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Introduction - Background and significance

* Acoustic metamaterial

An artificial material with controlled elastic properties, particularly, to control the transmission of deformation
waves.

Acoustic materials are typically described by discrete lattice models.

The simplest and most popular one-dimensional model is the mass-in-mass model.

* Bending waves

Most sound radiation 1s caused by bending (or flexural) waves, that deform the structure transversely as they
propagate.

Discrete modeling based on the study of the difference governing equations is the most favorable method for

finding the solution of the metamaterial problem.

Usually bending waves are modelled in the continuum approach.

The usual transfer from discrete to continuum approach is based on the long wavelength continuum limit giving

rise to the partial differential governing equations.



Introduction - Main references

On control of harmonic waves in an acoustic metamaterial

A.V.Porubov, 1. D. Antonov'
nstitute for Problems in Mechanical Engineering, Bolshoy 61,
V.0., Saint-Petersburg, Russia

The boundary harmonic excitation is shown to produce
both the acoustic and optic harmonic waves outside the
band gap while no wave propagation is obtained inside
the band gap.

A. V. Porubov@® - A. M. Krivtsov

Numerically the localized initial
perturbations evolution is shown and

Dispersive propagation of localized waves in a mass-in-mass | differences in the wave dynamics

metamaterial lattice

depend on the parameters of the
initial conditions.
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Bending Waves in Mass-in-Mass Metamaterial
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Generation of bending waves in a mass-in-mass
metamaterial
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The model of the bending waves in the linearly elastic
mass-in-mass metamaterial system

Fig. 1 Bending mass-in-mass metamaterial chain
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* The potential energy 1 1s

We use the Lagrange equations to
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obtain the equation of motion:
* The kinetic energy K is

K -M) (K-1n)_

K =— 24+—"24+_"2
0 2 2

(K _ ny__&-=-n) =0 * The angular variation of the mass with the number 1s

described by the angle

- -1



The discrete equations of motion

* The couple differential-difference equations of motion:
-2 —1_2" + v+ ( 2—=4 1+6 —4 4+ )+ ( — )
+ (- )=0

* The continuum displacements of the neighboring masses are sought using the wavelength

approximation, based on the Taylor series:
11— % + = *

* In this case the continuum functions ( , ), ( , ) are introduced for description of the

displacements , of the masses |,



The long wavelength continuum limit

* The basic-order continuum limit in the form of coupled partial differential equations:
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* Retaining more non-zero terms in the continuum equations:
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The dispersion analysis for the
continuum equations of the
basic-order continuum limits.

m (M+2J h* k%) o* = («(M+m)+2kJ B> kK> +mC h*k*) 0>+ C h*k*c = 0

Vk/m < w < \/K(HI +M)/(m M)

» Fig. 2 Dispersion curves for the frequency

* 1. Optic branch . 2. Horizontal dashed line correspondingto gat =
0. 3. Horizontal dashed line corresponding to acoustic branch ~ at - oo,
4. Acoustic branch

* Fig. 3 Dispersion curves for the phase velocity

« 1. Optic branch —2. 2. Horizontal dashed line corresponding to o/ at

- 00, 3. Horizontal dashed line corresponding to the minimum of the
optic branch ¢/ . 4. Horizontal dashed line corresponding to the
maximum of the acoustic branch  /k. 5. Acoustic branch  /k.




The dispersion analysis for the
continuum equations of the high-
order continuum limits

m ( 6M +J h2 K2(12 = h2k?) ) w* +C KK k(6 - h2k2)—

(GK(M +m)+JKh2k2(12—h2k2)+th4k4(6—h2k2)) w? = 0,

» Fig. 4 Dispersion curves for the frequencies for the high-order model.

* 1. Maximum of the optic frequency. 2. Optic frequency. 3. Line 5Vf’
corresponding to the value of  of the basic-order model at = 0. 4. [
Line corresponding to the value of  the basic-order model at - ©0.5. 43_
Acoustic frequency ;
3
* Fig. 5 Dispersion curves for the phase velocities for the higher-order 2 :
model. [
* 1. Optic branch. 2. Acoustic branch. 1t
L 2 —_—




I The dispersion analysis for
the discrete equations

Y,=A exp(: (khn- wr), Yn=8 exp(z (k hn —wr))
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Fig. 6 Dispersion curves for the frequencies for the discrete
model.

1. Optic frequency. 2. Line corresponding to the upper
boundary of the basic-order continuum model. 3. Line
corresponding to the lower boundary of the basic-order
continuum model. 4. Acoustic frequency.

Fig. 7 Dispersion curves for the phase velocities for the
discrete model.

1. Optic branch. 2. Acoustic branch.
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Numerical model — boundary harmonic excitation

The basic order continuum limit in the form of -2 2 + 4 + ( — )=0
+ (= )=0

coupled partial differential equations:

The form of the solution: f S!n( - )
= sin( — )
iti TEp. V(,0)=0
Initial condition: (o =0

o (0, ) = Asin(wt)
Boundary condition: 0 )=0




Numerical Simulation -
Boundary harmonic
excltation

* One can see that initially undisturbed
stage a) transforms to a non-harmonic

wave stage b).

* The wave continues to propagate as time
passes, with the harmonic character

becoming apparent in stage c).

* The last stage d) demonstrates almost

complete the shape of the harmonics, the

acoustic branch of traveling waves for

normal propagation.
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Numerical Simulation -
Boundary harmonic
excitation

Inside the band gap, there is no even a
wave with increasing or decreasing

amplitudes.

Shown in Fig. 5 is a strong decrease in the
amplitude of disturbances and their chaotic

character.

This is in an agreement with the analysis

from the previous part: no harmonic

traveling wave propagates in the band gap.
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Numerical model - localized wave excitation

The basic order continuum limit in the form of -2 2 + 4 + (— )=0
coupled partial differential equations: + (— )=0
(,0) =0
Initial condition: (.0)=0
' (.0)= [ ( — o)l
(.0) =- I ( = o)

Periodic: 00
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Fig. 6 Evolution of localized initial disturbance at = 0.
a) =0,b) = J/4,¢) = [/2,d) =

At = O0Olocalized wave doesn’t propagate

along x axis.

Instead short wavelength not exactly

periodic waves with decreasing amplitude

symmetrically radiate from the position of

the initial pulse, see Figs. 6 b) - d).

The maximum of /' decreases from 0.5 in

Fig. 6 a), to approximately 0.065 in Fig.6 d).

Numerical Simulation - Localized wave excitation
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Fig. 7 Evolution of localized initial disturbance at = 0.02.
a) =0,b) = /J4,¢) = /2,d) =

Non-zero value of gives rise to an asymmetry

in radiation of the short waves as well in the

value of their amplitude.

The asymmetric standing profile also arises in

the area of the initial perturbation. A decrease in

the amplitude relative to that of the initial

perturbation is lower than in the case = 0.

Numerical Simulation - Localized wave excitation
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Numerical Simulation - Localized wave excitation
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Fig. 9 Evolution of localized initial disturbance at
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Fig. 8 Evolution of localized initial disturbance at § = 0 and k = 0.05.
a)t=0,b)t = ty/4,0)t = ty/2,d)t = ty

Investigate an influence of dispersion
varying the values of the coefficients and
The smaller values of the coefficients, =
0.02, =0.015, give rise to the slow

radiation, however, 1t doesn’t result in the

formation of localized waves.

Numerical Simulation - Localized wave excitation



Conclusion

* Dispersion relation analysis of the continuum equations demonstrates dependence of the band gap on the
order of continulization: higher-order continuum limit predicts the dispersion properties better than the

basic-order one.

* No band gap of the constant width 1s obtained for the phase velocity as the order of continulization growths.

Dispersion analysis of the discrete equations confirms this finding.

* Periodic bending waves generated by the boundary excitation are similar to the longitudinal waves. There

is an evidence of a band gap in an agreement with the dispersion relation analysis.

* Localized waves are not generated from a localized input contrary to the case of longitudinal waves.
Variation of the dispersion term coefficient, the stiffness Kk of springs with attached mass and the initial

velocity don’t provide arising of traveling localized bending waves.
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