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Abstract Linear localized waves evolution in a discrete mass-in-mass lattice is studied. The presence of the
attached mass in the model contributes to dispersion giving rise to appearance of both the acoustic and optic
wave modes. Important features of the waves are described using the dispersion relation, which is obtained in
a continuum limit of the original discrete equations using a harmonic wave solutions. We study numerically
the localized initial perturbations evolution and compare the features of the numerical solutions with those
obtained for the analytical harmonic wave ons. We have found differences in the wave dynamics depending
on the parameters of the initial conditions. One scenario describes almost permanent shape and velocity
counterpart localized waves propagation with oscillating standing wave around the position of the initial pulse.
Another wave evolution accounts for a decrease in the moving wave amplitude with the developing oscillating
tail behind the localized wave. Contrary to the periodic analytical solution, no evidence of a band gap is found
in the simulations of localized waves.
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1 Introduction

The study of discrete crystalline lattices with a complex structure draw considerable attention, in particular,
in relation with the description of the materials with microstructure. While all nodes in simple lattices are
equivalent, complex lattices are characterized by the presence of different nodes, or, alternatively, a complex
lattice can be thought as a combination of several simple sub-lattices [1–3]. Complex structure of the lattices
brings additional degrees of freedom, allowing effective modeling of mechanical [2–8] and heat transfer [9–
12] processes in solids. Among the discrete complex models considerable attention is paid to the acoustic
metamaterials [4,13–17]. One of the simplest but instructive metamaterial models is the mas-in-mass lattice
model, see, e.g., [13,14]. It allows to describe the band gap in the dispersion relation, negative effective mass
and other features related to a metamaterial, see, e.g., [18,19]

Propagation or non-propagation of acoustic waves in an acoustic metamaterial is its important feature
from the point of view of its practical use. At the same time, the linear wave analysis resulting in obtaining
the dispersion relations is based on an analysis of a monochromatic harmonic wave solution. What happens
when the localized waves are considered? Is it still possible to use these analytical estimations? Success of
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kinetic [20–25] and energy dynamics [26,27]-based approaches in description of heat and energy transfer in
solids confirms efficiency of the monochromatic consideration for the localized harmonic waves. However,
this situation is less understood for complex lattices, and the current paper is devoted to analysis of the related
questions on the base of relatively simple, but fairly fruitful mass-in-mass model.

Thus, in this paper we study numerically generation of localized waves in a linear mass-in-mass lattice.
In Sec. 2 we consider a pair of coupled linear partial differential equations, describing dynamics of the main

and attached masses of the lattice, where the continuum limit of the original discrete model is concerned. The
predictions of the conventional analysis based on the harmonicwaves considerationwill be studied numerically
in Sec. 3 for the localized initial perturbations. The conclusions summarize the paper.

2 Basics of the model

Consider a chain where interaction between the masses, m, is modeled by linearly elastic springs. Also the
additional masses, m1, are attached by the springs to each mass m in the main chain, and this interaction is
also linear and elastic [14]. Masses m1 do not interact directly between themselves. The displacement of the
mass m with the number n is denoted by un , while that of m1 is denoted by vn . Then the equations of motion
are [14]:

ün = β0(un−1 − 2un + un+1) + ηβ1(vn − un), (1)

v̈n = −β1(vn − un). (2)

Here η = m1/m, while the linear stiffness of the spring of the main chain is β0m, and the stiffness of the
attached spring is β1m1.

We proceed with a continuum limit of Eqs. (1), (2). Following the standard procedure, we introduce the
continuum functions u(x, t), v(x, t) for description of the displacements of the massesm,m1. Variable x is the
spatial coordinate, such as x = nh in the lattice nodes, where h is the lattice step. The continuum displacements
of the neighboring masses are sought using the long-wave approximation [1], based on the Taylor series, where
the lattice step, h, is considered as an increment of the spatial variable, x . Retaining only the first nonzero term
in the expansion, we obtain

utt = a2uxx + ηβ1(v − u), (3)

vt t = −β1(v − u), (4)

where a = √
β0 h is the long-wave velocity for the main lattice. In the absence of coupling, η = 0, equation

for u is the conventional linear wave equation, whose d’Alembert solution describes wave propagation with
the phase velocity equal to a.

In the general case, the conventional harmonic traveling wave solution is sought as

u = A exp
(
ı p (x − V t − x0)

)
, v = B exp

(
ı p (x − V t − x0)

)
, (5)

where x0 accounts for an initial position of the wave, A and B are the wave amplitudes, p is the wave number,
V is the wave velocity, ı is the imaginary unit. Substitution of Eq. (5) into Eqs. (3), (4) results in the relationship
between A and B,

A = B(β1 − p2V 2)

β1
, (6)

and the dispersion relation whose solutions are V = Va , V = Vo, where

V 2
a = β1(1 + η) + a2 p2 − √

(β1(1 + η) + a2 p2)2 − 4β1 p2a2

2p2
, (7)

V 2
o = β1(1 + η) + a2 p2 + √

(β1(1 + η) + a2 p2)2 − 4β1 p2a2

2p2
. (8)

The limiting values for the phase velocities are collected in Table1. For p → 0 velocity Va tends to the
long-wave limiting value a1 = a/

√
1 + η, while Vo tends to infinity as

√
β1(1 + η)/p. The Va vanishes at

p → ∞ as
√

β1/p, while Vo tends to the finite value equal to a. One has to note that a is the velocity of the
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Table 1 Limiting values for the main velocities, where a1 = a/
√
1 + η ≤ a

p Va, Vga Vo Vgo

0 a1 ∞ 0
∞ 0 a a

Here Va and Vo are the phase velocities, Vga and Vgo are the group velocities; indexes a and o denote the velocities for acoustic
and the optic waves, respectively

wave of the linear wave equation arising from Eq.(3) at η = 0. It is informative to depict the relative values
of the velocities. Then the variation of the relative velocities in p reveals a band gap lying inside the interval
(1/

√
1 + η, 1), as shown by dashed lines in Fig. 1. Analogous results have been obtained for the investigated

Maxwell model theoretically in [28] and experimentally in [29]. Both the acoustic and optic velocities decrease
in p; however, the acoustical branch decreases up to zero but the optic wave velocity tends to a.

The group velocity, Vg , is defined as

Vg = ∂(V p)

∂p
.

For V = Va we obtain

Vga = a2

2Va

⎛
⎝1 − a2 p2 − β1(1 − η)√(

a2 p2 + β1(1 + η)
)2 − 4a2β1 p2

⎞
⎠ ,

while for V = Vo we obtain

Vgo = a2

2Vo

⎛
⎝1 + a2 p2 − β1(1 − η)√(

a2 p2 + β1(1 + η)
)2 − 4a2β1 p2

⎞
⎠ .

The limiting values for the group velocities together with the phase velocities are given in Table1. For
p → 0 velocity Vga tends to a1, while Vgo tends to zero. The Vga vanishes at p → ∞, while Vgo tends to the
finite value equal to a. Typical group velocity curves are shown in Fig. 2. There is no band gap contrary to the
phase velocities shown in Fig. 1.

The predictions about the band gap and the dependence of the phase velocity on p are done on the basis
of the harmonic solution (5). What happens with the evolution of a localized perturbation?

Fig. 1 Variation of the relative phase velocities with the wave number, p, for η = 0.3. The red solid curve stands for the decay of
the relative acoustic velocity, Va/a as p → ∞; the blue short-dashed curve is the optic velocity, Vo/a; the horizontal long-dashed
lines are the asymptotes corresponding to the limiting value of Vo/a at p → ∞ and Va/a at p = 0 (color figure online)



1478 A. V. Porubov, A. M. Krivtsov

Fig. 2 Variation of the relative group velocities with the wave number, p, for η = 0.3. 1. The decay of the relative acoustic
velocity, Va/a as p → ∞ shown by red solid line. 2. The blue solid curve is the relative optic velocity, Vgo/a, (2). 3. The limiting
value of Vga/a at p = 0 shown by dashed line. 4. The limiting value of Vgo/a at p → ∞, (color figure online)

Let us consider case η = 0, then Eq. (3) is reduced to the linear wave equation

utt = a2uxx , (9)

where the conventional d’Alembert solution holds. When the initial disturbance is a localized pulse, Q(x),
and the initial velocity of the disturbance is zero, the solution of Eq. (9) is

u = 1

2
Q(x − at) + 1

2
Q(x + at).

The solution accounts for localized propagation of equal pulses with the same wave velocity a. When the
initial conditions are

u(x, 0) = Q(x), ut (x, 0) = −WQx (x), (10)

where W is a positive constant providing a nonzero velocity of the initial perturbation. Then the solution of
Eqs. (9), (10) is

u = a + W

2a
Q(x − at) + a − W

2a
Q(x + at). (11)

Then unidirectional propagation happens only at W = a. The positive amplitude waves propagate in both
directions when W < a, while a negative amplitude wave moves to the left at W > a. Non zero η adds
dispersion in the behavior of the waves, and d’Alembert solution does not exist anymore, so the further
analysis will be performed numerically.

3 Localized waves evolution

The Wolfram Mathematica command NDSolve is used to numerically solve Eqs. (3), (4)and to describe the
evolution of the localized waves u and v. The Wolfram Language function NDSolve is a general numerical
differential equation solver. The calculations are performed in the spatial interval (0, xN ) and the temporal
interval (0, tN ). The periodic boundary conditions are used for the functions u and v. The initial conditions
will be specified later. The chosen value of xN is shown in the figures, the value of tN takes on different values,
which are marked on the figure captions. We choose the initial position of the localized disturbance in the
vicinity of the central point x0 = xN/2.

Consider first an evolution of an initially localized perturbation in the form of the initially motionless
Gaussian distribution,

u(x, 0) = F exp
(−k(x − x0)

2) , ut (x, 0) = 0, (12)
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v(x, 0) = G exp
(−k(x − x0)

2) , vt (x, 0) = 0, (13)

where F, G, x0, k are constants. The constant values for the calculations are chosen as k = 0.005, F = 0.6,
G = 1. The values of the coefficients of the equations (3), (4) are assumed to be a = 0.5, β1 = 0.1. The
mentioned values were chosen after numerous experiments in a wide range of parameters, aiming to find the
most representative values. The coupling coefficient η varies in the simulations being presented below.

The testing case at η = 0 reveals conventional counterpart wave propagation of u according to the
d’Alembert solution with the velocity equal to a. As the values of η increases (that means that influence
of the added mass increases), two differences in the wave dynamics are realized. First, the velocity of the coun-
terpart waves gradually decreases. Second, an amplitude of the moving waves increases. Finally, a standing
oscillating part appears in the area of the initial perturbation around x0. Figure3 shows the wave evolution at
η = 0.5. For comparison, propagation of the wave at η = 0 with the velocity equal to a is shown by dashed
line.

The computations show that the localized waves propagate with a permanent velocity keeping their shape,
see Fig. 4a. The influence of the addedmass is not only in a decrease in the velocity but also in an appearance of
the oscillating standing part in the vicinity of the initial condition position, x = x0. Such behavior depends on
the parameter k of the initial conditions (12)–(13). Shown in Fig. 4 is the splitting on two opposite propagating
waves for different values of the parameter k of the Gaussian distribution. As the case in Fig. 4a demonstrates
equal amplitude of the waves moving in the opposite directions, an increase in k in Fig. 4b results in an
appearance of the oscillations behind the moving waves. Nevertheless, the amplitude of the waves remains
permanent. Further increase in k gives rise to appearance of the developing oscillating tail behind the traveling
waves while oscillations in the area around x0 disappear, see Fig. 4c. Let us note that the greater is value of
the parameter k, the higher is the initial localization. This might be cause for the oscillation tails and the time
decrease of the traveling wave amplitude, observed for the higher values of k—see Fig. 4c.

Use of the higher value of η for the last case from Fig. 4c results in a more complicated dynamics shown
in Fig. 5. One can see in Fig. 5b that the moving wave has the amplitude higher than that at η = 0 similar to
the case shown in Fig. 3b. However, as times goes on, the amplitude of the wave decreases and becomes lower
than that of the case η = 0 shown in Fig. 5d. This is different from the case shown in Fig. 3d. Besides the

(a) (b)

(c) (d)

Fig. 3 Formation of two localized waves for η = 0.5 (red solid line) and η = 0 (blue dashed line): a t = 0, b t = tN /4, c
t = tN /2, d t = tN . Here tN = 400 units of time (color figure online)
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(a) (b)

(c)

Fig. 4 Splitting into counterpart waves for different values of k: a k = 0.005, b k = 0.01, c k = 0.027. Each figure shows
superposition of results calculated for the sequential moments of t , namely: 0, tN /4, tN /2, tN . Here tN = 600 units of time

(a) (b)

(c) (d)

Fig. 5 Decrease in the amplitude of localized waves and development of oscillating tails at η = 0.5 (solid red line) and η = 0
(dashed blue line). In both cases k = 0.027. The frames correspond to a t = 0, b t = tN /4, c t = tN /2, d t = tN . Here tN = 400
units of time (color figure online)
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developing tail similar to the case of Fig. 4c, the standing oscillatory part also exists like in the case shown in
Fig. 3d.

Now we consider evolution of an initially localized perturbation in the form of the Gaussian distribution
with nonzero conditions on the first temporal derivative, which are chosen in correspondence with Eq. (10):

u(x, 0) = F exp
(−k(x − x0)

2) , ut (x, 0) = 2FkW (x − x0) exp
(−k(x − x0)

2) , (14)

v(x, 0) = G exp
(−k(x − x0)

2) , vt (x, 0) = 2GkW (x − x0) exp
(−k(x − x0)

2) . (15)

We choose k = 0.01 and η = 0.1 for these simulations while the values of the remaining parameters are
assumed to be the same as before. Figure 6 shows the evolution at two different initial velocities: W = 0.1
(dashed blue line) and

W = a1 ≈ 0.44 (solid red line). The second value of W is chosen to provide a unidirectional propagation
similar to Eq. (11). Indeed, in the case W = 0.1 we have a permanent amplitude wave moving to the left with
a higher amplitude than the wave moving to the right. At the same time, in the second case, the amplitude of
the wave moving to the left increases, while the wave moving in the opposite direction disappears. Further
increase in the value of W results in the negative amplitude wave propagation to the left. The wave fronts
in both directions propagate with the same velocity equal to a1, clearly demonstrating the long-wave limit.
Meanwhile some of oscillations remain standing and they are almost the same for both considered values of
the velocity. Also the well-pronounced oscillation tails appear behind the traveling waves.

Figure7 shows the temporal evolution of the waves with the decreasing amplitude at the parameter of
the initial condition k = 0.027 and different initial velocities. A decrease in the wave amplitude happens in
both directions and both for positive and negative sign of the amplitude. Main part of the oscillations develop
behind the traveling waves, only a small part remains standing around the point of the position of the initial
perturbation.

Similar to Fig. 6, it is observed that if the initial velocity W is not equal to the long-wave acoustic limit a1,
then two localized traveling waves are generated, one moving forward, second—backward. The sign of the
backward wave amplitude depends on the difference between W and a1, similarly to that shown by Eq. (11).
Thus, the initial conditions Eqs. (14) , (15)), being designed for both masses according to Eq. (10), result in
a unidirectional localized wave, when and only when the initial velocity W is exactly equal to the long-wave
acoustic limit a1.

(a) (b)

(c) (d)

Fig. 6 Comparison of the wave dynamics for two different initial velocities W at η = 0.1, k = 0.01. Case W = 0.1 is shown
by the blue dashed line, W = a1—by the red solid line. The frames correspond to the sequential moments of time: a t = 0, b
t = tN /4, c t = tN /2, d t = tN . Here tN = 800 units of time (color figure online)
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(a) (b)

(c)

Fig. 7 Comparison of the wave dynamics for two different initial velocities W at k = 0.027, η = 0.1. a W = 0.1, b W = a1 ≈
0.44, cW = 1.3. Eachfigure shows superposition of results calculated for the sequentialmoments of t , namely: 0, tN /4, tN /2, tN .
Here tN = 800 units of time

4 Discussion and concluding remarks

We study propagation of the dispersive localized waves in a system governed by a long wavelength continuum
limit of the discrete system with attached masses. Of special interest is to see how an analysis based on the
harmonic wave solution could be used for explanation of the features of the numerical solution for localized
waves.

Let us summarize the results of numerical simulations. Despite the dispersion in the considered system,
the localization of the traveling waves can be kept for the distances, far greater than the width of the wave.
Localized waves propagate with the velocity equal to a1 = a/

√
1 + η independently of the value and the sign

of its amplitude. However, such scenario depends on the parameters of the initial pulse: Higher values of the
parameter k (see Fig. 4) give rise to the scenario, which is more conventional for dispersive systems, when the
amplitude of the traveling wave decreases with time, and the oscillating tail appears behind the wave. We also
observe standing oscillations around the point related to the position of the initial perturbation. Band gap is
not reached in the numerical simulations.

The observed features of the numerical solutions better relate to the analytical predictions done on the
basis of the group velocity, rather than the phase velocity—see Table1. Indeed, the long-wave limiting values
of the group and the phase acoustic velocities are the same. The standing oscillations could be explained as an
evidence of the wave corresponding to the optical group velocity, whose limiting long-wave value is zero, see
Fig. 2. Finally, there is no band gap for the group velocity similar to the numerical results.

The band gap is described analytically on the basis of a single mode periodic solution. Numerically we
study evolution of a localized wave. It is possible to represent the localized wave in the Fourier series or
the integral; however, the modes in the series or in the integral will lie both inside and outside the ban gap.
Probably, this is a reason why there is no evidence of the band gap in the numerical evolution of the localized
waves.

We would like to demonstrate an absence of a bang gap for a localized input evolution, and we use only
the Gaussian initial distribution. It might be of interest to consider other localized shapes, e.g., the δ- shape
in a closer relation to the limit p → ∞. Also the future work concerns an analysis of the energy transfer
for the localized traveling waves that have been considered above in a harmonic approximation. Important
question is connected with the energy transfer between the degrees of freedom [30] and with existence of the
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additional conservation laws, such as the global energy flux conservation [27]. Further investigations can be
associated with an inclusion of nonlinear terms in the original model to obtain the soliton-like localized waves
with permanent amplitude, arising as a balance between nonlinearity and dispersion.
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