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Inertia matrix transformation at transition of coordinate system from the center of inertia.  
Steiner Formula
Consider a body in spherical motion.  Its angular momentums relative to the center of mass and to a fixed point O are related as
      (1)
Mass center Speed is found by Euler formula.
    
In matrix form
VC =  RC		(2)
where RC is a column matrix affiliated to rC.
In matrix form the angular momentums  and  look the same
Kо =  Jo Kс =  Jс 
Here JO and Jс - inertia matrixes in fixed and movable axles. Substituting these expressions into the matrix equation (1) we get:
Finally:
Jo =(JC MRC2) 		(4)
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Since (4) is true for an arbitrary velocity ω we get a generalized Huygens-Steiner formula
JO= JC MRC2		(5)zc
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Formula (5) allows us to define the components of inertia matrix at transitional translation of coordinate axes from the mass Center to an arbitrary point O (Fig. 1).
Comparing the right bottom elements of the matrix expression (5), we find Steiner formula.	
JZ = Jzc + M (xc2 + yc2)
		(6)
Here d is the distance between the axes of z and zc.
	Formula (6) shows that the inertia moment  about the central axis zc is minimal relative to any other parallel axis.	
Jzc < Jz
	Comparing the off-diagonal elements of the matrix formula (6), we find the conversion formula for centrifugal moments of inertia.  For example	
		(7) zc


Angular momentum of rotating body.
Combine z axis with the axis of rotation, and choose the axis origin with the toe.  Then x= y= 0Fig.2

1. Let the z axis be not a central or principal axis of inertia at the origin O (Fig.2).  The formula (3) gets the form


= z		(8)
We see that KO and  are not parallel to each other (Fig. 2).  From the formula of dependence of angular momentum on the centers and, in view of that the axis is not central, we find
[bookmark: OLE_LINK2]KА= KО+ АО×MVC	≠  KО    (9)
2. Let the z axis be not central, but principal in O.  Then


=  z		(10)
and КО will be directed along the axis of rotation (Fig. 3).  КА, however, is still not parallel to КО because the axis is not Central.   
It follows an important formula of angular momentum relative to the axis of rotationFig.4

Fig.3


3. If, finally, the z axis is Central and the principal at O, then in accordance with (9) angular momentum will not depend on position of O on the axis of rotation (Fig. 4).   This means that
KА= KО = KС      (11)
And they all lie on the axis of rotation.  It follows that the principal central axis is principal at every point of the axis.
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General equations of motion of rigid body.   
Dynamically equivalent load.
	The main problem of rigid body dynamics is to define its movement under the action of the given forces (load) and reactions of support.	





Fig.5
Fig.6
Fig.7

	If the body is free (Fig. 5), there are no supports and their reactions, and we should find six functions of the movement law: 3 coordinates of the center of mass (xAyAzA)  and 3 Euler angles (.
6 unknowns in total.
If the body is not free, then besides the law of motion, we must find the reactions of supports.
Consider some special cases of body movement in the absence of friction.  In view of the mass center properties, we will always choose it for a pole.
In the plane movement (Fig. 6) body position is defined by 3 coordinates (xС yС ).  The plane х у makes the body to move in the plane.  There are 3 reactions: normal reaction N  and 2 reaction torques Mx and My.  We again have six unknowns.
Turning body (Fig. 7) has one function of law of rotation (angle ) and five unknown reactions XAYAZAXBYB.   Again, total of six unknowns.	
Thus, at any movement of solid body, we need to have  six equations to determine the law of motion and support reactions.  Let us call them the general equations of motion of the body.	
[bookmark: OLE_LINK3]General equations of motion of the body can be derived from two General theorems: on the motion of the center of mass and on relative angular momentum.	


In matrix form


We cannot differentiate the left part of (15) since the body rotates relative to the frame of reference and thus the inertia  matrix JС (t) is an unknown function of time in formula:
 (t) = JС(t) (t)	(16)
This problem disappears if you switch to the coordinates associated with the body, in which the inertia matrix is constant.

Absolute derivative of vector
      (17)
given in assotiated reference system, we should calculate by the theorem of the derivatives:

In matrix form, keeping (16) in mind, we have:

We come to the general equations of motion of  body in the reference system associated with the body
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Here, all external forces are divided into the active forces (load) and reactions (index R) of supports.
In the case of spherical and rotational movements we should change point C to fixed point O in the second equation.
	If expanded, two general equations (20) present a system of six scalar equations.  They include so many differential equations, as many degrees of freedom has the solid.  The remaining equations determine the support reactions.	
	We call two loads equivalent, if they give the same general equations of the body motion.  Equations (20) will be the similar if they have the similar right parts.   Thus, the condition of dynamic equivalence of the two loads applied to the solid, is a familiar condition of equality of the main vectors and main moments of the loads.	
There is no movement in statics, so we called two loads statically equivalent if they cause the similar reactions of supports.

[bookmark: OLE_LINK4][bookmark: OLE_LINK5]General equations of transitional body motion
	Since the body does not rotate:	
 = 0  ( = 0)  	= 0 		      (21)		
and the main vector of reactions is zero, then the equation (20) look like
		
	
		
Three differential equations define the law of motion of body x(t), y(t), z(t), and the remaining equations can be used to find three axial main moments of reactions.
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