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Abstract—We consider two high frequency thermal processes in uniformly heated harmonic crystals relaxing
towards equilibrium: (i) equilibration of kinetic and potential energies and (ii) redistribution of energy among
spatial directions. Equation describing these processes with deterministic initial conditions is derived. Solu-
tion of the equation shows that characteristic time of these processes is of the order of ten periods of atomic
vibrations. After that time the system practically reaches the stationary state. It is shown analytically that in
harmonic crystals temperature tensor is not isotropic even in the stationary state. As an example, harmonic
triangular lattice is considered. Simple formula relating the stationary value of the temperature tensor and ini-
tial conditions is derived. The function describing equilibration of kinetic and potential energies is obtained.
It is shown that the difference between the energies (Lagrangian) oscillates around zero. Amplitude of these
oscillations decays inversely proportional to time. Analytical results are in a good agreement with numerical
simulations.
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Description of nonequilibrium thermal processes
is a challenging problem for modern mechanics and
physics of solids. The problem is particularly import-
ant due to recent advances in nanotechnologies [1]. In
the present paper, fast thermal processes [2–4]
accompanying the transition of the system from non-
equilibrium state towards thermodynamic equilibrium
are considered [5]. Initial nonequilibrium state is
caused, for example, by fempto- or attosecond laser
excitation [6] or by shock waves [7]. In this state
kinetic and potential energies are not equal. Also
kinetic temperatures corresponding to thermal motion
of atoms in different spatial directions may be different
[7].2 Computer simulations show that in harmoniс
crystals there are two thermal processes accompany-
ing the transition to equilibrium: (i) equilibration of
kinetic and potential energies [2, 3, 8] and (ii) redistri-
bution of energy among spatial directions. Character-
istic time of these processes is of the order of ten peri-
ods of atomic vibrations.3

1 The article was translated by the authors.
2 Here and below, kinetic temperature proportional to kinetic

energy of thermal motion is considered.

The present paper focuses on the analytical
description of the above mentioned thermal processes.
The approach described in papers [2, 4] is generalized
for the multidimensional case. Two- and three-
dimensional harmonic crystals with random initial
velocities and displacements of particles4 are consid-
ered. Thermal processes in the crystal are described
using the correlation analysis [2, 4, 9–11]. Determin-
istic problem for the generalized energies [2–4, 10, 11]
is formulated. Solution of the deterministic problem
yields the function describing equilibration of kinetic
and potential energies and the relation between tem-
peratures in different spatial directions in the station-
ary state.

We consider an infinite simple crystal lattice con-
sisting of particles with equal masses. The nearest
neighbors interact via linearized (harmonic) forces.
Particles are identified by their radius-vectors in the
undeformed state. Motion of particles is described by
differential-difference equation:5

(1)

3 We define the period as , where  is the mass of
the atom,  is the bond stiffness.

4 The randomness is introduced with initial conditions.
5 This equation is equivalent to the infinite system of ordinary dif-

ferential equations of the second order.
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where ,  are displacement and velocity of the
particle with radius-vector ;  is the tensor difference
operator;  is the vector connecting two neighboring
particles; ; ;  is the bond
stiffness;  is the particle’s mass. The summation is
carried out over noncollinear bond directions . In
particular,  for a square lattice and 
for a triangular lattice. Initial displacements and
velocities of the particles have the form:

(2)

where ,  are independent random vectors with
zero mean.

Equation (1) with initial conditions (2) completely
determines the dynamics of the crystal. In principle, it
can be solved analytically. The resulting solution yields
stochastic displacements and velocities of all particles.
In contrast, description of macroscopic thermal pro-
cesses usually focuses on statistical characteristics
such as temperature.
In papers [2, 3, 10, 11] it is shown that kinetic tem-
perature is insufficient for obtaining closed system of
equations. A closed system can be derived for the gen-
eralized energies. We define the generalized (two-par-
ticle) kinetic  and potential  energies for particles 
and  with radius-vectors  and  as:

(3)

Here, ; brackets  denote the expected
value of a random variable. For , the traces of ten-
sors ,  correspond to conventional kinetic and
potential energies per particle. We also define the ten-
sor temperature  [7] as

(4)

where  is Boltzmann’s constant,  is the space
dimensionality. The kinetic temperature T is associ-
ated with the  tensor T by the relation T = (1/d)trT.
The generalized total energy  and the generalized
Lagrangian  are defined as

(5)
We consider only processes in uniformly heated crys-

tals. In this case the generalized energies satisfy the rela-
tions

, . 
Argument  is omitted below for brevity. Note

that the points defined by vectors  form the same
lattice as vectors .

We show that the generalized total energy  satis-
fies several conservation laws. Computing the time
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derivative of  and using equations of motion (1)
yields:

(6)

Multiplying equation (6) by $n, we obtain the con-
servation laws

(7)

In the case  and  formula (7) coincides
with the conventional law of energy conservation.
From the Cayley–Hamilton theorem it follows that
the number of independent conservation laws (7) is
equal to space dimensionality.

We derive the dynamic equations for generalized
energies. Differentiating the generalized Lagrangian 
with respect to time and taking equations of motion (1)
into account yields:

(8)

where . It can be shown that quantities ,
,  also satisfy Eq. (8). Corresponding initial condi-

tions are uniquely determined by initial displacements
and velocities of the particles (2). Thus dynamics of
the generalized energies is described by Eq. (8) with
deterministic initial conditions.

Computer simulations show that after a short tran-
sient process the system practically reaches the station-
ary state.6 Consider the relation between stationary
values of the generalized energies and the initial con-
ditions. Using Eq. (8) for  and conservation laws (7)
yields the closed system of equations for stationary val-
ues of the generalized energies:

(9)

where  is the initial value of the generalized total
energy. The relation between the generalized kinetic
and potential energies follows from the identity

. In the stationary state, the left hand side
of this equation is equal to zero, then

(10)

Equation (10) and the first of Eq. (9) lead to the
following expression for traces of the generalized ener-

gies: trK = = trΠ = trH0. In the particular case ,

the given expression follows from the virial theorem.
Deviators of the generalized energies are determined
by solution of Eqs. (9), (10).

6 The stationary state is defined so that the second time deriva-
tives of the generalized energies are equal to zero.
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The derivations presented above are valid in two-
and three-dimensional cases. As an example, consider
transition to the stationary state in the two-dimen-
sional harmonic triangular lattice. Initial velocities of
the particles are independent random vectors with
zero mean; initial displacements are equal to zero. In
this case initial conditions for the Lagrangian  have
the form:

(11)

where  for ; .

Consider the stationary value of the tensor tem-
perature (4). Equations (9) with initial conditions (11)
are solved with respect to  using the discrete Fourier
transform. After that the tensor temperature is calcu-
lated using formulas (4), (10). For an infinite triangu-
lar lattice the following relation between the tempera-
ture tensor (4) and initial conditions is obtained:

(12)
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Therefore, the temperature tensor in the stationary
state, in general, is not isotropic.

We compare the results given by formula (12) with
numerical solution of lattice dynamics Eqs. (1). Verlet
integration scheme with the time step  is used.
Here and below, . Initial displacements of
particles are equal to zero. Initial velocities have ran-
dom magnitude and directed along one of the lattice
directions (  axis). Time dependence of the difference
between temperatures in  and  directions is shown
in Fig. 1. Numerical solution of Eq. (8) for  is also
given for comparison. It is seen that the system practi-
cally reaches the stationary state after several periods .
In the stationary state, the relation (12) is satisfied.
Transition to the stationary state is exactly described
by Eq. (8).

Consider equilibration of kinetic and potential
energies in the triangular lattice. The process is
described by Eq. (8). Initial particle velocities are
independent random vectors, uniformly distributed

among spatial directions. In this case K0 = ,

where  is the unit tensor. The following assumption
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Fig. 1. Time-dependence of the difference of temperatures corresponding to  and  directions (triangular lattice). Circles—
numerical solution of lattice dynamics Eqs. (1) (  particles; periodic boundary conditions). Solid line—numerical solu-
tion of the differential-difference Eq. (8) for the generalized kinetic energy. Dashed line—analytical solution (12) of the stationary
problem.
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Fig. 2. Oscillations of the Lagrangian in the triangular lattice with random initial velocities. Solid line—analytical solution (14);
circles—numerical solution of lattice dynamics Eqs. (1).
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is used for solution of Eq. (8) with initial conditions (11)7

. Then Eq. (8) takes the form

(13)

Note that Eq. (13) is similar to the equation of
motion (1). Equation (13) is solved using the discrete
Fourier transform. In the case of infinite crystal the
solution gives the following expression for Lagrangian

:

(14)

The second formula from (14) corresponds to the
dispersion relation for the triangular lattice.

Formula (14) shows that the difference between
kinetic and potential energies oscillates with the

7 This assumption significantly simplifies Eq. (8). Comparison
with numerical solution of the lattice dynamics Eqs. (1) shows
that Eq. (13) correctly describes behavior of Lagrangian

 (see Fig. 2). Therefore the assumption is accept-
able.
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amplitude inversely proportional to time. It decays by
two orders of magnitude in . In the one-dimen-
sional case, similar oscillations are described by the
Bessel function of the first order, which decays
inversely proportional to the square root of time [2].

Analytical solution (14) is compared with numeri-
cal solution of lattice dynamics Eqs. (1) (see Fig. 2). It
is seen that solutions practically coincide.

Thus in the present paper the analytical description
of two nonequilibrium thermal processes, notably
(i) equilibration of kinetic and potential energies and
(ii) redistribution of energy among spatial directions,
was proposed. Equation (8) with deterministic initial
conditions describing both processes in two- and tree-
dimensional cases was derived. Stationary values of
the generalized energies are related with the initial
conditions by Eqs. (9), (10). It was shown that in the
triangular lattice the temperature tensor is not isotro-
pic. Its deviator in the stationary state is determined by
formula (12):

(15)

where ,  are initial temperatures in  and 
directions. Also it was shown that equilibration of kinetic
and potential energies is described by formula (14).

The results obtained in the present paper can be
used for description of fast thermal processes in weakly
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anharmonic crystals (at low temperatures). In paper
[12] it is shown that small nonlinearity leads to slow
energy exchange between the normal modes. As a
result, at short times considered above the effect of
nonlinearity is weak.

Also the results may serve for description of anom-
alous heat transfer. This process in defect-free crys-
tals, in general, is not described by the Fourier law [3,
9–11, 13–15].
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