САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО Высшая школа теоретической механики Физико-механический институт

Тема выпускной квалификационной работы:

«Оптимизация работы газлифтных скважин с учетом механики открытия запускных клапанов»

Автор: студент гр. 5040103/10401 **Любимов В.С.** Руководитель: доцент ВШТМиМФ, ФизМех, к.ф.-м.н. **Юдин Е.В.**

Санкт-Петербург, 2023

ВКР

Цели:

- анализ имеющихся подходов к моделированию газлифтной скважины с газлифтными клапанами
- моделирование газлифтной скважины с учетом механики открытия запускных клапанов

There -

Задачи:

- описание механики работы газлифтного клапана
- моделирование газлифтной скважины с одним рабочим газлифтным клапаном
- моделирование газлифтной скважины при переключении газлифтных клапанов
- анализ результатов моделирования
- реализация алгоритмов посредством скриптов на языке Python

| 2

Газлифтный способ эксплуатации

Наземное оборудование

| 5

Устройство сильфонного газлифтного клапана

При достаточно большом перепаде давления между затрубным давлением и давлением в НКТ появляется температурная аномалия, связанная с эффектом Джоуля-Томсона:

 $\Delta T = \varepsilon \cdot (P_{3amp} - P_{HKT}),$ где ε – коэффициент Джоуля-Томсона

6

Клапан будет открыт, пока давление закачки газа больше давления зарядки клапана, соответственно: Pb =Pclose

При закрытии клапана баланс сил, действующих на клапан изменится, соответственно, давление

$$(P_u \cdot (S_b - S_p) + P_d \cdot S_p) > P_b \cdot S_b$$

$$Popen = P_{close} \frac{1}{(1-R)} - P_d \frac{R}{(1-R)},$$

 $R = S_p / S_b$ - где коэффициент неуравновешенности клапана $P_b = P_{b(st)} \cdot (1-R)$ - давление зарядки клапана

Подходы к моделированию газлифтной скважины

Моделирование газлифтной скважины с одним клапаном

1.

Входные данные:

- Линейное давление (P_{lin})
- PVT (q_{liq}, wc, rp, и т.д.)
- Распределение температуры
- Расход газлифтного газа (Q_{inj})
- Диаметр штуцера (d_{choke}, d_{ann_choke})
- Данные по рабочему клапану: глубина спуска (H_{valve}), давление зарядки при стандартных условиях (Pb_{valve}), диаметр порта (d_{valve})
- Данные по конструкции скважины (H_{cas} , H_{tub} , d_{cas} , d_{tub} и т.д.).

Расчет распределения давления по ЭК от забоя до глубины спуска НКТ. Определение давления на глубине спуска НКТ [1].

$$P_{in} = \int_{H_{cas}}^{H_{tub}} \frac{dP}{dH} f(P_{wf}, q_{liq}, wc, T_{wf}, d_{cas}, \dots).$$

2. Расчет распределения давления по НКТ от глубины спуска НКТ до глубины спуска клапана. Определение давления на выходе клапана [1].

$$P_{tub_valve} = \int_{H_{tub}}^{H_{valve}} \frac{dP}{dH} f(P_{in}, q_{liq}, wc, T_{tub}, d_{tub}, \dots).$$

Расчет расхода газлифтного газа по известным давлениям на входе и выходе из клапана [2].

$$Q_{inj} = f(P_{cas_valve}, P_{tub_valve}, d_{valve}).$$

4. Расчет распределения давления по ЭК от глубины спуска клапана до устья. Определение затрубного давления [3].

$$P_{ann} = \int_{H_{valve}}^{0} \frac{dP}{dH} f(P_{cas_valve}, Q_{inj}, T_{valve}, d_{ann}, \dots).$$

Расчет давления закачки газлифтного газа (через расчет штуцера) [4]. P_{gas_}inj=f(Pann,Tann, Q_{inj}, wc, d_{ann_choke}, ...).

Расчет распределения давления по НКТ от глубины спуска рабочего клапана до устья с учетом газа, прошедшего через клапан. Определение буферного давления [1].

$$wh^{=} \int \frac{dP}{dH} f(P_{tub_valve}, q_{liq}, wc, T_{valve}, q_{gas_free}, d_{tub}, ...)$$

H_{valve} 7. Расчет буферного давления по линейному (через расчет штуцера) [4]. *P_{wh}(fact)⁼f(Plin,T</sup>lin, q_{liq},q_{gas_free}, wc, d_{choke}, ...).*

1. Ansari, A. M., Sylvester, N. D., Sarica, C. et al. 1994. A Comprehensive Mechanistic Model for Upward Two-Phase Flow in Wellbores/Beggs H., Brill J.P., A Study of Two-Phase Flow in Inclined Pipes/Gray, H.E. 1978. Vertical Flow Correlation in Gas Wells/Hagedorn, Alton R., and Kermit E. Brown, 1965. Experimental Study of Pressure Gradients Occurring During Continuous Two-Phase Flow in Small-Diameter Vertical Conduits

- 2. Hernandez Ali. Fundamentals of Gas Lift Engeneering, Chapter 4, 2016, 135 c.
- 3. Gray, H.E. 1978. Vertical Flow Correlation in Gas Wells
- 4. Mechanistic correlation, PIPESIM User Guide, 567

Построение кривых VLP и поиск рабочей точки

- VLP кривая оттока (кривая вертикального лифта) зависимость параметра от дебита
- IPR кривая притока (индикаторная линия)- зависимость дебита от забойного давления

Узловой анализ

| 10

- Алгоритм моделирования газлифтной скважины с запускными клапанами реализован посредством скриптов на языке Python
- В использованной модели дополнительно учтены процессы, связанные с механикой открытия запускных клапанов
- Проведен анализ результатов моделирования, функционал протестирован на пилотном месторождении Западной Сибири в сотрудничестве с технологами, результаты моделирования совпадают с фактическими данными

Спасибо за внимание!

