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A model (further referred to as the enhanced vector-based model or EVM) for elastic bonds in solids, composed of bonded 
particles is presented. The model can be applied for a description of elastic deformation of rocks, ceramics, concrete, 
nanocomposites, aerogels and other materials with structural elements interacting via forces and torques. A material is 
represented as a set of particles (rigid bodies) connected by elastic bonds. Vectors rigidly connected with particles are used 
for description of particles orientations. Simple expression for potential energy of a bond is proposed. Corresponding forces 
and torques are calculated. Parameters of the potential are related to longitudinal, transverse (shear), bending, and torsional 
stiffnesses of the bond. It is shown that fitting parameters of the potential allows one to satisfy any values of stiffnesses. 
Therefore, the model is applicable to bonds with arbitrary length / thickness ratio. Bond stiffnesses are expressed in terms 
of geometrical and elastic properties of the bonds using three models: Bernoulli-Euler beam, Timoshenko beam, and short 
elastic cylinder. An approach for validation of numerical implementation of the model is presented. Validation is carried 
out by a comparison of numerical and analytical solutions of four test problems for a pair of bonded particles. Benchmark 
expressions for forces and torques in the case of pure tension / compression, shear, bending and torsion of a single bond are 
derived. This approach allows one to minimize the time required for a numerical implementation of the model.
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1. Introduction

Discrete mechanical models are widely used for simulation 
of deformation and fracture of solids at different scale 
levels [1 – 15]. In the framework of discrete models, a 
solid is represented as a set of interacting particles. At 
nanoscale level, interactions between particles are usually 
described by interatomic potentials [1, 7]. At higher scale 
levels, interactions can be simulated by the so-called bonds 
connecting particles. The bonds either represent some 
additional glue-like material, connecting particles [8 – 12], or 
appear as a result of coarse-graining, e.g. of macromolecules 
[13,14], nanotube-based materials [15 – 16], etc. This model 
is widely used, for example, for simulations of granular 
solids, such as rocks, ceramics, concrete, nanocomposites, 
agglomerates, aerogels, etc.

Each bond causes forces and torques acting on the 
bonded particles. In the case of purely elastic bonds, forces 
and torques depend on mutual positions and orientations of 
the particles. In the two-dimensional case, construction of 
this dependence is relatively straightforward [3, 17], while in 
three-dimensional case it is a serious challenge. Several three-
dimensional models for elastic bonds in solids are proposed 
in literature [9,15,16,18,20,21]. In paper [18], bonds are 
modeled by Timoshenko beams [19] connecting particles. 
The model has clear physical meaning, though its applicability 
is limited to bonds with relatively large length / thickness ratio. 

In paper [9], the so-called bonded particle model (BPM) 
is proposed. In the BPM, forces and torques are calculated 
using an incremental procedure. In this case, conservation 
of energy (required for simulation of elastic bonds) is not 
always guaranteed. In paper [20], an approach based on the 
decomposition of relative rotation of particles is proposed. 
Forces and torques are represented as functions of angles, 
describing relative rotation of the particles. Expression for 
the potential energy of the bond is not presented. Therefore, 
it is unclear if forces and torques [20] are conservative.

Another approach for simulation of elastic bonds (referred 
to as the vector-based model or V-model) is presented in 
paper [21]. In the V-model, potential energy of the bond is 
a function of the mutual position of the particles and vectors 
rigidly connected with particles. Expressions for forces and 
torques are derived from the potential energy. Therefore, the 
interactions caused by the bonds are truly conservative.

In the present paper, we further develop the approach 
proposed in paper [21]. Enhanced vector-based model 
(EVM) for elastic bonds is presented. A simple expression for 
the potential energy of the bond is proposed. Corresponding 
forces and torques are derived. Parameters of the potential 
energy are related to longitudinal, transverse (shear), 
bending, and torsional stiffnesses of the bond. The range 
of applicability of the EVM is discussed. An approach for 
validation of numerical implementation of the EVM is 
proposed.
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2. Enhanced vector-based model 
(EVM) of an elastic bond

Consider a model of elastic bonds in a solid composed of 
bonded particles. In general, each particle can be bonded 
with any number of neighbors. The behavior of the bonds 
is assumed to be independent, i.e. pair interactions are 
considered. Therefore, for simplicity, two bonded particles 
i and j are considered below. Expressions for forces and 
torques acting on the particles i and j are derived.

Assume that the bond connects two points that belong to 
the particles. The points lie on the line connecting particles’ 
centers in the initial (undeformed) state. Distances from 
these points to particles’ centers of mass are denoted as Ri , 
Rj respectively. For example, in the case shown in Fig. 1, the 
points lie on particles’ surfaces and therefore Ri , Rj are equal 
to particles’ radii.

Orientations of the particles are described by orthogonal 
unit vectors ni1, ni2, ni3 and nj1, nj2, nj3, rigidly connected with 
particles i and j respectively. Here the first index corresponds 
to particle number, the second index corresponds to vector’s 
number (see Fig. 1). In the undeformed state, the following 
relations are satisfied:

ni1 = –nj1 = eij ,   ni2 = nj2 ,   ni3 = nj3 , (1)

where eij = rij / rij , rij = rj – ri .
In general, potential energy of the bond is a function of 

vector Dij =
def rij + Rjnj1 – Rini1 and vectors nik , njm , k, m = 1, 2, 3. 

Vector Dij is directed along the bond (see Fig. 1). It connects 
points with radius-vectors ri + Rini1, rj + Rjnj1. In the case 
Ri = Rj = 0, the bond connects particle centers (Dij = rij ).

The expression for potential energy of the bond, U, 
proposed in paper [21] can be simplified. In the framework 
of the EVM, the following expression for potential energy is 
used:

 (2)

where, Dij = |Dij|, dij = Dij / Dij ; B1, B2, B3, B4 are parameters of 
the model related to stiffnesses of the bond (see formula (11)).

Formula (2) is significantly simpler than corresponding 
expression in the V-model [21]. The main difference between 
these expressions is in the last term. In formula (2), the last 
term contributes to both bending and torsion of the bond. 

In paper [21] the potential energy is designed in such a way 
that at small deformations bending and torsion are described 
by two independent terms. This “decomposition” leads to an 
unnecessarily complicated expression for potential energy.

Forces Fij and torques Mij , Mji acting between the particles 
are calculated as follows [6,13,21]:
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Here torque Mij is calculated with respect to center of mass of 
particle i. Taking the derivatives yields:

 (3)

If the bond connects particles’ centers, expressions (3) take 
the form:
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where eij = rij / rij , M
TB is defined by equation (3).

Remark. In contrast to the BPM [9], forces and torques (3), 
(4) are defined by instantaneous positions and orientations of 
the particles. Therefore in the framework of the EVM, more 
accurate symplectic methods (methods conserving energy) 
for numerical integration of equations of motion can be used.

3. Benchmarks: tension, shear, 
bending, and torsion of the bond

The behavior of solids composed of bonded particles 
interacting via forces and torques (3), (4), in general, is 
quite complicated. Therefore, validation of numerical 
implementation of the EVM is not straightforward. In 
the present section, a simple approach for validation is 
proposed. Forces and torques acting on two bonded particles 
are calculated in the case of tension / compression, shear, 
bending, and torsion of the bond (see Fig. 2). The resulting 
expressions can be used as benchmarks for a validation of 
computer implementation of the model. Additionally, the 
relations between parameters of the model and stiffnesses of 
the bond are derived. For simplicity it is assumed that the 
bond connects particle centers (Ri = Rj = 0).
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Fig. 1. Two bonded particles in the undeformed state (left) and 
deformed state (right). Here and below a is an equilibrium length 
of the bond.

Fig. 2. Deformations of the bond and corresponding orientation of 
vectors, connected with the particles.
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3.1. Tension and shear of the bond

Consider pure tension of the bond connecting particles i and j.  
Particles are displaced along vector rij . In this case, forces 
and torques (4) take the form

Fij  =  B1(rij – a) eij ,   Mij  =  Mji  =  0. (5)

It is seen that in the case of pure tension the behavior of 
the bond is identical to the behavior of a linear spring with 
stiffness B1. Therefore longitudinal stiffness of the bond cA = B1.

Consider pure shear of the bond. Assume that position 
of particle i is fixed and particle j has displacement uk, where 
the unit vector k is orthogonal to the initial direction of the 
bond e0. In this case, forces and torques (4) acting between 
the particles are the following:

2
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Rewriting formulae (6) using the geometrical relations
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yields

 (8)

Linearization of the second formula from (8) with respect to 
u yields Fij ∙ k ≈ cD u, where cD = B2 / a

2 is the shear stiffness of 
the bond.

Thus, parameters of the model B1 and B2 are proportional 
to longitudinal, cA, and shear, cD, stiffnesses of the bond 
respectively.

3.2. Bending and torsion of the bond

Consider pure bending of the bond. Assume that positions of 
particles i and j are fixed. Particles i, j are rotated in opposite 
directions by angle φ around vector ni2 = nj2. In this case, the 
force vanishes and torques are equal with opposite sign:

2 4
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In the case of small rotations of the particles Mij = –Mji ≈ 
≈–2cB φ ni2, where cB = B2 / 4 + B3 + B4 / 2 is the bending stiffness 
of the bond.

Consider torsion of the bond. Assume that position and 
orientation of particle i is fixed and particle j is rotated around 
rij by angle φ. Then

 (10)

It is seen that torsional stiffness, cT, is equal to parameter B4.
Formulas (5), (8), (9), (10) can be used for validation of 

numerical implementation of the EVM.

4. Calibration of the model

According to formulas (5), (8), (9), (10), stiffnesses of the 
bond are related to parameters Bk of the potential energy (2) 
by the following simple formulas:
 (11)

It is seen that any values of longitudinal, shear, bending, and 
torsional stiffnesses of the bond can be fitted by a proper 
choice of parameters Bk. Therefore the EVM is applicable 
to bonds with an arbitrary length / thickness ratio. Thus in 
spite of the simplification, it has the same advantage as the 
V-model [21].

In the present section, parameters of the model, Bk, are 
expressed in terms of geometrical parameters of bonds and 
mechanical properties of bonding material.

4.1. Long bonds

Mechanical behavior of relatively long bonds can be 
described by the beam theory [19]. We derive the relation 
between parameters of the model, Bk, and characteristics of 
massless Timoshenko beam connecting particles. Assume 
that the beam has equilibrium length a, constant cross-
section, and isotropic bending stiffness. Longitudinal, shear, 
bending, and torsional stiffnesses of Timoshenko beam are 
derived in paper [21]: 
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where E, G, v are Young’s modulus, shear modulus, and 
Poisson’s ratio of the bonding material; S, J, Jp are area, 
moment of inertia, and polar moment of inertia of the cross 
section; k is a dimensionless shear coefficient [19]. Then 
formulas (11) and (12) yield the relation between parameters 
of the model and characteristics of Timoshenko beam:
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In the limit k → ∞, Timoshenko beam is equivalent to 
Bernoulli-Euler beam. Corresponding relation between the 
parameters has the form:
 (14)

If parameters Bk are determined by formula (14), then under 
small deformations the bond is equivalent to the Bernoulli-
Euler beam connecting particles.

Thus formulas (13), (14) can be used for calibration of the 
EVM, provided that bonds are relatively long, i.e. Bernoulli-
Euler or Timoshenko beam models are applicable.

4.2. Short bonds

Beam models described above are inapplicable if longitudinal 
and transverse stiffnesses are of the same order (cA / cD ~ 1). 
For example, in materials composed of glued particles, bonds 
are usually short [8 – 12] and the stiffnesses are comparable. 
Similarly, for covalent bonds in graphene cA / cD ~ 2 [22]. 
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Therefore in the present section an alternative model [21] is 
used for calibration of parameters Bk.

The bond is approximated by a short cylinder with 
equilibrium length a. Material of the cylinder is linearly 
elastic and isotropic. Then longitudinal, shear, bending, 
and torsional stiffnesses of a short bond are related to 
characteristics of the bonding material as follows (see paper 
[21]):
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(1 ) , .
(1 )(1 2 )

A D

p
B T

v ES GSc c
v v a a

GJv EJc c
v v a a

−
= =

+ −

−
= =

+ −

 (15)

Then formulas (11) yield expressions, connecting parameters 
of the model with characteristics of the bond:
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Thus in the case of short bonds, calibration of the model 
is carried out using formulas (16).

5. Conclusions

Enhanced vector-based model (EVM) for simulation of 
elastic bonds in solids has been presented. The potential 
energy of the bond was represented via vectors, rigidly 
connected with bonded particles. Forces and torques caused 
by the bond were calculated. Relations between parameters 
of the model and bond stiffnesses were derived. It was shown 
that fitting parameters of the model allows one to satisfy 
any values of longitudinal, shear, bending, and torsional 
stiffnesses. Therefore the model is applicable to bonds with 
an arbitrary length / thickness ratio.

Validation of numerical implementation of the model has 
been discussed. It has been proposed to simulate four types 
of deformations (tension, shear, bending, and torsion) in a 
two particle system and to calculate corresponding forces 
and torques. Then numerical results can be compared with 
simple analytical expressions derived in the present paper. 
This approach allows one to minimize the time required for a 
numerical implementation of the model.

Finally, we note that the EVM can be used at different 
length scales. At nano scale level, covalent bonds (e.g. in 
graphene [4 – 6,22] and molybdenum disulfide [23]) can be 
simulated. At micro scale level, the EVM can be incorporated 
into coarse-grained models of macromolecules [13,14], 
nanotubes [15,16], aerogels, ceramics [11] etc. At macro scale 
level, the EVM can be applied to geomechanical problems, 
e.g. simulation of hydraulic fracturing in naturally fractured 
reservoirs [24].
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