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Chapter 19
Material Strain Tensor

Pavel A. Zhilin, Holm Altenbach, Elena A. Ivanova and Anton M. Krivtsov

Abstract The problem of description of large inelastic deformations of solids is1

considered. On a simple discrete model it is shown that the classical concept of2

deformations used in continuum mechanics can exhibit serious difficulties due to3

reorganizations of the internal structure of materials. The way of construction of4

constitutive equations in continuum mechanics aimed to avoid these problems is5

proposed. A method of introduction of material strain tensor for the inelastic contin-6

uum is suggested. The paper is based on the report: P. A. Zhilin, A. M. Krivtsov: Point7

mass simulation of inelastic extension process. It was prepared for the ICIAM 958

(Third International Congress on Industrial and Applied Mathematics, Hamburg,9

Germany, July 3–7, 1995), but not accepted for publication.10 AQ1

19.1 Introductory Remarks11

The conventional continuum mechanics contains [1–3]:12

a) the theory of stresses and balance equations,13

b) the geometrical theory of deformations and the introduction of strain tensors, and14

c) the establishment of constitutive equations (sometimes added by evolution equa-15

tions).16

The original text by P. A. Zhilin (1942–2005) is presented in Sects. 19.1, 19.3 and 19.4 with
some explanatory addenda.
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2 P. A. Zhilin et al.

(a)

(b)

Fig. 19.1 Tension of the system of three interacting particles

Such approach was found by L. Euler (for one-dimensional continua) and by17

O. Cauchy (for three-dimensional continuum) in order to describe mechanics of18

elastic materials. It is often assumed that the Euler-Cauchy approach can be used for19

inelastic materials too. There are many theories of such kind. However, none of them20

is able to describe a lot of well established experimental results. By this reason many21

experimenters suppose that the Euler-Cauchy approach cannot be used in mechanics22

of inelastic materials.123

In this chapter a simple discrete model is used to illustrate these problems arising24

for the large inelastic deformations. Then a method of introduction of a material25

strain tensor suitable for solution of these problems is presented.26

19.2 Simple Discrete Model of Inelastic Deformation27

One of the main problems for the usage of the traditional stress tensors is that for28

an inelastic deformation an essential structure reorganization occurs in materials. In29

particular the idea of material line can loose its sense because a material particle30

can locate itself between the nearest neighboring particles. For illustration2 let us31

consider the deformation of the simplest discrete system containing three interacting32

particles—see Fig. 19.1.33

Let us describe the interaction between particles using Morse potential [4]34

Π(r) = D
(
e−2α(r−a) − 2e−α(r−a)

)
, (19.1)35

where r is the distance between particles, D is the bond energy, a is the bond length,36

α is the interaction parameter. The Morse potential is one of the simplest interaction37

1 Among such theories probably the best results in explanation of experimental phenomena are
given by the so-called “deformation theory” by H. Hencky, sometimes much better than the rate
theory can do [13]. As it can be seen from below, there are serious reasons for that.
2 This model was proposed by P. A. Zhilin and analyzed by A. M. Krivtsov.
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19 Material Strain Tensor 3

potentials used for the qualitative description of the interaction between atoms. The38

corresponding interaction force f(r) can be calculated as39

f(r) = −Π ′(r) = 2αD
(
e−2α(r−a) − e−α(r−a)

)
. (19.2)40

For r < a the value of f(r) is positive, which corresponds to repulsion, for r > a41

the value of f(r) is negative, which corresponds to attraction, for r = 0 the force42

became zero. Let us introduce the bond strength43

f∗ = αD/2, (19.3)44

which is the maximum of the absolute value of the attraction force.45

For the system of three particles without external loading there exists the unique46

stable equilibrium configuration, that is an equilateral triangle with side length a.47

Let us set the loading of the system by quasistatic extension of the triangle along48

one of its sides—see Fig. 19.1a. The corresponding tension forces are shown in the49

picture, the absolute value of the forces is denoted by P. While the length r of the50

side being extended is less than 2a, the system forms an isosceles triangle, where51

the length of the equal sides is a permanently. In fact in this case particle 3 is not52

interacting with other two particles—the forces between it and others is equal to53

zero, while the force P is determined by interaction between particles 1 and 2 only.54

The situation changes drastically, when r exceeds 2a—see Fig. 19.1b. In this case55

particle 3 “put itself” between particles 1 and 2. In this case the interaction became56

more complex, since the distance between particle 3 and other two particles exceeds57

an equilibrium one, therefore an attraction between them appears, increasing the58

force P. The corresponding equations of equilibrium are given in Fig. 19.1a, b. The59

stress-strain diagram, obtained from these equations for αa = 3 is shown in Fig. 19.2.60

The obtained relation P(r) has three extrema. For the soft loading (when the61

loading force is set, but not the deformation) the decreasing parts of the diagram62

are unstable (the dashed line). In the extrema the dynamic transitions with structure63

reorganization are possible (the arrows). Thus, even for such simple model with64

purely potential interaction it is quite possible to observe the main features inherent65

to stress-strain relation of real materials: yielding, residual deformation, hardening,66

loop of hysteresis and so on. The analysis of more complex discrete systems in [5],67

which was performed analytically and numerically, shows similar results. The more68

degrees of freedom are taken into account the closer these results are to the results69

of the nature experiments with real materials.70

The main conclusion that follows from this consideration is that due to the inter-71

nal structure reorganization such concept as the material line can loose its sense,72

and consequently the geometrical definition of deformation looses the sense for the73

significant inelastic deformations.74
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4 P. A. Zhilin et al.

Fig. 19.2 Loading diagram for the system of three interacting particles

19.3 Continuum Description75

From the previous section it follows that generally for significant inelastic defor-76

mations of materials the strain tensors defined from pure geometrical reasons are77

not suitable to be used in the theory of constitutive relations. It is necessary to look78

for another approach. Let us describe an idea of possible method of introduction of79

a strain tensor for inelastic continua. The starting point is the equation of energy80

balance81

ρU̇ = τ ·· D + ρs − ∇ ·h, D ≡ (∇v + ∇vT )/2, (19.4)82

where ρ is the material density; U is the specific internal energy (in terms of mass); τ83

is Cauchy stress tensor; D is the stretching; s is the heat supply; h is the heating-flux84

vector; v is the velocity vector; ∇ is the vector differential operator in the actual85

configuration. The first term in the right side of Eq. (19.4) is called the power of86

stress. Note that here the direct tensor notation in the sense of [7, 8] is used. In87

addition, the gradient of a vector (for example, velocity) is introduced as in [7] that88

means as the transpose of the quantity defined in most other textbooks.89

Let us accept the following definition:90

Definition 19.1. The quantity E , on the variation of which the Cauchy stress tensor τ91

is producing the work, is called material strain tensor.92

From the definition it follows93

τ ·· D = τ ·· Ė ⇒ τ ·· (Ė − D) = 0, ∀τ : τ = τT . (19.5)94
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19 Material Strain Tensor 5

The symmetric tensor E must be an objective one, i. e. under superposition of rigid95

motions we have to get96

E∗ = Q · E · QT , (19.6)97

where E∗ is the tensor E being transformed by the rigid rotation Q (Q · QT = E98

with E as the unit tensor), applied to the whole system. The tensors τ and D are also99

objective ones:100

τ∗ = Q·τ·QT , D∗ = Q·D·QT
⇒ τ∗ ·· D∗ = τ ·· D. (19.7)101

Let us accept that relation (19.5) remains after addition of the rigid motions102

τ∗ ·· D∗ = τ∗ ·· Ė∗. (19.8)103

Then according to Eqs. (19.7) and (19.8) we obtain the identity104

τ∗ ·· Ė∗ = τ ·· Ė (19.9)105

The substitution of relations (19.6) and (19.7) for tensors τ and E in the identity106

(19.9) after some transformations3 gives107

τ·E = E ·τ, τ∗ ·E∗ = E∗ ·τ∗. (19.10)108

From Eq. (19.10) it is seen that the eigenvectors of tensors τ and E are the same. Thus109

for any material the tensor τ is an isotropic function of E . It means that the tensor E110

must depend on properties of material and it cannot be found from pure geometrical111

considerations. This is clear at least from the fact that the equalities (19.10) should112

be valid also for an anisotropic material.4113

Using Eq. (19.5) let us introduce the symmetric tensor L such as114

Ė + L = D, (τ ·· L = 0, ∀τ : τ = τT ), (19.11)115

where the symmetric tensor L is not a priori known. L depends on properties of the116

material. Let us point out only one possible form of tensor L117

L = ω·E − E ·ω, ωT = −ω. (19.12)118

3 Here it is used: Q̇ · QT —antisymmetric tensor, identity A ·· B·C = A·B ·· C and statement:
A ·· B = 0, ∀A : AT = −A ⇒ BT = B.
4 This statement becomes more evident if we consider the linear theory. Indeed, in the linear theory
the elasticity relations have the form τ = C ·· ε, where C is the stiffness tensor and ε is the
linear strain tensor, which has pure geometrical definition. In the case of an anisotropic material the
principal axis of the tensors ε and C ··ε have different orientations. In our case we have to introduce
an alternative strain tensor E in such way, that it should be coaxial to the tensor C ·· E. It is clear,
that such a strain tensor should by some means take into account the anisotropy of the material.
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6 P. A. Zhilin et al.

Using the objectivity of tensors E and D and equality (19.11), e.g. taking into account119

that120

Ė∗ + L∗ = D∗, L∗ = ω∗ ·E∗ − E∗ ·ω∗. (19.13)121

It can be shown that the tensor ω under the superposition of rigid motions must122

satisfy the equation123

ω∗ = Q·ω·QT − Q̇·QT . (19.14)124

The substitution of the representation (19.12) for tensor L in equality (19.11) gives125

the differential equation for the material strain tensor E126

Ė + ω·E − E ·ω = D. (19.15)127

Tensors E and ω in (19.15) are unknown. To find them we have to use additional128

(constitutive) equations.129

19.4 Determination of the Material Strain Tensor in some130

Particular Cases131

Let us find the trace of tensor E by calculating the trace of Eq. (19.15). Using the132

identity ω ·· E = 0 we can obtain133

(tr E). = trD = ∇ ·v = −ρ̇/ρ. (19.16)134

Here the continuity equation is applied. The integration of relation (19.16) gives135

tr E = ln(ρ0/ρ) = ln(1 + Δ), (19.17)136

where ρ0 is density of the undeformed material, Δ is the cubic dilatation. Equality137

(19.16) is correct for all materials. However, the deviator of E essentially depends138

on the material properties.139

Let us neglect thermal effects. Then the energy balance (19.4) takes the form140

ρU̇ = τ ·· Ė . (19.18)141

Assuming elastic material behavior the internal energy and the stress tensor depend142

on strains only, and they are not dependent on the strain rate. According to Eq. (19.18)143

the internal energy of an elastic material has the form U = U(E). The calculation of144

the time derivative from the internal energy gives145

ρ
∂U

∂E ·· Ė = τ ·· Ė ⇒ τ = ρ
∂U

∂E . (19.19)146
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19 Material Strain Tensor 7

To fulfil this relation tensor E should be Hencky’s tensor (logarithmic strain147

measure—the logarithm of the right kernel of the distortion tensor).148

Proof. 5 Indeed, according to [6]149

τ = 2
ρ

ρ0
F· ∂W

∂F
, F = (∇r·r∇)−1, (19.20)150

where r is the reference position vector; F is Finger’s strain tensor and W = ρ0U151

is the internal energy volume density in the reference configuration. For Hencky’s152

tensor H we have [6]153

H = ln V, F = V2. (19.21)154

Here V is the right kernel of the distortion tensor. The substitution of relation (19.21)155

in Eq. (19.20) for the Cauchy stress tensor one can obtain finally156

τ = ρ
∂U

∂H
⇒ H = E . (19.22)157

So, for elastic isotropic material the Cauchy stress tensor performs the work on158

Hencky’s logarithmic strain measure.6 �159

Therefore, according to the definition, which was introduced before, Hencky’s mea-160

sure and only it is the material strain tensor for the elastic isotropic material. It is161

known that Hencky’s measure is frequently accepted by experimenters as the most162

convenient way for description of large deformations.163

It can be shown,7 that tensor ω is uniquely determined for elastic isotropic mate-164

rials and tensors E and ω also can be determined for materials with infinite short165

memory, which is good for the description of large plastic deformations.166

19.5 Discussion and Concluding Remarks167

Here the original text by P. A. Zhilin, which is used as a basis for this chapter, comes168

to an end. In private communications P. A. Zhilin has stated that this approach can169

form a basis for an essentially new theory of constitutive equations. In particular, he170

has noted that this approach allows to obtain the strain tensor, which for a periodical171

5 This proof is suggested by A. M. Krivtsov, the original proof by P.A. Zhilin unfortunately is lost.
6 This result was obtained by P. A. Zhilin and it was explained in private communications to his
pupils before 1995, however it was not officially published. In 1995 a short paper with this result
was submitted to ICIAM 95 proceedings, however it was rejected. In 1997 a paper by other authors
was published in Acta Mechanica [9], where the same result is presented as obtained for the first
time.
7 Proof of these statements by P. A. Zhilin unfortunately is not preserved.
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8 P. A. Zhilin et al.

twisting (with variable sign) of a rod gives an increase of deformation at each period,172

and this is convenient for describing such phenomena as fatigue.173

Later the chapter [9] was published, which significantly correlates with the results,174

obtained by P. A. Zhilin. In this chapter the use of Hencky’s logarithmic strain is175

analyzed and it is proved that this strain measure is the work-conjugate of the Cauchy176

stress tensor (the unpublished result by P. A. Zhilin, obtained earlier). Besides, in [9]177

it is proved, that H is the only strain measure, the objective corotational rate of which178

gives the stretching tensor D. Let us remind that the corotational rate of a tensor A179

is defined as8
180

A ′ = Ȧ + Ω·A − A·Ω, (19.23)181

where Ω is the spin tensor, characterizing some rotations connected with the defor-182

mation process. The geometrical sense of the corotational rate is that it neglects183

changes of the tensor A, connected with the rotation Ω. A variety of corotational184

rates is used in the literature. The rates differ by the choice of the tensor Ω. In par-185

ticular, if Ω = (∇v)A (the vorticity tensor) then (19.20) gives the Jaumann rate186

[9, 10]. For many years there was no answer to the question: is the stretching tensor187

D an objective corotational rate of any strain tensor. In [9] for the first time it is188

shown that such tensor can be only the Hencky logarithmic strain. Moreover, in [9]189

the corresponding spin tensor is found Ωlog, called by the authors as logarithmic190

spin, for which it fulfils that9191

H ′ log = Ḣ + Ωlog ·H − H·Ωlog = D, (19.24)192

where (. . .) ′ log is logarithmic rate of H, also introduced in [9]. If now one considers193

the equation obtained by P. A. Zhilin (19.15) for the material strain tensor, then the194

application of it to the Hencky logarithmic strain E = H will lead to the conclusion195

that the antisymmetric tensor used in (19.15) is the logarithmic spin: ω = Ωlog.196

Let us consider again Eq. (19.15)197

Ė + ω·E − E ·ω = D. (19.25)198

The problem of its solution can be now reformulated as the following: it is necessary199

to find such an objective tensor E , corotational rate of which is equal to the stretching200

tensor D. In fact, this problem is solved in [9]—there it is proved that such tensor E201

is Hencky’s logarithmic strain H, and tensor ω = Ωlog is found as some complex202

function10 of tensors E and D [9, 11].203

8 Frequently an alternative form of the corotational rate is used, where the difference is in the sign
of Ω. This is because the definition of the gradient of a vector can be as in this chapter and [7] or
in the transposed form. As a consequence the sign of the spin tensor can differ.
9 This formula for logarithmic rate differs from the one in [9] by the sign of Ωlog (see the previous
footnote).
10 For some particular strain fields (e.g. when all the tensors H are coaxial) the tensor Ωlog is
reduced to the vorticity tensor (∇v)A and logarithmic rate became Jaumann’s rate. However in
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19 Material Strain Tensor 9

Thus in [9] pure geometrical expressions are obtained for tensors E and ω being204

determined from Eq. (19.15). These results became very fruitful, as in the nonlinear205

theory of elasticity, as in the theory of elasto-plastic bodies [12–14]. In particular,206

later on it is shown [12] that the use of the logarithmic strain and logarithmic spin207

(connected by Eq. (19.15)) allows the correct formulation of the incremental elastic208

relations for hypoelastic materials. These incremental relations are widely used in209

numerical algorithms. Namely usage of these tensors makes these equations inte-210

grable, allowing transition from the incremental of the constitutive equations to the211

explicit one. This permits unique notions of hypoelastic and hyperelastic materials.212

Beyond the elasticity limit this approach allows to build the theory of elasto-plastic213

materials, where the decomposition of the strain tensor in elastic and plastic parts214

is not needed [13]. However, together with these successes there remained a lot of215

problems in description of inelastic behavior of materials.216

The ideas of [9] partially coincides with the ideas of P. A. Zhilin. But this is only217

partial coincidence. The essence of P. A. Zhilin’s idea is to introduce such a strain218

tensor that219

1. the Cauchy stress tensor performs work on this strain tensor;220

2. it should be materially objective;221

3. this tensor is not necessary a deformation in a classical sense.222

The latter means that this tensor is not necessary an isotropic function of the distortion223

(deformation gradient) tensor, in particular this strain tensor can depend on the space224

symmetry of the material. In the case of elastic isotropic material, according to [9],225

the problem of finding this tensor can be solved from purely geometrical means.226

In [9] it is stated that the unique solution of Eq. (19.15) is found. However, this227

solution is sought only on the set of classical strain tensors. For strain tensors in228

Zhilin’s sense Eq. (19.15) probably has also another solutions. Let us show it on the229

example of an elastic anisotropic material. Tensors E , ω = Ωlog satisfy Eq. (19.15)230

for both isotropic and anisotropic materials. However, in the case of anisotropic231

material this solution contradict the condition of coaxiality of strain and stress tensors232

(19.10), which is the consequence from the material objectivity. In order to fulfill233

condition (19.10) tensor E should have a structure, which depends on the material234

properties. Thus the idea of P. A. Zhilin of introduction of the material strain tensor,235

which should be determined using the energy balance equation and properties of the236

considered material, still is waiting for its development.237

Remark 19.1. In his latest works in the area of inelastic media P. A. Zhilin was238

using the spatial representation instead of the material one. The results obtained239

for the material representation can not be transferred directly to the case of the240

spatial representation. From the mathematical point of view the problem became241

more complicated since in Eq. (19.15) the full time derivative is replaced by the242

material one. However, the statement of the problem of finding the strain tensor243

possessing the specified above properties is possible for the spatial representation244

general case the representation for Ωlog is much more complex, which is connected with existence
of two independent rotations—rotation of media and rotation of the main axis of the strain tensor.
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10 P. A. Zhilin et al.

as well. We believe that the application of the ideas of this work for the spatial245

representation could be the way for construction of inelastic constitutive equations.246

Remark 19.2. In the current work an original approach, suggested by P. A. Zhilin, is247

presented. The approach is intended for obtaining constitutive equations for the solids248

subjected to large inelastic deformations in the case of the material representation,249

where the classical strain measures results in serious problems in description of250

the material subjected to reorganization of its to internal structure. Alternatively a251

space representation can be used, in principle allowing to obtain the constitutive252

equations in the considered case using classical strain measures. However, the strain253

representation can be used only in the case of 3D bodies. In the theories of shells and254

rods, where the differential operators are defined on a surface or on a curve in the255

3D space only the material representation can be used. Therefore for the description256

of large inelastic deformations of rods and shells the approach by P. A. Zhilin is of257

particular interest.258

Remark 19.3. 11 It is interesting to note that almost at the same time several groups259

had the same idea. The results of Bruhns and co-authors were first presented at the260

“International Symposium on Plasticity and Impact Mechanics” IMPLAST 96, held261

at New Delhi, India, 11–14 December 1996. The corresponding presentation was262

published in the conference book [15]. On this same symposium there was also a263

presentation by R.N. Dubey and W.D. Reinhardt, Waterloo, Canada, ([15], pp 79–99)264

who treated the same problem.265

Remark 19.4. 12 With reference to the last paragraph of the contribution it should266

be mentioned that in a different paper [16] also non-corotational rates were taken267

into consideration by replacing the general spin tensor Ω by a general asymmetric268

second order tensor Ψ. This has led to more general solutions of the problem under269

consideration.270

Acknowledgments Authors are deeply grateful to O.T. Bruhns for helpful discussions of the final271

version of the paper.272
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