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Abstract

Model of diamond taking into account angular interaction between its
atoms is presented. Formulae representing the stiffness tensor in terms of the
parameters of angular atomic interaction are derived. Obtained results are
compared with the experimental data. Comparison with the model based on
the moment atomic interaction is made.

1 Description of the model. Derivation of the co-

efficients

Diamond is one of the allotrope forms of carbon, mineral with a complex crystal
structure. Diamond is orthotropic material so it has 3 mutual perpendicular planes
of symmetry. The scheme of the diamond crystal is shown in Fig. 1 where cube
faces act as planes of symmetry.

Figure 1: Fragment of the diamond crystal lattice.

Let us consider model of the diamond lattice, depicted in Fig. 2. It represents the
ideal biatomic crystal lattice, which atoms are located in the center and vertices of
a perfect tetrahedron.
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Figure 2: Model of the diamond lattice.

Interaction between atoms are described using longitudinal springs with stiffness c

and angular springs with stiffness γ. The elementary cell of such lattice contains
two atoms. These atoms are named as atoms of the first and second type. Atoms of
each type form a simple crystal lattice, and these lattices are congruent. We choose
one of the atoms of the first type as a reference atom. It is postulated that each
atom interacts only with the nearest ones. From fig. 2 it is seen that each atom is
surrounded by 4 nearest neighbours. Corresponding interactions are numbered from
1 to 4. Let us use an orthonormal basis with vectors perpendicular to the planes of
symmetry of the lattice. Then the unit vectors directed to the nearest atoms can
be represented as:

n1 =
1√
3
(i − j + k), n2 =

1√
3
(−i + j + k)

n3 =
1√
3
(i + j − k), n4 =

−1√
3
(i + j + k).

In the work [1] the following formulae for an orthotropic material were obtained:

4

C = κekekekek + λJ1 + μJ23, (1)

where
J1

def
= ekekenen, J23

def
= ekenenek + ekeneken.

Here 4C is macroscopic stiffness tensor; J1 and J23 are isotropic tensors of the 4th
rank; κ, λ and μ are the generalized Lame parameters; ek and en are unit vectors
of any arbitrary basis.
Macroscopic stiffness tensor is derived in [1] using the expression for the deformation
energy of the material

W =
1

2
ε · · 4

C · ·ε, 4

C =
4

C
∗
−

3

C · 2

C
−1 · 3

C
T
, (2)
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where

4

C
∗

=
2

V0

(
H1

4∑
α=1

nαnαnαnα + H2

4∑ ′

α,β=1

nαnαnβnβ+

+ H3

4∑ ′

α,β=1

(nαnβnβnα + nαnβnαnβ)

)
,

3

C =
1

V0

H4

4∑
α=1

nαnαnα,
2

C =
2

V0

H5

4∑
α=1

nαnα, V0 =
16

√
3

9
a3.

Here W is energy of deformation of the material; ε is strain tensor; 4C
∗
, 3C and 2C

are intermediate stiffness tensors; V0 is volume of an elementary cell of the crystal;
a is length of the internuclear bond. The prime at a sum means that summation is
conducted on the adjacent bonds only.

Formulae for Hk from [1] in the case of diamond take form:

H1 =
1

2
ca2 −

9

8
cγa2, H2 =

1

8
cγa2, H3 =

9

8
cγa2,

H4 = ca2 − 4cγa2, H5 =
1

2
ca2 + 4cγa2,

where cγ =
γ

a2
is the effective stiffness of the angular interaction.

We substitute obtained coefficients Hk and values of vectors nk from expression (1)
in formulae for intermediate stiffness tensors (4). With the help of the obtained for-
mulae the macroscopic stiffness tensor (3) for diamond can be found. Representing
this tensor in form (2) we obtain the following expressions for the generalized Lame
parameters:

κ =
3
√

3

16a
cγ

72cγ − 7c

c + 8cγ

, λ =

√
3

12a
(c − 6cγ), μ =

3
√

3

32a
cγ

15c − 8cγ

c + 8cγ

. (3)

The formulae for elastic constants [3] expressed through generalized Lame parame-
ters take the form:

C11 = κ + λ + 2μ, C12 = λ, C44 = μ, K =
κ + 3λ + 2μ

3
,

E =
(κ + 2μ)(κ + 3λ + 2μ)

κ + 2λ + 2μ
, ν =

λ

κ + 2λ + 2μ
, η =

2μ

κ + 2μ
,

where C11, C12, C44 are stiffness tensor coefficients; K is the bulk modulus; E is Young
modulus; ν is Poisson ratio; η is the anisotropy parameter.
Then by substituting relations for the generalized Lame parameters (6) in the for-
mulae above we obtain:
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C11 =

√
3

12a
(c+12cγ), C12 =

√
3

12a
(c−6cγ), C44 =

3
√

3

32a
cγ

15c − 8cγ

c + 8cγ

(4)

K =

√
3

12a
c, E =

9
√

3

4a

ccγ

c + 3cγ

, ν =
1

2

c − 6cγ

c + 3cγ

, η =
1

8

15c − 8cγ

c + 8cγ

.

(5)

2 Comparison with experimental data

Experiment # 1 2 3 4 5
C11, GPa 1079 1076 1076 1100 950
C12, GPa 124 275 125 330 390
C44, GPa 578 519 576 440 430

C̃44, GPa 428 433 427 438 356
error, % 26 16.5 25.9 0.4 17.2
c, N/m 472 578 472 626 615
cγ, N/m 57 478 56 46 33
cγ/c, % 12 8.2 12 7.3 5.4

Tab. 1: Experimental and calculated data

In tab. 1 the experimental values for the stiffness tensor components [2] are pre-
sented. Such variability of data is caused by various experimental techniques. Co-
efficients c and cγ are calculated using the experimental values of C11, C12 and
formulae (8). Substituting the obtained values in the formula (8) for C44 we find
the calculated value C̃44. From Tab. 1 it is visible that the maximum divergence of
calculated value C̃44 from the experimental data is 26% and minimum is 0.4%.
Considering so essential differences in the experimental data the divergence in the
obtained values for C44 is acceptable. Thus, the given method of calculation gives
good coincidence with the experimental values of elastic constants.

3 Comparison with the model based on the mo-

ment interaction between atoms

3.1 Moment interaction

The following formulae [3] fulfill:
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C11 =

√
3

12a
(cA + 2cD), C12 =

√
3

12a
(cA − cD), C44 =

3
√

3

8a

cAcD

cA + 2cD

,

K =

√
3

12a
cA, G = C44 =

3
√

3

8a

cAcD

cA + 2cD

, ν =
(cA − cD)(cA + 2cD)

2c2
A + 2c2

D + 5cAcD

,

2

C =
4

3V0

(cA + 2cD)E, (6)

where 2C is the intermediate stiffness tensor of 2nd rank; cA and cD are the longi-
tudinal and transversal stiffness of the bonds.

Condition for the macroscopic stability of a material is the positivity of the bulk
modulus K and the shear modulus G

K > 0, G > 0 ⇒ cA > 0,
cD > 0

cD < −
cA

2

(7)

This condition of stability admits negative values for transversal stiffness of the
bonds.

A condition for the microscopic stability is the positivity of the coefficient:

cA + 2cD > 0 (8)

From (12) and (13) follows

cA > 0, cD > 0. (9)

Let us present Poisson ratio as a function of cD/cA

ν =
(cA − cD)(cA + 2cD)

2c2
A + 2c2

D + 5cAcD

=

1 +
cD

cA

− 2
c2

D

c2
A

2 + 5
cD

cA

+ 2
c2

D

c2
A

(10)

The bounding values for ν are

cA � cD ⇒ ν ≈ −1

cA = cD ⇒ ν = 0 ⇒ −1 < ν <
1

2

cA � cD ⇒ ν ≈ 1

2
From the obtained results it is clear that the model based on the moment atomic
interaction gives wide enough area of the admissible values for Poisson ratio, witch
include the experimental value [2] ν = 0.07 for diamond.
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3.2 Angular interaction

In the first part of this paper the following relations were obtained:

C11 =

√
3

12a
(c + 12cγ), C12 =

√
3

12a
(c − 6cγ), C44 =

3
√

3

32a
cγ

15c − 8cγ

c + 8cγ

,

K =

√
3

12a
c, G = C44 =

3
√

3

32a
cγ

15c − 8cγ

c + 8cγ

, ν =
1

2

c − 6cγ

c + 3cγ

,

where c is stiffness of the bond, cγ is the effective stiffness of the angular interaction.
If we accept cA = c, cD = 6cγ then the formulae (10) and (17) for moment and
angular interaction will coincide, but only for coefficients C11 and C12. However this
dose not fulfill for C44.
Using conditions of the macroscopic stability K > 0, G > 0 and conditions of the
microscopic stability H5 > 0 we obtain the following inequalities

c > 0, 0 < cγ <
15

8
c. (11)

Let us present Poisson ratio as a function of cγ/c

ν =
1

2

c − 6cγ

c + 3cγ

=
1

2

1 − 6
cγ

c

1 + 3
cγ

c

(12)

The bounding values for ν are

c ≈ 8

15
cγ ⇒ ν ≈ −

41

53

c = cγ ⇒ ν = −
5

8
⇒ −

41

53
< ν <

1

2

c � cγ ⇒ ν ≈ 1

2

Thus, it is visible that the model based on the angular atomic interaction also gives
the wide area of the admissible values of Poisson ratio, which covers experimental
value. However the lower boundary for Poisson ratio is different for these two models.

4 Conclusion

In the given work the model of diamond using angular atomic interaction was con-
sidered. Formulae for the macroscopic stiffness tensor coefficients C11, C12, C44, the
bulk modulus K, Young modulus E, Poisson ratio ν, and the anisotropy parameter
η in the terms of the stiffness of the bond c and the effective stiffness of angular in-
teraction cγ were derived. By using the experimental data and the derived formulae
the stiffness values of the interatomic bonds c and cγ were obtained. Comparison
with the model based on the moment interaction between atoms was made. It was
shown that the considered models give almost identical areas of values for Poisson
ratio, and these areas include the experimental value.
This work was supported by the FCNTP and RFBR grant, project 08-01-00865-a.
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