

Высшая школа теоретической механики и математической физики

Математическое моделирование в проектировании стенки трубопровода для нефти и газа из полимерных композиционных материалов

Выпускная квалификационная работа магистра

Выполнил: студент гр. 5040103/20601

Научный руководитель: доцент ВШТМиМФ, к.х.н.

Консультант: инженер ОЭМ, ПИШ «Цифровой инжиниринг» Мухаметова П.А.

Низовцев А.В.

Ожгибесова Д.Д.

Объект исследования и разработки

ЦД КМ для ЦДИ, новые пользовательские модели материалов (ММ) для моделирования свойств с учетом различных видов

деградаций и особенностей технологических процессов.

Разработка методики расчёта ПКМ для промысловых трубопроводов с учётом их нелинейного поведения, применяя методы микромеханики и молекулярной динамики для анализа взаимодействия, особенностей структуры и свойств используемых материалов.

*ПКМ – полимерные композиционные материалы

Содержание

*ПАТ – полимерные армированные трубы

Полимерные армированные трубы

Экспериментальные данные

7.

0.

0,0

0,5

Tensile strain (mm/mm)

Engineering Stress-Strain Curve True strain Stress-Strain Curve

0.20

100

0.30

0.25

0

0

0.2

0.4

0.6

Strain

0.8

6 / 23

1.2

1

	Обозначение	Величина		D	
название параметра		API 5L X65	HDPE	Размерность	
Плотность	ρ	7.85	0.97	г/см ³	
Модуль упругости	Е	211 000	953	МПа	
Коэффициент Пуассона	ν	0.3	0.4	-	
Прочность на растяжение	S	614	24	МПа	

400

300

0.00

0.05

0.10

0 15

True Strain

Engineering Strain

Экспериментальные данные

Экспериментальные данные

Модели микромеханики

Расчет диаграммы деформирования

11/23

Расчет диаграммы деформирования

ММ многослойного КМ

Верификация модели образца из КМ

14/23

Верификация модели образца из КМ

Г	п	Размерность	Величина			
	Параметр		Аналит.	Числ.	Δ, %	
	σ_{χ}^{+35}	МΠа	0.2247500000	0.2246575000	0.04	
	σ_y^{+35}	МПа	0.0000000000	0.0007575308	0.00	
	$ au_{xy}^{+35}$	МΠа	0.1352616655	0.1353132188	0.04	רא קר
	ε_{χ}^{+35}	мм/мм	0.0000268985	0.0000267269	0.64	
	ε_y^{+35}	мм/мм	-0.0000477772	-0.0000474240	0.74	
~	γ_{xy}^{+35}	мм/мм	0.0000000000	-0.0000000003	0.00	

Результаты

Параметр	Π	December	Величина]
	Параметр	Размерность	Аналит.	Числ.	⊿, %	
	σ_1^{+35}	МΠа	0.2779139026	0.2781495000	0.08	
	σ_2^{+35}	МΠа	-0.0531639026	-0.0527344883	0.81	<u>-</u>
	$ au_{12}^{+35}$	МΠа	-0.0593357440	-0.0589186445	0.71	0
	ε_1^{+35}	мм/мм	0.0000023310	0.0000023317	0.03	ਨ
	ε_2^{+35}	мм/мм	-0.0000232096	-0.0000230288	0.78	
	γ_{12}^{+35}	мм/мм	-0.0000701722	-0.0000696792	0.70	

Распределение поля деформаций

Газопроницаемость

16/23

Газопроницаемость

Зависимость глубины проникновения молекул метана внутрь полиэтилена при выдержке при 350 К до сжатия ПЭ

 $z_{\rm av}$ — средняя глубина проникновения молекул, $z_{\rm max}$ — максимальное расстояние, на которое проникла молекула ${\rm CH}_4$

Молекулярная динамика

Итоговая глубина проникновения молекул метана внутрь ПЭ при выдержке при различных температурах

- Плотность ПЭ до начала сжатия составляет 0.74 г/м³. После сжатия до 60% от начального объема ячейки плотность полиэтилена равна 1.06 г/м³.
- При воздействии внешнего сжимающего фактора макромолекулы ПЭ способны заполнять свободное пространство между собой, перераспределяясь и изменяя свою конфигурацию, что затрудняет дальнейшее проникновение молекул метана.
- При температуре 450 может потребоваться увеличение толщины стенки, поскольку наличие дефекта в полимерном слое может привести к ускоренному накоплению газа между стенками.

Выводы

Расчет стенки нефтяного трубопровода из КМ

19

23

Согласно ГОСТ Р 59910-2021 конструкция армирующего слоя должна обеспечивать коэффициент запаса прочности трубы не менее 2.

Расчет стенки нефтяного трубопровода из КМ

Расчет стенки нефтяного трубопровода из КМ

- на практике в настоящее время
- Построена ММ монослоя с учетом нелинейного поведения компонент системы
- Методом молекулярной динамики исследовано взаимодействия метана с ПЭ покрытием
- Разработана ММ КМ, которая прошла верификацию в программе конечноэлементного анализа LS-DYNA с погрешностью меньше 1%
- Произведен расчет стенки нефтепровода из КМ под действием внутреннего давления
- Выбранная укладка отвечает требованиям по запасу прочности согласно ГОСТ Р 59910-2021

Высшая школа теоретической механики и математической физики

Спасибо за внимание!

0.0

