivity equation in this study), the optimal value range of N is 4
through 16. A sensitive analysis of N was conducted, and it was found that with N = 8, the results can achieve a relative error of 107>,
In this study, we therefore adopt N = 8.

8 2017 SPE Journal



Model Modifications

Following the work of Stalgorova and Mattar (2013), we provide some possible model modifications to extend the model to consider
the gas flow, flow choking, and the wellbore-storage effect.

Gas Flow. The assumptions used in the Physical Model section are mainly for single-phase liquid flow. For gas flow, the diffusivity
term is varying with pressure, so the governing flow equation becomes nonlinear. The common way to deal with the problem is to use
pseudotime (Anderson and Mattar 2005) to linearize the equation. Furthermore, the pressure-dependent properties can also be incorpo-
rated in our hybrid model by use of modified pseudopressure (Clarkson et al. 2012; Qanbari and Clarkson 2012).

Flow Choking and Wellbore-Storage Effect. In the previous derivation, we assume 1D flow in the fractures to neglect the flow con-
vergence to the wellbore in the primary fractures. This convergence often results in an additional pressure drop. The common way to
account for this effect is to adopt the flow-choking skin factor provided by Mukherjee and Economides (1991):

5, = {m(/—i) —E}. ................................................................. (31)
kpprf Zl‘w 2

Then, flow-choking skin along with wellbore-storage effect can be incorporated into the solution for a constant-rate well by use of
the following equation derived by Van Everdingen and Hurst (1949):

Spwp + Se
= PP 32
5+ Cps?(sp,p + 5c) (32)

17 wD skin,storage
Eq. 32 can also be applied to the transient-rate response of a constant-BHP well.

Considerations for Computation

A computer program was written to solve Egs. 29 through 31. Discrete times can be predetermined with Laplace-domain solutions. The
computation performance, including the accuracy of the results and the computation time required for the hybrid model, is mainly de-
pendent on the fracture-discretization issues and the numerical evaluation of the integral in Eq. 4. As for the numerical fracture-flow
model, the choice of an appropriate segment system is essential for the accuracy of the fracture-flow simulation. In our computations,
we use unequal-length segments to describe the fractures, and adopt refined segments for the fracture segments close to intersections. A
concern is that flow rate g of the fracture segments close to the intersections will change greatly, relative to other sections, because of
stronger pressure interference in the matrix, surrounding the intersections. Therefore, finer grid spacing for the segments close to the
intersections can guarantee a uniform distribution of flow rate in each segment, as far as possible. A sensitivity analysis was conducted
to investigate these effects. It was found that the solutions do not change appreciably when more than six segments are used along the
length of facture that is separated by two intersections.

Numerical evaluation of the integral in Eq. 4 will determine the speed of the computation and the accuracy of matrix-flow simula-
tion. In the program, we use the adaptive quadrature method to evaluate the integral. The convergence is dominantly influenced by the
Laplace variable, s (i.e., the dimensionless time caused by s =iln2/zp in the Stehfest numerical-inversion algorithm). According to our
analysis, the integrand in Eq. 4 of each fracture segment should be evaluated approximately 300 times to achieve a relative error
of 107> when 7, = 107°. The number of evaluations will decrease to approximately 25 and 10 for 7, = 1072 and 107, respectively, with
the same tolerance. Therefore, in the program, a relative error of 10> is used as the criterion for convergence of the integral in
Eq. 4. In addition, the numerical evaluation of the integral will pose another problem if i is equal to j and 0; is zero or /2 in pp; ;: The
function K, will encounter a singular point. As Ozkan and Raghavan (1991) suggested, this problem can be eliminated completely if we
adopt the following alternative forms for Eq. 4. For example, when a 0; is equal to zero, we can recast

Bis = _QL..[ALM Ko {\/f(_s)\/ﬂ e, (33)

S )ALy
as
DPpii = _2%' {JOALD,/z Ko [— \/]@5] dé + J:LDi/z Ko [\/]@5] df}
= _2% . 2J§Lm/2 Ko [\/]Ts)g“] A, e (34)

Integrals on the right side of Eq. 34 can now be computed without difficulty with the adaptive quadrature method.

Model Validation

In this section, the hybrid model is validated. The model-validation stuc%y is conducted by comparing the dimensionless pressure, deriv-
ative, and rate signatures from our model with the results of the Eclipse™™ numerical simulator and the semianalytical model developed
by Yu et al. (2016). Fig. 8 illustrates the fracture geometry and dimensions of the examples used for verification.

Validation Against Fully Numerical Model. In the fully numerical model built in Eclipse, the global grid system with the grid config-
uration of 117 x 96 x 1 is shown in Fig. 9. The space surrounding the fractures is discretized logarithmically, ranging from 0.01 to
5.84m, to ensure that the grids near the fractures are refined enough to capture accurate flow behavior. The grids with a width of
0.01 m, indicated by solid red lines, are assigned a different permeability to represent primary and secondary fractures with different
conductivities. With the assumption of closed fracture tips, the fracture-segment transmissibility in the flow direction from fracture tips
is set to zero. The fluid is assumed to be a single-phase black oil with very low bubblepoint to ensure single-phase flow in the reservoir
throughout production life. The well labeled “W1” produces under a constant-rate condition, and the “W2” well produces under a
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constant-BHP condition. Table 1 provides the input data used for the comparison

segments and 10 discrete times in each log-cycle to simulate the same system.

Primary fracture

WA

Horizontal wellbore

(a) Example used for verification with fully numerical model

. In the hybrid model, we adopt 60 (Ng= 60) fracture

» WA

W2

(b) Example used for verification with the semi-analytical model

Fig. 8—Fracture geometry and dimensions used for model-verification examples. The difference between (a) and (b) is the second-
ary-fracture inclination. In (b), the secondary fracture has an inclination of 30° to the horizontal direction.

o ~

Fracture Permeability X (x10-3 um?2)

O

0.0001 50 100 150 200

Fig. 9—(Left) top view of the global grid configuration used in fully numerical model. (Right) A view of locally interconnected frac-
tures and surrounding matrix grids with permeability distribution in x-direction. The permeability distribution in y-direction is the

same as that in x-direction.

Well, Reservoir, Fluid, and Fracture Data

Formation thickness, h (m)

Initial pressure, p; (MPa)

Wellbore radius, r,, (m)

Matrix permeability, k (x10~°um?)

Matrix porosity, ¢,

Matrix compressibility, ¢, (MPa'1)
Primary-fracture permeability, ks (x107°um?)
Primary-fracture width, w,r (m)
Primary-fracture porosity, @

Primary-fracture compressibility, ¢y (MPa™)

Secondary-fracture permeability, ks (x10~>pm?)

Secondary-fracture width, wg (m)

Secondary-fracture porosity, ds

Secondary- fracture compressibility, ¢ (MPa™)

Fluid viscosity, u (mPa.s)

60
30
0.1
1x1074
0.05
4x1074
500
0.01
0.46
7.25%1073
60
0.01
0.54
1.45x1073
0.8

Oil formation volume factor, B (m*/m?)
Wellbore-storage coefficient, C (m3/MPa)
Choking-skin factor, S

Reference length, ¢ (m)

Reference rate, g, (m*/d)

Production rate of W1, q., (MPa)

BHP of W2, p,, (MPa)

Dimensionless primary-fracture conductivity, com
Dimensionless primary-fracture diffusivity, 77,m
Dimensionless secondary-fracture conductivity, csp
Dimensionless secondary-fracture diffusivity, 77sm
Dimensionless production rate of W1
Dimensionless BHP of W2

Dimensionless wellbore-storage coefficient, Cp
Number of fracture segment, Ng

1.1
0
0.00947
80
0.1
0.1
5
628.57
3.26x10*
7.62
5.56x103
1
0.93

60

Table 1—Data used for model validation.
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Fig. 10 provides a comparison of the results of the fully numerical model and the hybrid model for the example in Fig. 8a and Fig.
9. The curves are in excellent agreement, except for the pressure responses of W1 and the rate of W2 at very early time. This may be
caused by the different approaches to deal with the early-time radial flow to wellbore in the primary fractures. In the fully numerical
model, the radial flow will develop in the grid in which the well is completed. However, the flow-choking skin is used in our hybrid
model. This will create different skin factors for the flow convergence to the wellbore. The derivative of pressure vs. time is independ-
ent of the constant skin factor. Therefore, transient-derivative responses of the two models are in agreement for the whole well life.

1102 ¢

1x102
i 3
f b
1x10" ¢ 1x10" ¢
3 i
= 1><10°£ T 1x100 ¢
- S E
£ f £ b
= 1x10™ < X107 ¢
Q E ) E
° Our model Eclipse b Our model  Eclipse
S 1x10°2 p, dp/dint P, dp,/dint s 1x10-2 | Qw G
— - ° ° F — -]
oL : - 1x1078 L . - -
1x10-3 1x10-1 1x101 1x103 1x105 1x10-3 1x10-1 1x101 1x103 1x105
Time (days) Time (days)

(a) The transient pressure and derivative of W1 (b) The production rate of W2

Fig. 10—Comparison of the results of our hybrid model and fully numerical model.

In addition, the speed of the computations for our hybrid model and Eclipse simulator is compared with the same hardware platform.
For the previous simulations, the computation times are 16.5 and 19.1 seconds for the model in this paper and the numerical model,
respectively. The improvement of computation performance is therefore not significant for the cases studied. However, we suggest that
this comparison is not a compete test of the new model speed vs. full numerical simulation caused by the fracture geometry (orthogonal)
and number of fractures (three fractures) and the program used (Matlab codes without optimization) in the validation example. The
improvement may be considerable for the case with complex-fracture network or some improved-programming efficiency.

Validation Against Semianalytical Model. With the example in Fig. 8b, we compare the new model against the semianalytical model
developed by Yu et al. (2016). W1 and W2 are operated with a constant BHP of 6 and 5 MPa, respectively. Addition input data are pro-
vided in Table 1. Fig. 11 provides a comparison of the rate of our model and the semianalytical model. It can be seen that the deviations
of the results occur mainly at early time. In the early-time period, the results of the new model exhibit a fracture linear-flow period (1/2
slope marked by the dashed red line), followed by a bilinear-flow period (1/4 slope marked by the dashed blue line), whereas the semi-
analytical model exhibits a bilinear-flow period for the same time interval. This may be because of the different approaches used to
model fracture flow. In the new hybrid model, we consider unsteady-state flow in fractures. The system should exhibit a fracture linear
flow after the wells start producing. However, in the model of Yu et al. (2016), steady-state flow is considered in the fractures. As soon
as the wells produce, flow in fractures will reach steady-state instantaneously, and the matrix will feed the fractures. Hence, the fracture
linear-flow period will be absent for the Yu model, and bilinear flow will develop instantly. The deviations of both models will increase
with a larger fracture length and lower fracture conductivity. It is necessary to consider unsteady-state flow in fractures to capture the
early flow behavior rigorously, such as required for the determination of response time and pressure caused by fracture interference

(Awada et al. 2016). An additional benefit of the hybrid model is that it saves 10.3 seconds in computation time compared with the
semianalytical model.

1x103 r
~.. Slope =1/2
X102 F NG
i -39_5_0_?-;0 hh-flope=1/4
__ 1x10" £ Slope = 1/4
° :
[s) L
£ 1x100 |
< E
S5
1x1071 |
Saa
] Ourmodel  Yuetal. (2016) Saiae
1x1072 | Q Qo q Qo
— - ] o
1x10-3 . “ . +
1x10-5 1x10-3 1x10-1 1x101 1x108 1x108
Time (days)

Fig. 11—Comparison of the results of the new hybrid model and the model of Yu et al. (2016).

Results and Discussion

In the following sections, we first investigate the flow behavior of a simple example that contains two wells with a single primary frac-
ture for each well corresponding to Stage 1 shown in Fig. 3a. The purpose is to analyze the difference between the results of the non-
communicating case and those of the communicating case under different production conditions. Next, we investigate the effect of
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secondary-fracture conductivity, the number of connections, and communicating well-operating conditions on well performance with
multiple fractures communicating through complex secondary fractures (as shown in Fig. 2a). Well interference is a primary result of
multiwell communication. In Awada et al. (2016), the time to observe interference is referenced to the point when a pressure deviation
of 0.1 MPa is observed for the constant-rate wells. Alternatively, we adopt a relative pressure/rate deviation of 1 x 107 as the criterion
for the time to observe interference. Our logic is that a relative deviation provides a more reasonable analysis of pressure/rate change
through the well life. Although this approach to determine the interference may be somewhat subjective, it can provide a reasonably
accurate evaluation of the time for interference to be observed.

Single Primary-Fracture Communication Through One Secondary Fracture. As shown in Fig. 3a (Stage 1), the two isolated pri-
mary fractures are communicating through a secondary fracture. This initial example is taken as the basic communicating case. For the
corresponding noncommunicating case, we set the transmissibility of the middle part of the secondary fracture (e.g., the transmissibility
between fracture Segments 8 and 9 in Fig. 3b) to zero. This ensures that the comparison can be conducted with the same fracture geom-
etry. Practically, the primary fractures (propped fracture) have a 45 x 10 >um>m conductivity, whereas the secondary fracture
(unpropped fracture) is configured with a 1.5 x 10> um®m conductivity (Cipolla et al. 2010). Three production strategies listed in
Table 2 are investigated. Additional data are provided in Table 1.

Production Strategy W1 W2
P1 (W1 constant rate and W2 constant rate) 0.5m’d 2m’d
P2 (W1 constant BHP and W2 constant BHP) 10 MPa 5 MPa
P3 (W1 constant rate and W2 constant BHP) 0.5 m¥d 5 MPa

Table 2—Different production strategies.

For Production Strategy P1, the total production rate (g,,; + ¢.») is set as the reference rate for the dimensionless variables. Fig. 12
provides a comparison of dimensionless pressure and derivative for the communicating and noncommunicating cases. Fig. 13 plots
pressure distribution of fracture segments between the two wells to facilitate analysis of communication behavior. It can be seen that,
for a noncommunicating case, the wells both develop fracture-linear and matrix-linear flow periods (marked by black dots in Fig. 12a),
and the different response levels are caused by the different production rate of each well. Bilinear flow is absent because of high-con-
ductivity primary fractures. When the two wells communicate through the secondary fracture, the responses deviate from those of the
noncommunicating case at the end of the transient flow period (marked by red dots in Fig. 12b). The time for the observed deviation is
obtained by use of the pressure-change point defined in the previous section. After this, as shown in Fig. 12, the pressure interference
between the communicating wells will take effect, and the curves of W1 exhibit an upward trend whereas the curves of W2 exhibit a
downward trend. As time increases, the responses of the two wells gradually converge, and the combined response appears as if one
well is producing from the two combined primary fractures. A short matrix linear-flow period will develop at this point.

1x10! 1x100
—— W1 (communicating case)
I =——W2 (communicating case)
0| -1 |
X100, ___ W1 (noncommunicating case) 1x10
-=-=--W2 (noncommunicating case) _
1x1071 | -, 1x1072 L
. a
Q
S 1x10-2 S 1x103 L
Q Eitatrix I °
E atrix linear flow
1x10-3 | 1x104 L —— W1 (communicating case)
F —— W2 (communicating case)
1x104 L 1x10-5 L < ===-W1 (noncommunicating case)
- . N
~—_ Fracture linear flow Fracture linear flow -=-=--W2 (noncommunicating case)
1x10-5 " " " " 1x10-6 PR e om0 u i S
1x10-8 1x106  1x10%  1x10°2 1x100 1x102 1x10-8 1x10% 1x10~4 1x102 1x100 1x102
ip ip
(a) Dimensionless pressure curves (b) Dimensionless derivative curves

Fig. 12—Comparison of transient responses of the communicating and noncommunicating multiwell cases with the P1 production
strategy.

These results can be explained as follows. When the pressure pulses from the two wells touch in the secondary fracture, the
primary-fracture tip pressure of the low-rate well (W1) is higher than that of the high-rate well (W2)—refer to the fracture-pressure pro-
file at 1, =6 x 10" in Fig. 13a. Therefore, when the secondary-fracture pressure is lower than the primary-fracture pressure of W1,
W2 will also be sourced by the primary fracture of W1, including fluid sourced from matrix. The source that will dominate is dependent
on the pressure difference between the two primary fractures and the flow resistance in the connected facture (i.e., the production-rate
difference, and the secondary-fracture conductivity, for a given fracture geometry). If matrix source is dominant, the contribution from
communication can be neglected, and then the transient-response deviation will be delayed, which is difficult to observe in some cases.
Otherwise, the deviation will be evident instantly (i.e., that pressure interference will take effect). In this example, the pressure interfer-
ence is observed at the end of the transient flow period. This can be clearly illustrated by the descending trend of secondary-fracture
pressure, toward W2 when 7, =2 x 107® in Fig. 13a. Thus, the responses of W2 will exhibit a downward trend, and accordingly, an
upward trend for the curves of W1. As time increases, the flow in the fractures will stabilize, and the merged curves exhibit matrix lin-
ear flow. The equivalent wellbore pressures of the two wells at 7, =5 x 1072 in Fig. 13b support this observation. The interference time
is approximately 14.5 minutes for the results shown in Fig. 12. This very early interference time is also found by Awada et al. (2016),
for a multiwell case connected through a fracture network.
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Fig. 13—Wellbore and fracture pressure distribution of the communicating-well case with the P1 production strategy.

Fig. 14 illustrates the dimensionless rate curves of the communicating and noncommunicating cases with the P2 production strategy.
As with the P1 production strategy, the two wells without communication exhibit a fracture linear-flow period and a matrix linear-flow
period. For the communicating case, the rate deviation occurs during the matrix linear-flow period, and the response time for interfer-
ence is approximately 54 minutes with a relative rate deviation of 1 x 10>, Before the interference, the system exhibits a fracture linear
flow followed by a short matrix linear-flow period. This can also be deduced for the fracture-pressure distribution at £, =2 x 107>,
shown in Fig. 15a. At this time, fracture sourcing from W1 to W2 will become dominant; thus, pressure interference takes effect. In
contrast to the behavior of the two constant-rate wells, the transient responses will deviate greatly with production for these two com-
municating constant-BHP wells, instead of merging to develop matrix linear flow. The reason may be that after interference is observed,
the primary-fracture pressure of high-BHP well (W1) will always be higher than that of low-BHP well (W2), as illustrated in Fig. 15b;
therefore, the primary fracture of W1 will source W2 throughout the production life. As time increases, when the pressure of the pri-
mary-fracture segment connected to the wellbore of W1 is lower than the BHP of W1, the production rate of W1 will be negative. and
W1 becomes an injection well. In Fig. 15b, at 1, =1 x 107", the pressure of the fracture segment numbered 11 (connected to W1 well-
bore) is 9.995 MPa, which is lower than the BHP of W1 (10 MPa). This indicates that W1 already has a negative production rate at this
time. For field cases, a negative rate for a production well is obviously unrealistic. If a well is this negatively affected, it would be shut
in after it reaches an economic limit rate. However, the previous theoretical analysis suggests that if two wells are connected by frac-
tures, one well will suffer production loss caused by interference through the interconnected fractures. These findings are consistent
with those of Lawal et al. (2013, who noted rate loss of a producing well caused by a neighboring well hydraulically interacting with it.
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Fig. 14—Comparison of transient responses of the communicating and noncommunicating multiwell cases with the P2 production
strategy.

Fig. 16 illustrates the dimensionless pressure, derivative and rate responses of the communicating and noncommunicating case with
the P3 production strategy. Without communication, the two wells all develop a fracture and matrix linear-flow period. However,
although these two isolated wells are not connected by fractures, interference through the matrix is evident and can be diagnosed by the
downward trend of the dimensionless derivative of W1, and a sharp decline of production rate of W2, at the later time. For the commu-
nicating case, the situation is more complex. Before interference, a fracture linear-flow period is followed by a short matrix linear-flow
period. When pressure interference takes effect, the primary-fracture pressure of the constant-rate well (W1) is often higher than that of
the constant-BHP well (W2), caused by high primary-fracture conductivity. Therefore, W2 is first sourced by the primary fracture of
W1. In this example, the fracture sourcing will become dominant during the matrix linear-flow period (approximately 40 minutes). The
fracture-pressure distribution at £, =2 x 107° in Fig. 17 clearly supports this statement. As shown in Fig. 17, the primary-fracture pres-
sure of W1 decreases with production, and, after a certain time, the pressure is lower than that of W2. Next, W1 will be sourced by W2,
and the rate of W2 will exhibit a sharp decline and reach a negative rate.
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Fig. 15—Wellbore and fracture-pressure distribution of the communicating-well case with the P2 production strategy.
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Fig. 16—Comparison of transient responses of the communicating and noncommunicating multiwell cases with the P3 production
strategy.
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Fig. 177—Wellbore and fracture pressure distribution of the communicating-well case with the P3 production strategy.

In the previous discussion, it is observed that a primary characteristic of the multiwell production behavior is pressure interference
through fracture communication. Before interference, the communicating wells behave as single isolated wells. Therefore, the fracture
linear flow and matrix linear flow will develop during the noncommunicating period. The end time of matrix linear flow may be
affected by fracture conductivities and operation conditions, whereas fracture linear flow will not be disturbed. It should be noted that
we selected an appropriate set of parameters to illustrate all possible flow regimes, which may not exist in a single simulation. Depend-
ing on the properties of the system, including fracture conductivity, fracture geometry and well production conditions, some flow
regimes may be absent.

Multiple Primary-Fracture Communication Through Complex Secondary Fractures. In this subsection, we focus on the effect of
secondary-fracture conductivity, number of connections, and operating conditions on the flow behavior of multiple communicating
wells by use of the system in Fig. 3a. As illustrated in Fig. 3a, the number of connections, N, is three. To decrease N¢, we set the trans-
missibility between certain fracture segments, such as the sets of (8,9), (10,11,12,13), and (15,16) in Fig. 3b to zero. Therefore, the
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effect of the number of connections can be investigated with the same fracture geometry. The analysis is conducted with three different
production strategies, such as the ones in Table 2. Additional input data are provided in Table 1. The investigated parameters are pro-
vided in dimensionless form in the associated figures.

Two Constant-Rate Wells. Fig. 18a illustrates the effect of secondary-fracture conductivity on the dimensionless pressure of two
communicating wells under constant-rate conditions. The example with ¢y =400 is designed as a case with infinite-conductivity sec-
ondary fractures, and when ¢ =4 X 1073, the permeability of secondary fracture is the same as that of the matrix. It can be seen that
secondary-fracture conductivity significantly alters the flow signature compared with single (isolated) wells. The times to observe inter-
ference for the first four cases (cgp =400, 40, 4, 0.4) are 1.6, 6.2, 61.9, and 981.4 minutes, respectively. With a decrease in secondary-
fracture conductivity, the interference is delayed, and the duration of the matrix linear-flow period developed before interference is
therefore prolonged. In these cases, the transient responses of the two wells will converge at a very late time, and matrix linear flow
may be absent. In addition, we find that, even with infinite-conductivity secondary fractures, the fracture linear flow is not affected.
This is mainly because the observed interference occurs later than pressure pulses touching from the wells, which is at the end of the
fracture linear-flow period.
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Fig. 18—Effect of key parameters on the transient responses of two communicating constant-rate wells.

The effect of operating conditions is illustrated in Fig. 18b. The influence is primarily on fracture linear flow and subsequent tran-
sient flow periods. The matrix linear-flow period caused by the transient responses merging is hardly affected. The reason for the differ-
ence between dimensionless pressures in the fracture linear-flow period is that interference has not occurred during this period, and
pressure is only related to the rate for a given fracture system. The interference times for these cases, from small to large contrast in pro-
duction rates, are 21.4, 9.8, 6.2, 5.7, and 5.5 minutes, respectively. With an increase in rate contrast, the pressure difference of the pri-
mary-fracture tip of the wells is increased. The time response caused by interference is therefore advanced. However, the effect is not
as important as secondary-fracture conductivity. From the results of Fig. 18c, we can see that after the two isolated wells communicate
through fractures, the flow behavior is altered significantly. The interference times for Ne =1, 2, 3 (6.2, 9.1, and 24.5 minutes) suggest
that a larger number of connections will cause an earlier interference. However, the effect on the transient-responses curves is
not evident.

Two Constant-BHP Wells. As illustrated in Fig. 19a, the effect of secondary-fracture conductivity on flow behavior is also signifi-
cant for two communicating constant-BHP wells. As the transient responses of the case with infinite-conductivity secondary fractures
(cyp =400) suggest, secondary-fracture conductivity hardly influences the fracture linear-flow period. With an increase in ¢y, the in-
terference will be advanced, and the duration of matrix linear-flow period becomes shorter. Hence, if the two constant-BHP wells are
connected by high-conductivity fractures, the rate loss of the higher BHP well occurs very early, and the production rate of the nega-
tively affected well will decline sharply. In Fig. 19b, we investigate the effect of operating conditions by changing the BHP of W1. For
practical purposes, the dimensionless BHPs of 0.4, 0.6, 0.8, 0.9, and 1.0 correspond to 20, 15, 10, 7.5, and 5 MPa, respectively, by use
of the basic data in Table 1. It can be seen that a lower-dimensionless-BHP generates a lower production rate and advanced interfer-
ence. Therefore, the lower dimensionless BHP well (W1) will exhibit a shorter matrix linear-flow period and an accelerated rate
decline. This is mainly because, with a large contrast of BHPs of the two communicating wells, the pressure difference of the primary
fractures of the two wells will increase and the fluid sourced from W1 to W2 will therefore become dominant earlier. The influence of
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the number of connections is shown in Fig. 19c. For the case of No =0, a long matrix linear-flow period is observed, and the sharp
decline of W1 rate indicates that the pressure interference is still occurring through matrix. With increasing N¢, the interference time is
advanced. However, the rate deviation caused by interference has little effect on the duration of the matrix linear-flow period.
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Fig. 19—Effect of key parameters on the transient responses of two communicating constant-BHP wells.

One Constant-Rate Well and One Constant-BHP Well. From the results of Fig. 20a, it can be seen that secondary-fracture conduc-
tivity will significantly influence the dimensionless pressure of the constant-rate well (W1); however, the dimensionless rate of the con-
stant-BHP well (W2) is less affected. Furthermore, the time for W2 to exhibit a sharp rate decline is almost the same for different
secondary-fracture conductivities. This suggests that secondary-fracture conductivity may not be a main factor causing rate loss of the
constant-BHP well when it communicates with a constant-rate well. In addition, with a decrease of secondary-fracture conductivity, the
interference will still be postponed, and the end of matrix linear flow is delayed. Fig. 20b illustrates the effect of the production rate of
W1 on the flow behavior of the two-well system. The influence on the dimensionless pressure of W1 is throughout the well life, and
gradually becomes negligible with production, caused by fluid feeding from the constant-BHP well (W2) after interference. With a
decrease of production rate for W1, the duration of matrix linear flow is prolonged, and the rate of W2 undergoes a delayed rate loss.
Therefore, for the two-well system containing a constant-rate well and constant-BHP well, altering operating conditions may be an
effective treatment to reduce production damage. The results of Fig. 20c indicate that after the two wells are communicating, the effect
of the number of sections on the behavior of two-well communication is not significant.

Conclusions

This paper presents a Laplace-domain hybrid model for analyzing the flow behavior associated with multiwell communication through
secondary fractures in unconventional reservoirs. From the results of this investigation, the following important conclusions can be
drawn:

e The new model developed in the Laplace domain can simulate multiwell communication through arbitrary fracture geometries and
with variable fracture conductivity, without time discretization and with only grids for the fractures. The computations can be con-
ducted at predetermined and discrete times with efficient performance. Further, flow behavior at very early time, such as fracture lin-
ear flow, can be captured accurately.

Fluid flow between communicating wells, caused by pressure interference, significantly alters the flow signature compared with sin-
gle (isolated) wells. Before interference, the communicating wells behave as single isolated wells and exhibit fracture-linear- and
matrix-linear-flow periods. With a large contrast of secondary-fracture conductivity, number of connections, and operation condi-
tions, the time to observed interference will be accelerated. Therefore, matrix linear-flow period may be masked, whereas fracture lin-
ear flow will always develop in any case. After interference, the flow behavior of the system will vary with operating conditions.

For a two-well system with constant-rate operating conditions, when interference takes effect, the fluid sourcing will cause an upward
trend for the transient response of the low-rate well and a downward trend for that of the high-rate well. The curves of the two wells
will gradually converge to develop a short matrix-linear-flow period. With a delayed interference, the consequent matrix-linear-flow
period may be absent. Production rate mainly influences fracture linear flow, and the effect on interference is not significant compared
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with secondary-fracture conductivity. Although a larger number of connections will cause an earlier interference, the effect on the

transient responses is not evident.

For two communicating constant-BHP wells, the transient-response deviation will increase after interference. The primary fracture of

the high-BHP well will source the low-BHP well throughout the production life. Hence, the high-BHP well will undergo rate loss,

and even a negative rate. With high-conductivity secondary fractures, the production loss occurs very early. A larger contrast of

BHPs for the two wells, and number of connections, will accelerate the rate loss.

e In a two-well communication system, when interference takes effect, the constant-BHP well is first sourced by the primary fracture
of a constant-rate well. After a certain time, the constant-BHP well will exhibit a sharp rate decline. Operating conditions may be a
main factor affecting rate loss of the constant-BHP well, instead of secondary-fracture conductivity, when it communicates with a
constant-rate well. After the two wells are connected, the effect of the number of sections on the behavior of two-well communication
is not significant.

0 4 0 . 4
1x10° £ P v 1x10 1x10 o 4 =02, N3 1 1x10
a0 N 1x108 Aot
S, . 3 1x102
. 4 1x102 1x102 =2,1,05,0.25,0.1
1x1072 | C.p= 400, 40, 4, 0.4, 4x10°5
L7 | -
9 ; el 1x10' § 9 1X107 | P10 9
S g0 ey T8 <
T 1x100 1x104 -
s,
L N1 1x1072
—4 i WY
X107 \ 1x10-1 1x10°5
—W1 pressure ----- W2 Rate ——W1 pressure  -----W2 Rate
1x1078 u i 1x10-2 1x10-6 1x10~4
1x108  1x106 1x10% 1x102 1x100 1x102 1x108  1x106 1x10% 1x102 1x10° 1x102
tD tD
(a) Effect of secondary-fracture conductivity (b) Effect of operating conditions
1x100 ¢ - 1x104
<10 Fae, Cop=4 Qup1 =01, Ppp = 0.2 =
1%10-1 ) : 1x10%
= 1x102
1x102 : 5
$ - 1x10' &
Q. H
1x103
x100
"
1x10 101
——W1 pressure -----W2 Rate i
1x10-5 L P i . B e %102
1x108  1x106  1x10%  1x10-2 1x100 1x102

fp
(c) Effect of number of connections

Fig. 20—Effect of key parameters on the transient responses of two communicating wells, one constant-rate well and one con-
stant-BHP well.

Nomenclature

B = liquid formation volume factor, m>/m?
¢, = compressibility, Pa™"'
cyp = dimensionless fracture conductivity
Cp = dimensionless wellbore-storage coefficient
h = formation thickness, m
kj = fracture permeability, m
k,, = matrix permeability, m?
Ncp = number of constant-BHP wells
Ncr = number of constant-rate wells
N = number of fracture segments
p = matrix pressure, Pa
p; = initial pressure, Pa
pi = fracture pressure, Pa
Pwi = BHP of Ith constant-rate well, Pa
pws = BHP of Jth constant-BHP well, Pa
q;r = flow rate per unit fracture length from matrix under surface condition, m%/s
¢ = production rate of Ith constant-rate well, m®/s
Pws = production rate of Jth constant-BHP well, m*/s
g, = reference flow rate, m>/s
s. = flow-chocking skin factor
t = time, seconds
Tpi,; = dimensionless transmissibility between fracture segments 7 and j
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T}, ; = dimensionless transmissibility between fracture segments / and j after the Star-Delta transformation
wy = fracture width, m
Xx = x-coordinate, m
x; = x-coordinate of midpoint of fracture segment i/, m
y = y-coordinate, m
y; = y-coordinate of midpoint of fracture segment i, m
AL; = length of fracture segment i/, m
op; = coefficient of dimensionless pressure of fracture segment i
Ppi = coefficient of dimensionless flow rate of fracture segment i
ypi = dimensionless transmissibility between fracture segment i and the interface
& = fracture direction, m
{ = reference length, m
0; = inclination of fracture segment 7, radians
u = formation-fluid viscosity, Pa-s
¢,, = matrix porosity, fraction
¢ = fracture porosity, fraction
Y = set of the neighboring fracture segments of a certain segment

Superscripts and Subscripts

— = Laplace transform
D = dimensionless

f = fracture

i = index of fracture segment

I = index of constant-rate well
J = index of constant-BHP well
| = primary fracture ( p) or secondary fracture (s)
m = matrix

p = primary fracture

s = secondary fracture
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Appendix A: The Dimensionless-Variable Definitions

For the sake of simplicity, we introduce the following dimensionless variables.
The dimensionless pressure for matrix and fracture are defined, respectively, as

2ntknh(pi —
pp= O T B) (A1)
qrBu
21tk h(pi — pi
pp = BB Z ) (A2)
qrBu
And the dimensionless BHP and production rate of well are given by
27kah(l7i - pw)
DD = e e e e e A-3
' 4By (53)
A L (A-4)
qr
For dimensionless time,
kit
tp = 7’2 ........................................................................ (A-5)
¢m.u(:rm€
The dimensionless fracture flow rate gy is defined as
2q(
qip = i e e e e e e e e e e e e e e e e e s e e e s e e s e e e s e e e e e s e e e et e e e e e e e e e e e e s (A—6)
qr
In our model, we use the following definitions of dimensionless fracture conductivity and diffusivity, respectively:
k]fW]f
81 7 5 e A-7
G (A7)
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Other dimensionless definitions are
X
Xp = Z, ............................................................................. (A-9)
Yo = % ............................................................................ (A-10)
BD = (A-11)
¢
XDl o (A-12)
¢
I (A-13)
¢
AL;
ALp; = R R (A-14)

Appendix B: Derivation of the Linear System To Solve Transient Responses

The matrix-flow equation (Eq. 6b), the fracture-flow equation (Eq. 25), and the boundary condition (Eq. 27), which are combined to
simulate the system, are listed as

H-qp,—-1-pp=o
B-qup+T Pyt R -Pup=b. (B-1)
RT'?!]D +L’ﬁwD =r

By the continuity of pressure and flow rate on the fracture surface (Eq. 28), we can rewrite Eq. B-1 as

Hq[fD_Iﬁ]fD =0
B-qum+T ppp+R-Pup=b. (B-2)
RT'ﬁ(ﬂ) +L-pyp=r

Further, Eq. B-2 can be rearranged as

H-qp—1-pp+0-pp=0
B-qup+T Pyt R -Pup=b (B-3)
0" -G +R" -pyp+L-Pp=r

where, O is an Ng X Ncp zero matrix.
Finally, assembling the three subequations in Eq. B-3 to a matrix form, we can obtain the linear system to solve transient responses:

H -1 0 4w 0
B T R|-|Pp| =|b| (B-4)
o' R" L Db r

S| Metric-Conversion Factors

cp x 1.0 E—03=Pa-s
bbl x 1.589873 E—-0l=m’
ft x 3.048% E-0l=m
md x 1.0 E+15=m?
psi x 6.894757 E+00=kPa
psi~! x 1.450377 E—01=kPa™'

* Conversion factor is exact.
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