
10/11/2008

1

Intel MMX, SSE, SSE2,
SSE3/SSSE3/SSE4 Architectures

Baha Guclu Dundar
SALUC Lab
Computer Science and Engineering Department
University of Connecticut

Slides 1-33 are modified from
Computer Organization and Assembly Languages Course
By Yung-Yu Chuang

2

Overview

• SIMD
• MMX architectures
• MMX instructions
• examples
• SSE/SSE2/SSE3

• SIMD instructions are probably the best place
to use assembly since compilers usually do not
do a good job on using these instructions

10/11/2008

2

3

Performance boost

• Increasing clock rate is not fast enough for
boosting performance

• Architecture improvements (such as
pipeline/cache/SIMD) are more significant

• Intel analyzed multimedia applications and
found they share the following characteristics:
– Small native data types (8-bit pixel, 16-bit audio)
– Recurring operations
– Inherent parallelism

4

SIMD

• SIMD (single instruction multiple data)
architecture performs the same operation on
multiple data elements in parallel

• PADDW MM0, MM1

10/11/2008

3

5

SISD/SIMD

6

IA-32 SIMD development

• MMX (Multimedia Extension) was introduced in
1996 (Pentium with MMX and Pentium II).

• SSE (Streaming SIMD Extension) was introduced
in 1999 with Pentium III.

• SSE2 was introduced with Pentium 4 in 2001.

• SSE3 was introduced in 2004 with Pentium 4
supporting hyper-threading technology. SSE3
adds 13 more instructions.

10/11/2008

4

7

MMX

• After analyzing a lot of existing applications
such as graphics, MPEG, music, speech
recognition, game, image processing, they
found that many multimedia algorithms
execute the same instructions on many pieces
of data in a large data set.

• Typical elements are small, 8 bits for pixels, 16
bits for audio, 32 bits for graphics and general
computing.

• New data type: 64-bit packed data type. Why
64 bits?
– Good enough
– Practical

8

MMX data types

10/11/2008

5

9

MMX integration into IA

79

11…11
NaN or infinity as real
because bits 79-64 are
ones.

Even if MMX registers
are 64-bit, they don’t
extend Pentium to a
64-bit CPU since only
logic instructions are
provided for 64-bit
data.

8 MM0~MM7

10

Compatibility

• To be fully compatible with existing IA, no new
mode or state was created. Hence, for context
switching, no extra state needs to be saved.

• To reach the goal, MMX is hidden behind FPU.
When floating-point state is saved or restored,
MMX is saved or restored.

• It allows existing OS to perform context
switching on the processes executing MMX
instruction without be aware of MMX.

• However, it means MMX and FPU can not be
used at the same time. Big overhead to switch.

10/11/2008

6

11

Compatibility

• Although Intel defenses their decision on
aliasing MMX to FPU for compatibility. It is
actually a bad decision. OS can just provide a
service pack or get updated.

• It is why Intel introduced SSE later without any
aliasing

12

MMX instructions

• 57 MMX instructions are defined to perform the
parallel operations on multiple data elements
packed into 64-bit data types.

• These include add, subtract, multiply,
compare, and shift, data conversion,
64-bit data move, 64-bit logical
operation and multiply-add for multiply-
accumulate operations.

• All instructions except for data move use MMX
registers as operands.

• Most complete support for 16-bit operations.

10/11/2008

7

13

Saturation arithmetic

wrap-around saturating

• Useful in graphics applications.
• When an operation overflows or underflows,

the result becomes the largest or smallest
possible representable number.

• Two types: signed and unsigned saturation

14

MMX instructions

10/11/2008

8

15

MMX instructions

Call it before you switch to FPU from MMX;
Expensive operation

16

Arithmetic

• PADDB/PADDW/PADDD: add two packed
numbers, no EFLAGS is set, ensure overflow
never occurs by yourself

• Multiplication: two steps
• PMULLW: multiplies four words and stores the

four lo words of the four double word results
• PMULHW/PMULHUW: multiplies four words and

stores the four hi words of the four double word
results. PMULHUW for unsigned.

10/11/2008

9

17

Arithmetic

• PMADDWD

18

Comparison

• No CFLAGS, how many flags will you need?
Results are stored in destination.

• EQ/GT, no LT

10/11/2008

10

19

Change data types

• Pack: converts a larger data type to the next
smaller data type.

• Unpack: takes two operands and interleave
them. It can be used for expand data type for
immediate calculation.

20

Pack with signed saturation

10/11/2008

11

21

Pack with signed saturation

22

Unpack low portion

10/11/2008

12

23

Unpack low portion

24

Unpack low portion

10/11/2008

13

25

Unpack high portion

26

Performance boost (data from 1996)

Benchmark kernels:
FFT, FIR, vector dot-
product, IDCT,
motion compensation.

65% performance gain

Lower the cost of
multimedia programs
by removing the need
of specialized DSP
chips

10/11/2008

14

27

Application: frame difference

A B

|A-B|

28

Application: frame difference

A-B B-A

(A-B) or (B-A)

10/11/2008

15

29

Application: frame difference
MOVQ mm1, A //move 8 pixels of image A
MOVQ mm2, B //move 8 pixels of image B
MOVQ mm3, mm1 // mm3=A
PSUBSB mm1, mm2 // mm1=A-B
PSUBSB mm2, mm3 // mm2=B-A
POR mm1, mm2 // mm1=|A-B|

30

Application: matrix transport

10/11/2008

16

31

Application: matrix transport
char M1[4][8];// matrix to be transposed
char M2[8][4];// transposed matrix
int n=0;
for (int i=0;i<4;i++)
for (int j=0;j<8;j++)
{ M1[i][j]=n; n++; }

__asm{
//move the 4 rows of M1 into MMX registers
movq mm1,M1
movq mm2,M1+8
movq mm3,M1+16
movq mm4,M1+24

32

Application: matrix transport
//generate rows 1 to 4 of M2
punpcklbw mm1, mm2
punpcklbw mm3, mm4
movq mm0, mm1
punpcklwd mm1, mm3 //mm1 has row 2 & row 1
punpckhwd mm0, mm3 //mm0 has row 4 & row 3
movq M2, mm1
movq M2+8, mm0

10/11/2008

17

33

Application: matrix transport
//generate rows 5 to 8 of M2
movq mm1, M1 //get row 1 of M1
movq mm3, M1+16 //get row 3 of M1
punpckhbw mm1, mm2
punpckhbw mm3, mm4
movq mm0, mm1
punpcklwd mm1, mm3 //mm1 has row 6 & row 5
punpckhwd mm0, mm3 //mm0 has row 8 & row 7
//save results to M2
movq M2+16, mm1
movq M2+24, mm0
emms
} //end

34

SSE

• Adds eight 128-bit registers
• Allows SIMD operations on packed single-

precision floating-point numbers
• Most SSE instructions require 16-aligned

addresses
• Allows 70 new instructions

10/11/2008

18

35

Advantages of SSE

In MMX
• An application cannot execute MMX instructions

and perform floating-point operations
simultaneously.

• A large number of processor clock cycles are
needed to change the state of executing MMX
instructions to the state of executing FP
operations and vice versa.

36

SSE features

• Add eight 128-bit data registers (XMM registers)
in non-64-bit mode.

• 32-bit MXCSR register (control and status)
• Add a new data type: 128-bit packed single-

precision floating-point (4 FP numbers.)
• Instruction to perform SIMD operations on 128-

bit packed single-precision FP and additional
64-bit SIMD integer operations.

• Instructions that explicitly prefetch data,
control data cacheability and ordering of store

10/11/2008

19

37

SSE programming environment

XMM0
|
XMM7

MM0
|
MM7

EAX, EBX, ECX, EDX
EBP, ESI, EDI, ESP

38

MXCSR control and status register

Generally faster, but not compatible with IEEE 754

10/11/2008

20

39

SSE packed FP operation

• ADDPS/SUBPS: packed single-precision FP

40

SSE scalar FP operation

• ADDSS/SUBSS: scalar single-precision FP
used as FPU?

10/11/2008

21

41

SSE Instruction Set
Floating point instructions

• Memory-to-Register / Register-to-Memory / Register-to-Register data
movement
– Scalar – MOVSS
– Packed – MOVAPS, MOVUPS, MOVLPS, MOVHPS, MOVLHPS, MOVHLPS

• Arithmetic
– Scalar – ADDSS, SUBSS, MULSS, DIVSS, RCPSS, SQRTSS, MAXSS, MINSS,

RSQRTSS
– Packed – ADDPS, SUBPS, MULPS, DIVPS, RCPPS, SQRTPS, MAXPS, MINPS,

RSQRTPS
• Compare

– Scalar – CMPSS, COMISS, UCOMISS
– Packed – CMPPS

• Data shuffle and unpacking
– Packed – SHUFPS, UNPCKHPS, UNPCKLPS

• Data-type conversion
– Scalar – CVTSI2SS, CVTSS2SI, CVTTSS2SI
– Packed – CVTPI2PS, CVTPS2PI, CVTTPS2PI

• Bitwise logical operations
– Packed – ANDPS, ORPS, XORPS, ANDNPS

42

SSE Instruction Set
Integer instructions
• Arithmetic

– PMULHUW, PSADBW, PAVGB, PAVGW, PMAXUB, PMINUB,
PMAXSW, PMINSW

• Data movement
– PEXTRW, PINSRW

• Other
– PMOVMSKB, PSHUFW

Other instructions
• MXCSR management

– LDMXCSR, STMXCSR

• Cache and Memory management
– MOVNTQ, MOVNTPS, MASKMOVQ, PREFETCH0, PREFETCH1,

PREFETCH2, PREFETCHNTA, SFENCE

10/11/2008

22

43

SSE Packed Shuffle (SHUFPS)

SHUFPS xmm1, xmm2, imm8

Select[1..0] decides which DW of DEST to be
copied to the 1st DW of DEST

...

44

SSE Shuffle (SHUFPS)

10/11/2008

23

45

Example (cross product)
/* cross */
__m128 _mm_cross_ps(__m128 a , __m128 b) {
__m128 ea , eb;
// set to a[1][2][0][3] , b[2][0][1][3]
ea = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3,0,2,1));
eb = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3,1,0,2));
// multiply
__m128 xa = _mm_mul_ps(ea , eb);
// set to a[2][0][1][3] , b[1][2][0][3]
a = _mm_shuffle_ps(a, a, _MM_SHUFFLE(3,1,0,2));
b = _mm_shuffle_ps(b, b, _MM_SHUFFLE(3,0,2,1));
// multiply
__m128 xb = _mm_mul_ps(a , b);
// subtract
return _mm_sub_ps(xa , xb);

}

46

High Unpack and interleave Shuffle (UNPCKHPS)

10/11/2008

24

47

Low Unpack and interleave Shuffle (UNPCKHPS)

48

SSE examples (1,024 FP additions)

P3 1.0GHz
~2x speedup

10/11/2008

25

49

Inner product
__m128 x1 = _mm_load_ps(vec1_x);
__m128 y1 = _mm_load_ps(vec1_y);
__m128 z1 = _mm_load_ps(vec1_z);
__m128 x2 = _mm_load_ps(vec2_x);
__m128 y2 = _mm_load_ps(vec2_y);
__m128 z2 = _mm_load_ps(vec2_z);
__m128 t1 = _mm_mul_ps(x1, x2);
__m128 t2 = _mm_mul_ps(y1, y2);
t1 = _mm_add_ps(t1, t2);
t2 = _mm_mul_ps(z1, z2);
t1 = _mm_add_ps(t1, t2);
_mm_store_ps(output, t1);

50

Inner product (1,024 3D vectors)

~3x speedup

10/11/2008

26

51

Inner product (102,400 3D vectors)

similar speed

52

SSE2

• Introduced into the IA-32 architecture in the
Pentium 4 and Intel Xeon processors in 2001.

• Allowing advanced graphics such as 3-D graphics,
video decoding/encoding, speech recognition

• AMD didn't support SSE2 until 2003, with their
Opteron and Athlon64 processors

10/11/2008

27

53

What is new in SSE2?

• Provides ability to perform SIMD operations on
128-bit double-precision FP.

• Provides greater throughput by operating on
128-bit packed integers, useful for RC5 and RSA.
XMM registers are also used for 128-bit packed
integer data.

• Offers more flexibility in big numbers.
• 144 new instructions

54

SSE2 features

• Add data types and instructions for them

• Programming environment unchanged (also packed and
scalar)

10/11/2008

28

55

SSE2 Programming Environment

56

SSE2 Instructions
ARITHMETIC:
addpd - Adds 2 64bit doubles.
addsd - Adds bottom 64bit doubles.
subpd - Subtracts 2 64bit doubles.
subsd - Subtracts bottom 64bit doubles.
mulpd - Multiplies 2 64bit doubles.
mulsd - Multiplies bottom 64bit doubles.
divpd - Divides 2 64bit doubles.
divsd - Divides bottom 64bit doubles.
maxpd - Gets largest of 2 64bit doubles for 2 sets.
maxsd - Gets largest of 2 64bit doubles to bottom set.
minpd - Gets smallest of 2 64bit doubles for 2 sets.
minsd - Gets smallest of 2 64bit values for bottom set.
paddb - Adds 16 8bit integers.
paddw - Adds 8 16bit integers.
paddd - Adds 4 32bit integers.
paddq - Adds 2 64bit integers.
paddsb - Adds 16 8bit integers with saturation.
paddsw - Adds 8 16bit integers using saturation.
paddusb - Adds 16 8bit unsigned integers using saturation.
paddusw - Adds 8 16bit unsigned integers using saturation.
psubb - Subtracts 16 8bit integers.
psubw - Subtracts 8 16bit integers.
psubd - Subtracts 4 32bit integers.
psubq - Subtracts 2 64bit integers.
psubsb - Subtracts 16 8bit integers using saturation.
psubsw - Subtracts 8 16bit integers using saturation.
psubusb - Subtracts 16 8bit unsigned integers using saturation.
psubusw - Subtracts 8 16bit unsigned integers using saturation.
pmaddwd - Multiplies 16bit integers into 32bit results and adds results.
pmulhw - Multiplies 16bit integers and returns the high 16bits of the result.
pmullw - Multiplies 16bit integers and returns the low 16bits of the result.
pmuludq - Multiplies 2 32bit pairs and stores 2 64bit results.
rcpps - Approximates the reciprocal of 4 32bit singles.
rcpss - Approximates the reciprocal of bottom 32bit single.
sqrtpd - Returns square root of 2 64bit doubles.
sqrtsd - Returns square root of bottom 64bit double.

10/11/2008

29

57

SSE2 Instructions
Logic:

andnpd - Logically NOT ANDs 2 64bit doubles.
andnps - Logically NOT ANDs 4 32bit singles.
andpd - Logically ANDs 2 64bit doubles.
pand - Logically ANDs 2 128bit registers.
pandn - Logically Inverts the first 128bit operand and ANDs
with the second.
por - Logically ORs 2 128bit registers.
pslldq - Logically left shifts 1 128bit value.
psllq - Logically left shifts 2 64bit values.
pslld - Logically left shifts 4 32bit values.
psllw - Logically left shifts 8 16bit values.
psrad - Arithmetically right shifts 4 32bit values.
psraw - Arithmetically right shifts 8 16bit values.
psrldq - Logically right shifts 1 128bit values.
psrlq - Logically right shifts 2 64bit values.
psrld - Logically right shifts 4 32bit values.
psrlw - Logically right shifts 8 16bit values.
pxor - Logically XORs 2 128bit registers.
orpd - Logically ORs 2 64bit doubles.
xorpd - Logically XORs 2 64bit doubles.

58

SSE2 Instructions
Compare:

cmppd - Compares 2 pairs of 64bit doubles.
cmpsd - Compares bottom 64bit doubles.
comisd - Compares bottom 64bit doubles and stores result
in EFLAGS.
ucomisd - Compares bottom 64bit doubles and stores result
in EFLAGS. (QNaNs don't throw exceptions with ucomisd,
unlike comisd.
pcmpxxb - Compares 16 8bit integers.
pcmpxxw - Compares 8 16bit integers.
pcmpxxd - Compares 4 32bit integers.
Compare Codes (the xx parts above):
eq - Equal to.
lt - Less than.
le - Less than or equal to.
ne - Not equal.
nlt - Not less than.
nle - Not less than or equal to.
ord - Ordered.
unord - Unordered.

10/11/2008

30

59

SSE2 Instructions
Conversion:

cvtdq2pd - Converts 2 32bit integers into 2 64bit doubles.
cvtdq2ps - Converts 4 32bit integers into 4 32bit singles.
cvtpd2pi - Converts 2 64bit doubles into 2 32bit integers in an MMX register.
cvtpd2dq - Converts 2 64bit doubles into 2 32bit integers in the bottom of an XMM
register.
cvtpd2ps - Converts 2 64bit doubles into 2 32bit singles in the bottom of an XMM
register.
cvtpi2pd - Converts 2 32bit integers into 2 32bit singles in the bottom of an XMM
register.
cvtps2dq - Converts 4 32bit singles into 4 32bit integers.
cvtps2pd - Converts 2 32bit singles into 2 64bit doubles.
cvtsd2si - Converts 1 64bit double to a 32bit integer in a GPR.
cvtsd2ss - Converts bottom 64bit double to a bottom 32bit single. Tops are
unchanged.
cvtsi2sd - Converts a 32bit integer to the bottom 64bit double.
cvtsi2ss - Converts a 32bit integer to the bottom 32bit single.
cvtss2sd - Converts bottom 32bit single to bottom 64bit double.
cvtss2si - Converts bottom 32bit single to a 32bit integer in a GPR.
cvttpd2pi - Converts 2 64bit doubles to 2 32bit integers using truncation into an
MMX register.
cvttpd2dq - Converts 2 64bit doubles to 2 32bit integers using truncation.
cvttps2dq - Converts 4 32bit singles to 4 32bit integers using truncation.
cvttps2pi - Converts 2 32bit singles to 2 32bit integers using truncation into an
MMX register.
cvttsd2si - Converts a 64bit double to a 32bit integer using truncation into a GPR.
cvttss2si - Converts a 32bit single to a 32bit integer using truncation into a GPR.

60

SSE2 Instructions

10/11/2008

31

61

SSE2 Instructions
Load/Store:

(is "minimize cache pollution" the same as "without using cache"??)
movq - Moves a 64bit value, clearing the top 64bits of an XMM register.
movsd - Moves a 64bit double, leaving tops unchanged if move is between
two XMMregisters.
movapd - Moves 2 aligned 64bit doubles.
movupd - Moves 2 unaligned 64bit doubles.
movhpd - Moves top 64bit value to or from an XMM register.
movlpd - Moves bottom 64bit value to or from an XMM register.
movdq2q - Moves bottom 64bit value into an MMX register.
movq2dq - Moves an MMX register value to the bottom of an XMM register.
Top is cleared to zero.
movntpd - Moves a 128bit value to memory without using the cache. NT is
"Non Temporal."
movntdq - Moves a 128bit value to memory without using the cache.
movnti - Moves a 32bit value without using the cache.
maskmovdqu - Moves 16 bytes based on sign bits of another XMM register.
pmovmskb - Generates a 16bit Mask from the sign bits of each byte in an
XMM register.

62

SSE2 Instructions

Shuffling:
pshufd - Shuffles 32bit values in a complex way.
pshufhw - Shuffles high 16bit values in a complex way.
pshuflw - Shuffles low 16bit values in a complex way.
unpckhpd - Unpacks and interleaves top 64bit doubles from 2 128bit sources into 1.
unpcklpd - Unpacks and interleaves bottom 64bit doubles from 2 128 bit sources into 1.
punpckhbw - Unpacks and interleaves top 8 8bit integers from 2 128bit sources into 1.
punpckhwd - Unpacks and interleaves top 4 16bit integers from 2 128bit sources into 1.
punpckhdq - Unpacks and interleaves top 2 32bit integers from 2 128bit sources into 1.
punpckhqdq - Unpacks and interleaces top 64bit integers from 2 128bit sources into 1.
punpcklbw - Unpacks and interleaves bottom 8 8bit integers from 2 128bit sources into 1.
punpcklwd - Unpacks and interleaves bottom 4 16bit integers from 2 128bit sources into 1.
punpckldq - Unpacks and interleaves bottom 2 32bit integers from 2 128bit sources into 1.
punpcklqdq - Unpacks and interleaces bottom 64bit integers from 2 128bit sources into 1.
packssdw - Packs 32bit integers to 16bit integers using saturation.
packsswb - Packs 16bit integers to 8bit integers using saturation.
packuswb - Packs 16bit integers to 8bit unsigned integers unsing saturation.

Cache Control:
clflush - Flushes a Cache Line from all levels of cache.
lfence - Guarantees that all memory loads issued before the lfence instruction are completed
before anyloads after the lfence instruction.
mfence - Guarantees that all memory reads and writes issued before the mfence instruction
are completed before any reads or writes after the mfence instruction.
pause - Pauses execution for a set amount of time.

10/11/2008

32

63

SSE3/SSSE3/SSE4
• Introduced for Pentium 4 processor supporting Hyper-

Threading Technology in 2004.

• The Intel Xeon processor 5100 series, Intel Core 2
processor families introduced Supplemental Streaming
SIMD Extensions 3 (SSSE3)

• SSE4 are introduced in Intel processor generations built
from 45nm process technology in 2006

• SSE3/SSSE3/SSE4 do not introduce new data types. XMM
registers are used to operate on packed integer data,
single precision floating-point data, or double-precision
floating-point data.

64

SSE3

• 13 new instructions
• Some instructions does horizontal operations

(operating across a single register instead of
down through multiple registers) and
asymmetric processing

• Unaligned access instructions are new type of
instructions.

• Process control instructions to boost
performance with Intel's hyper-threading
feature.

• AMD started to support SSE3 in 2005

10/11/2008

33

65

SSE3 Instructions

Asymmetric processing: ADDSUBPD

66

SSE3 Instructions

Horizontal data movement: HADDPD

10/11/2008

34

67

SSE3 Instructions
Arithmetic:

addsubpd - Adds the top two doubles and subtracts the bottom two.
addsubps - Adds top singles and subtracts bottom singles.
haddpd - Top double is sum of top and bottom, bottom double is sum
of second operand's top and bottom.
haddps - Horizontal addition of single-precision values.
hsubpd - Horizontal subtraction of double-precision values.
hsubps - Horizontal subtraction of single-precision values.

Load/Store:
lddqu - Loads an unaligned 128bit value.
movddup - Loads 64bits and duplicates it in the top and bottom halves
of a 128bit register.
movshdup - Duplicates the high singles into high and low singles.
movsldup - Duplicates the low singles into high and low singles.
fisttp - Converts a floating-point value to an integer using truncation.

Process Control:
monitor - Sets up a region to monitor for activity.
mwait - Waits until activity happens in a region specified by monitor.

68

SSSE3

• New 32 instructions designed for to accelerate a variety
of multimedia and signal processing applications.

• Employs SIMD integer data.

• The operands of these instructions are packed integers
of byte, word, or double word sizes.

• The operands are stored as 64 or 128 bit data in MMX
registers, XMM registers, or memory.

10/11/2008

35

69

SSSE3 Instructions
• Twelve instructions that perform horizontal addition or

subtraction operations.
• Six instructions that evaluate the absolute values.
• Two instructions that perform multiply and add

operations and speed up the evaluation of dot
products.

• Two instructions that accelerate packed-integer
multiply operations and produce integer values with
scaling.

• Two instructions that perform a byte-wise, in-place
shuffle according to the second shuffle control
operand.

• Six instructions that negate packed integers in the
destination operand if the signs of the corresponding
element in the source operand is less than zero.

• Two instructions that align data from the composite of
two operands.

70

SSSE3 Instructions

Horizontal data movement: PHADDD

10/11/2008

36

71

SSE4

• SSE4 comprises of two sets of extensions
- SSE4.1: targeted to improve the performance of media,
imaging and 3D graphics. It also adds instructions for

improving compiler vectorization and significantly
increase support for packed dword computation. It has
47 new instructions.

- SSE4.2: improves performance in string and text
processing. It has 7 new instructions.

• SSE4 instructions do not use MMX registers. Two of the
SSE4.2 instructions operate on general-purpose registers;
the rest of SSE4.2 instruction and SSE4.1 instructions
operate on XMM registers.

72

SSE4.1 Instructions
• Two instructions perform packed dword multiplies.
• Two instructions perform floating-point dot products with

input/output selects.
• One instruction performs a load with a streaming hint.
• Six instructions simplify packed blending.
• Eight instructions expand support for packed integer MIN/MAX.
• Four instructions support floating-point round with selectable

rounding mode and precision exception override.
• Seven instructions improve data insertion and extractions from

XMM registers
• Twelve instructions improve packed integer format conversions

(sign and zero extensions).
• One instruction improves SAD (sum absolute difference) generation

for small block sizes.
• One instruction aids horizontal searching operations.
• One instruction improves masked comparisons.
• One instruction adds qword packed equality comparisons.
• One instruction adds dword packing with unsigned saturation.

10/11/2008

37

73

SSE4.2 Instructions

• String and text processing that can take
advantage of single-instruction multiple data
programming techniques.

• Application-targeted accelerator (ATA)
instructions.

• A SIMD integer instruction that enhances the
capability of the 128-bit integer SIMD capability
in SSE4.1.

74

References

• Intel MMX for Multimedia PCs, CACM, Jan. 1997
• Chapter 11 The MMX Instruction Set, The Art of

Assembly
• Chap. 9, 10, 11 of IA-32 Intel Architecture

Software Developer’s Manual: Volume 1: Basic
Architecture

• http://www.csie.ntu.edu.tw/~r89004/hive/sse/page_1.html

