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1. Introduction

The Dirac equation is a fundamental base of the relativistic field
theory. However, it is an important model in the non-relativistic
solid state theory as well. Superconductors with d-pairing [1],
the Cohen–Blount two-band model of narrow-gap semiconductors
[2,3], electronic spectrum of the carbon tubes form an incomplete
list of the non-relativistic applications of this equation. During the
last two years extremely much attention was payed to the problem
of the electronic spectrum of graphene (see for the review [5]).
Two-dimensional structure of it and a presence of the cone points
in the electronic spectrum make actual a comprehensive study of
the external fields effect on the spectrum and other characteris-
tics of the electronic states described by the Dirac equation in the
2 + 1 space–time. We consider in this work the bound states of
the 2 + 1 gapped Dirac equation due to the short-range perturba-
tion. The pristine graphene is gapless, but violation of symmetry
between the sublattices can induce opening of the gap [4]. The
symmetry violation can be triggered by the substrate or be de-
veloped dynamically. Notice that “short-range” stands here for the
lack of a long-range tail of the potential. At the same time the per-
turbation radius remains finite that is equivalent to the large quasi
momentum cut-off [3]. This cut-off makes the quasi-momentum
space form-factors of the perturbation small enough for the quasi-
momentum transfer of the order of the reciprocal lattice vector
and, therefore, mixing of K and K ′ states can be done non-effective
(this mixing was studied in [6] and [7]). Particular attention to
the short-range perturbation case stems from the effectiveness of
short-range scatterers in contrast to the long-range ones: an effect
of the latter is suppressed by the Klein paradox [8]. Our work takes
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into account the obvious fact that the Kohn–Luttinger matrix ele-
ments of the short-range perturbation calculated on the upper and
lower band wave functions are not equal in a general case. This
means that in the perturbed Dirac equation not only the potential
but the mass perturbation can be present.

2. Perturbed Dirac equation in (2 + 1)-space–time

The Dirac equation describing electronic states in graphene
reads [5](

−ish̄
2∑

μ=1

σμ∂μ − σ3(m + δm)s2

)
ψ = (E − V )ψ, (1)

where s is the limiting velocity of the band electrons, σμ are the
Pauli matrices, 2ms2 = E g is the electronic spectrum gap, ψ(r) is
the two-component spinor. The spinor structure takes into account
the two-band nature. δm(r) and V (r) are the local perturbations
of the mass (gap) and the chemical potential. A local mass pertur-
bation can be induced by defects in the graphene film or in the
substrate [9]. We consider here the delta function model of the
perturbation:

δm(r) = −bδ(r − r0), V (r) = −aδ(r − r0), (2)

where r and r0 are respectively the polar coordinate radius and the
perturbation radius. Such short-range perturbation (and the equiv-
alent form diag(V 1, V 2)δ(r − r0) with −V 1 = a+b

2 , −V 2 = a−b
2 ) was

used in the (3 + 1)-Dirac problem for narrow-gap and zero-gap
semiconductors in [3]. The two-dimensional Dirac problem with
the scalar short-range perturbation (2) (but without the mass per-
turbation) was considered in [10]. The obtained there characteristic
equation for the discrete spectrum energy contains one mistake.
We correct it here and take account of the mass perturbation
δm(r).
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Let us present the two-component spinor in the form

ψ j(r, t) = exp(−iEt)√
r

(
f j(r)exp[i( j − 1/2)φ]
g j(r)exp[i( j + 1/2)φ]

)
, (3)

where j is the pseudospin quantum number; j = ±1/2, ±3/2, . . . .
In the opposite to the relativistic theory, this quantum number has
nothing to do with the real spin and indicates the degeneracy in
the biconic Dirac point. The upper f j(r) and g j(r) components of
the spinor satisfy the equations

dg j

dr
+ j

r
g j − (E − m) f j = (a + b)δ(r − r0) f j, (4)

−df j

dr
+ j

r
f j − (E + m)g j = (a − b)δ(r − r0)g j . (5)

These equations have a symmetry:

f j ↔ g j, E → −E, j → − j. (6)

Let us introduce the function ϕ j(r) ≡ f j/gi . It satisfies the equa-
tion:

1

(a + b)ϕ2
j + (a − b)

[
dϕ j

dr
− 2 j

r
ϕ j − E

(
ϕ2

j + 1
)]

+ δ(r − r0) = 0. (7)

Integrating in the vicinity of r = r0

lim
ε→0

ϕ j(r0+ε)∫
ϕ j(r0−ε)

dϕ j

(a + b)ϕ2
j + (a − b)

= −1, (8)

we obtain the matching condition

arctan

(
ϕ−

j

√
a + b

a − b

)
− arctan

(
ϕ+

j

√
a + b

a − b

)
=

√
a2 − b2, (9)

where ϕ−
j ≡ ϕ j(r0 − ε), ϕ+

j ≡ ϕ j(r0 + ε), a2 > b2. The upper and
lower component matching condition resulting from (9) reads(

f +
j

g+
j

)
= Â

(
f −

j

g−
j

)
, (10)

where the matrix Â⎛
⎝ cos

√
a2 − b2 −

√
a−b
a+b sin

√
a2 − b2√

a−b
a+b sin

√
a2 − b2 cos

√
a2 − b2

⎞
⎠ (11)

is orthogonal for b = 0. It transmutes into the matrix⎛
⎝ cosh

√
b2 − a2 −

√
b−a
b+a sinh

√
b2 − a2√

b−a
b+a sinh

√
b2 − a2 cosh

√
b2 − a2

⎞
⎠ , (12)

when a2 − b2 < 0.
The general solution can be found solving the second-order

equation obtained by excluding one of the spinor components from
the equation set (4), (5) in the domains 0 < r < r0 and r > r0:

d2 f j

dr2
+

[
E2 − m2 − j( j − 1)

r2

]
f j = 0. (13)

This equation is related to the Bessel one. Its general solution reads

f j = C1
√

r I j−1/2(κr) + C2
√

rK j−1/2(κr), (14)

where κ2 = m2 − E2, Iν(z) and Kν(z) are the modified Bessel func-
tions. The constant C2 = 0 in the domain 0 < r < r0, while C1 = 0
in the domain r > r0. Expressing the g j-component using (5), we
can write

ϕ−
j =

√
m + E

m − E

I j−1/2(κr0)

I j+1/2(κr0)
, (15)

ϕ+
j =

√
m + E

m − E

K j−1/2(κr)

K j+1/2(κr)
. (16)

Applying the matching condition (9) to the expressions (16),
(15) we obtain the characteristic equation for the bound state en-
ergy levels:

κ

[
K j−1/2(κr0)

K j+1/2(κr0)
− I j−1/2(κr0)

I j+1/2(κr0)

]

= − tan(
√

a2 − b2 )√
a2 − b2

[
(m − E)(a − b)

+ (a + b)(m + E)
I j−1/2(κr0)

I j+1/2(κr0)

K j−1/2(κr0)

K j+1/2(κr0)

]
(17)

where a2 − b2 > 0. This equation turns to the characteristic equa-
tion obtained in [10], for b = 0 apart from the mistakenly omit-
ted terms in the right-hand side of (17). In the opposite case of
a2 − b2 < 0 we have

κ

[
K j−1/2(κr0)

K j+1/2(κr0)
− I j−1/2(κr0)

I j+1/2(κr0)

]

= − tanh(
√

b2 − a2 )√
b2 − a2

[
−(m − E)(b − a)

+ (b + a)(m + E)
I j−1/2(κr0)

I j+1/2(κr0)

K j−1/2(κr0)

K j+1/2(κr0)

]
. (18)

We write these equations in another form making the symmetry
(6) manifest:

κ
[

I j−1/2(κr0)K j+1/2(κr0) − K j−1/2(κr0)I j+1/2(κr0)
]

= tan(
√

a2 − b2 )√
a2 − b2

[
(m − E)(a − b)I j+1/2(κr0)K j+1/2(κr0)

+ (a + b)(m + E)I j−1/2(κr0)K j−1/2(κr0)
]
, (19)

κ
[

I j−1/2(κr0)K j+1/2(κr0) − K j−1/2(κr0)I j+1/2(κr0)
]

= tanh(
√

b2 − a2 )√
b2 − a2

[−(m − E)(b − a)I j+1/2(κr0)K j+1/2(κr0)

+ (b + a)(m + E)I j−1/2(κr0)K j−1/2(κr0)
]
. (20)

3. Analysis of the characteristic equation and numerical results

Making use of the Bessel functions limiting forms for small ar-
guments [11]

Iν(z) ∼ (z/2)ν
1

�(ν + 1)
, K0(z) ∼ − ln z,

Kν(z) ∼ 1

2
�(ν)(z/2)−ν ,

we can obtain a simple relation describing the asymptotic be-
haviour of the energy level, where the perturbation power ap-
proaches zero:

E = m

[
1 − r2

c

2r2
0

exp

(
− rc

r0(a + b)

)]
, (21)

where rc = m−1 (in units with h̄ = s = 1), a + b > 0. This result
conforms the well known general property of the two-dimensional
quantum systems: a threshold for creation of the bound state is
absent; the point a + b = 0 is the essentially singular point of
the function E = E(a + b). One can see that the function E(a) ap-
proaches the point E = −m at some large enough value of a > 0.
Making use of the Bessel function asymptotic behaviour [11],
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Fig. 1. Graphical solution of the characteristic equation (17). It illustrates three var-
ious possibilities for different a magnitudes (0.93;1.23;1.53) and fixed b = −1:
M: one energy eigenvalue; N: two energy eigenvalues; P: no energy eigenvalues
within the gap.

Fig. 2. Reduced lower electron bound state energy E/m dependence on the short-
range potential amplitude a at b = 0.

Iν(z) ∼ (2π z)−1/2 exp z, Kν(z) ∼
(

π

2z

)1/2

exp(−z),

and Eq. (18), we can see that the function E(b) approaches the
point E = 0, when r0

rc
is large enough and b → ∞.

Graphical solution of the characteristic equation (17) is pre-
sented in Fig. 1. It illustrates three various possibilities for different
a magnitudes (0.93;1.23;1.53) and fixed b = −1: M stands for
one eigenvalue; N stands for two eigenvalues; P stands for absence
of eigenvalues within the gap.

In Fig. 2, the electron bound state energy is presented as a
function of the potential amplitude for the angular momentum
quantum number values j = 1/2, r0

rc
= 1 and b = 0. Inspecting this

plot one can see that our analytic solution (21) perfectly approxi-
mates approaching of the bound state energy value the upper band
bottom, when b approaches zero.

In Fig. 3, the bound state energy is presented as a function of
the mass perturbation amplitude b for a = 0, r0

rc
= 1, j = 1/2.

In Fig. 4, the electron bound state energy is presented as a
function of the potential amplitude for the angular momentum
quantum number j = 1/2, r0

rc
= 1, and b = −1. We see that the en-

ergy dependence on a is non-monotonic function, but approaching
the upper band bottom takes place similarly to the case of b = 0.
Points M, N, P correspond to eigenvalues depicted in Fig. 1.

Fig. 3. Reduced lower electron bound state energy E/m dependence on the mass
perturbation amplitude b at a = 0.

Fig. 4. Reduced lower electron bound state energy E/m dependence on the short-
range potential amplitude a at b = −1. Points M, N, P correspond to eigenvalues
depicted in Fig. 1.

Fig. 5. Distribution of bound states number in (a,b) plane for j = 1/2. Points M, N,
P stand respectively for one, two and zero crossings shown in Fig. 1.

Distribution of the bound states number in the (a,b) plane for
j = 1/2 is depicted in Fig. 5. Points M, N, P stand respectively for
one, two and zero crossings shown in Fig. 1. It is seen from our
figures that simultaneous existence of two bound states is possible
within the narrow segment in the plane (a,b).
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Fig. 6. Distribution of bound states number in (a,b) plane for j = 1/2;3/2;5/2;7/2.

Distribution of bound states number in (a,b) plane for j =
1/2;3/2;5/2;7/2 is presented in Fig. 6. Solutions for negative j
are easy to obtain from the symmetry E → −E, j → − j,a → −a.

4. Conclusion

In conclusion, we considered the bound electron states for the
two-dimensional Dirac equation with the short-range perturbation.
The short-range perturbation is approximated by the delta function

δ(r − r0) with different amplitudes in the upper and lower bands.
We found the characteristic equation for the discrete energy levels.
Energy levels behaviour in dependence on the perturbation am-
plitudes was investigated both analytically and numerically. The
structure of our characteristic equations allows us to make the
following general conclusions. The energy spectrum is a periodic
function of a for b = 0. In the case of finite value of a and b → ∞,
tanh(

√
b2 − a2 ) → 1 and, therefore, E → const. Notice that the

bound states energy levels obtained in the case of the vanishing
parameter b are in the qualitative correspondence to the energy
levels deduced from the scattering amplitude poles calculated in
[12]. The obtained results can be useful for understanding of the
graphene electron properties.
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