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-Background and significance
-Main references

-The model of the bending waves in the linearly elastic 
mass-in-mass metamaterial system
-The discrete equations of motion and their long 
wavelength continuum limit.
-The dispersion analysis for the continuum equations of 
the basic-order continuum limits.

- Boundary harmonic excitation
- Localized wave excitation



• Acoustic metamaterial
• An artificial material with controlled elastic properties, particularly, 

• Acoustic materials are typically described by 
• The simplest and most popular one-dimensional model is the .

• Bending waves 

• Most sound radiation is caused by bending (or flexural) waves, that deform the structure transversely as they 
propagate.

based on the study of the difference governing equations is the most favorable method for 
finding the solution of the metamaterial problem. 

• Usually bending waves are modelled in the 

• The usual  from discrete to continuum approach is based on giving 
rise to the partial differential governing equations.



The is shown to produce 
both the acoustic and optic harmonic waves outside the 
band gap while no wave propagation is obtained inside 
the band gap.

Numerically the 
 is shown and 

differences in the wave dynamics 
depend on the parameters of the 
initial conditions.



Fig. 1 Bending mass-in-mass metamaterial chain

� The attached masses

� The main masses

� The stiffness of the spring between � and �

� The stiffness of the spring between M

�� The displacements of the attached chain

�� The displacements of the main mass

�� The angles relative to the horizontal direction

ℎ The distance between masses �

� The inertia



We use the  to 

obtain the equation of motion:
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• The angular variation of the mass with the number � is 

described by the angle �� :

�� = �� − ��−1



• The couple differential-difference equations of motion:

��� − 2� ��−1 − 2�� + ��+1 + �(��−2 − 4��−1 + 6�� − 4��+1 + ��+2) + �(�� − ��)
= 0

��� + �(�� − ��) = 0

• The continuum displacements of the neighboring masses are sought using the wavelength 
approximation, based on the Taylor series:
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• In this case the continuum functions �(�,  �), �(�,  �) are introduced for description of the 

displacements ��, �� of the masses �, �.



• The basic-order continuum limit in the form of coupled partial differential equations:

 ���� − 2�ℎ2����� + �ℎ4����� + �(� − �) = 0 
���� + �(� − �) = 0            (1)

• Retaining more non-zero terms in the continuum equations:

 ���� − 2�ℎ2����� + �ℎ4����� −
�ℎ4

6 ������� +
�ℎ6�������

6 + �(� − �) = 0

���� + �(� − �) = 0
     (2)

• The form of the solutions:
 
� = ����[�(�� − �� − �0)]
� = ����[�(�� − �� − �0)]



• Fig. 2 Dispersion curves for the frequency

• 1. Optic branch �0. 2. Horizontal dashed line corresponding to �0 at � =
0. 3. Horizontal dashed line corresponding to acoustic branch �� at � → ∞. 
4. Acoustic branch ��.

• Fig. 3 Dispersion curves for the phase velocity

• 1. Optic branch �0
�
. 2.  Horizontal dashed line corresponding to �0/� at 

� → ∞. 3. Horizontal dashed line corresponding to the minimum of the 
optic branch �0/�. 4. Horizontal dashed line corresponding to the 
maximum of the acoustic branch ��/k. 5. Acoustic branch ��/k.



• Fig. 4 Dispersion curves for the frequencies for the high-order model.

• 1. Maximum of the optic frequency. 2. Optic frequency. 3. Line 
corresponding to the value of �0  of the basic-order model at � = 0. 4. 
Line corresponding to the value of �� the basic-order model at � → ∞.5. 
Acoustic frequency ��.

• Fig. 5 Dispersion curves for the phase velocities for the higher-order 
model.

• 1. Optic branch. 2.  Acoustic branch.



• Fig. 6 Dispersion curves for the frequencies for the discrete 
model.

• 1. Optic frequency. 2. Line corresponding to the upper 
boundary of the basic-order continuum model. 3. Line 
corresponding to the lower boundary of the basic-order 
continuum model. 4. Acoustic frequency.

• Fig. 7 Dispersion curves for the phase velocities for the 
discrete model.

• 1. Optic branch. 2.  Acoustic branch.



The basic order continuum limit in the form of 
coupled partial differential equations:

 ���� − 2�ℎ2����� + �ℎ4����� + �(� − �) = 0 
���� + �(� − �) = 0      

The form of the solution:  
� = �sin(�� − ��)
� = �sin(�� − ��)

Initial condition:  V
(�, 0) = 0

�(�, 0)� = 0  

Boundary condition:  �
(0, �) = Asin(ωt)
�(0, �) = 0



• One can see that initially undisturbed 
stage a) transforms to a non-harmonic 
wave stage b). 

• The wave continues to propagate as time 
passes, with the harmonic character 
becoming apparent in stage c). 

• The last stage d) demonstrates 
, the 

acoustic branch of traveling waves for 
. Fig. 4 Evolution of u wave below the band gap, � <   �/�, 

� = 0.2, a) � = 0, b) � = 50, c) � = 300, d) � = 1000



• Inside the band gap, there is no even a 

wave with increasing or  decreasing 

amplitudes. 

• Shown in Fig. 5 is a strong decrease in the 

amplitude of disturbances and their chaotic 

character. 

• This is in an agreement with the analysis 

from the previous part:  

Fig. 5 Evolution of u wave inside the band gap,   �/� < � < �(� +�)/��, 
� = 0.35, a) � = 0, b) � = 50, c) � = 300, d) � = 1000



The basic order continuum limit in the form of 
coupled partial differential equations:

 ���� − 2�ℎ2����� + �ℎ4����� + �(� − �) = 0 
���� + �(� − �) = 0      

Initial condition:
 �
(�, 0)� = 0
�(�, 0) = 0   

 
�(�, 0) = � ���ℎ[�(� − �0)]

�(�, 0)� =− ��� ���ℎ2[�(� − �0)]

Periodic: ∞



Fig. 6 Evolution of localized initial disturbance at � = 0.
a) � = 0, b) �  =  ��/4, c) �  =  ��/2, d) �  =  ��

• At �  =  0 localized wave 

. 

• Instead short  wavelength not  exact ly 

periodic waves with 

 radiate from the position of 

the initial pulse, see Figs. 6 b) - d). 

• The from 0.5 in 

Fig. 6 a), to approximately 0.065 in Fig.6 d).



Fig. 7 Evolution of localized initial disturbance at � = 0.02.
a) � = 0, b) �  =  ��/4, c) �  =  ��/2, d) �  =  ��

• Non-zero value of � gives rise to 

 of the short waves as well in the 

value of their amplitude. 

• The asymmetric standing profile also arises in 

the area of the initial perturbation. 

 relative to that of the initial 

perturbation is lower than in the case � = 0.



我们可以通过改变系数 �  的值来研究超材料耦合的影响。图 1.7 所示的是�  = 0.05 的小值情况。与图 1.5 相比，我们可
以看到波浪行为没有明显差异。我们只能注意到波幅的微小变化。

Fig. 8 Evolution of localized initial disturbance at � = 0 and � = 0.05.
a) � = 0, b) �  =  ��/4, c) �  =  ��/2, d) �  =  ��

• Study an influence of metamaterial coupling 

varying  the  va lue  of  the  coeff ic ien t  �  : 

comparing with Fig. 6 we can see 

 in the wave behavior. Only small 

variation in the wave amplitude can be noted.



Fig. 9 Evolution of localized initial disturbance at � = 0 � = 0.02 and J= 0.015.
a) � = 0, b) �  =  ��/4, c) �  =  ��/2, d) �  =  ��

• Investigate an influence of dispersion 

varying the values of the coefficients � and �. 

The smaller values of the coefficients, � =

0.02 , � = 0.015 ,  g i v e  r i s e  t o  t h e  s l o w 

radiation, however, it 

.



• Dispersion relation analysis of the continuum equations demonstrates dependence of the band gap on the 

order of continulization: higher-order continuum limit predicts the dispersion properties better than the 

basic-order one. 

• No band gap of the constant width is obtained for the phase velocity as the order of continulization growths. 

Dispersion analysis of the discrete equations confirms this finding.

• Periodic bending waves generated by the boundary excitation are similar to the longitudinal waves. There 

is an evidence of a band gap in an agreement with the dispersion relation analysis. 

• Localized waves are not generated from a localized input contrary to the case of longitudinal waves. 

Variation of the dispersion term coefficient, the stiffness �  of springs with attached mass and the initial 

velocity don’t provide arising of traveling localized bending waves. 



• Thanks to Prof. A.V. Porubov for guidance and analysis!

• Thanks to Prof. N.M. Bessonov for numerical simulations!

• All the above results have been published:
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