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Abstract We consider unsteady ballistic heat transport in a semi-infinite Hooke chain with free end and
arbitrary initial temperature profile. An analytical description of the evolution of the kinetic temperature is
proposed in both discrete (exact) and continuum (approximate) formulations. By comparison of the discrete
and continuum descriptions of kinetic temperature field, we reveal some restrictions to the latter. Specifically,
the far-field kinetic temperature is well described by the continuum solution, which, however, deviates near
and at the free end (boundary). We show analytically that, after thermal wave reflects from the boundary,
the discrete solution for the kinetic temperature undergoes a jump near the free end. A comparison of the
descriptions of heat propagation in the semi-infinite and infinite Hooke chains is presented. Results of the
current paper are expected to provide insight into non-stationary heat transport in the semi-infinite lattices.

Keywords Ballistic heat transport ·Kinetic temperature · Semi-infinite chain ·Discrete solution ·Continuum
solution

1 Introduction

Heat transfer at the macroscale is known to be diffusive and to obey the Fourier law. Using of the law as a
constitutive relation, a wide class of problems in continuummechanics can be solved (see, e.g., [1]). However,
theoretical studies [2–4] and experiments [5–11] show that at the micro- and nanoscale heat propagation is
non-diffusive, e.g., ballistic. In particular, deviations from the Fourier law are demonstrated in nanotubes [5],
silicon membranes [7], silicon nanowires [8,9] and graphene [11]. Therefore, building of theories, describing
thermal processes at the micro- and nanoscale, is required and is relevant also for the reason of innovative
development of micro- and nanoelectronics (see, e.g., [12–16]).

To the best of our knowledge, two approaches are used in general for the analytical description of heat
transfer at the microscale (or nanoscale), namely the lattice dynamics (LD) approach and the kinetic theory. By
dint of investigation of the Boltzmann transport equation (BTE), one can solve problems, which are unsolvable
by the LD method (see, e.g., [17–19]). Since the BTE is continuum, quantities, obtained through BTE, change
in space also continuously. Therefore, there may be some restrictions on description of heat transport at the
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nanoscale, where one may have necessity to deal with discrete structures. Hence, a question arises what these
restrictions are.

In paper [20], the kinetic theory of unsteady heat transport in the infinite one-dimensional harmonic chain is
linkedwith theLD theory. The approximate solution for the kinetic temperature is derived in the continuum limit
using the discrete1 (exact) solution, obtained by the LD approach. It is shown that the result is in a practically
ideal agreement with the kinetic theory. Nonetheless, it remains still unclear whether the continuum solution,
obtained by one or another method, corresponds to the exact one always.

In general, one can distinguish discrete and continuum analytical descriptions of the ballistic heat transport.
In the pioneering work of Klein and Ilya Prigogine [21], the evolution law of the discrete field of the kinetic
temperature was obtained using exact Schrödinger solution [22]2 of the dynamical equations for the Hooke
chain3. The result was reproduced by Hemmer in his PhD thesis [25]. In the pioneering work by Krivtsov
[26], the PDE for the continuum field of the kinetic temperature was derived, solution of which is proposed in
the integral form. In papers [27,28], the discrete and continuum descriptions of kinetic temperature fields are
compared. It is shown in [27] that the evolution over time of the kinetic temperature fields caused by arbitrary
initial perturbation (except point) leads to indistinguishability of these. However, aforesaid results are about
energy propagation in the infinite chains only.

The question of heat transport in the finite or semi-infinite lattices remains open. Some analytical treatments
to describe it are proposed in studies [29,30]. In paper [29], the solution for the kinetic temperature in the
finite4 Hooke chain was obtained. Gudimenko [30] found approximate solution of heat transfer problem in the
semi-infinite chain with an absorbing boundary. Despite the obtained results, many ambiguities remain, for
instance, behavior of quantities at the boundary or influence of other boundary conditions on heat propagation.
In particular, answering aforementioned problems, related to free boundaries, is necessary for development of
theoretical models of the experiments associated, e.g., with reflection of phonons [31–33].

In this paper, we describe the process of heat transport in the semi-infinite free end Hooke chain. Firstly,
we derive the exact solution for the kinetic temperature, and, following [20], we perform an approximation
of it in the continuum limit. Then, analogously to [27,28], we compare the discrete (exact) and continuum
descriptions of the heat transport. By the comparison, we reveal discrepancies between these descriptions near
and at the boundary.

The paper is organized as follows. In Sect. 2, we formulate the problem and derive exact expression for
particle velocities (Sect. 2.1), which is further applied to derive the exact expression for the kinetic temper-
ature (Sect. 2.2). In Sect. 3, we determine the kinetic temperature in the continuum limit. In Sect. 4, the
fundamental solution for the kinetic temperature in the continuum limit is derived, which is present as a sum of
the contributions from incident and reflected thermal waves. We reveal an interrelation between the continuum
solutions for the kinetic temperature in the semi-infinite and infinite Hooke chains. In Sect. 5, the discrete and
continuum solutions for kinetic temperature fields are compared. Examples of the rectangular (Sect. 5.1) and
step (Sect. 5.2) initial perturbations are considered. In Sect. 6, we compare the theory of ballistic heat transport
in the semi-infinite and infinite Hooke chains and find an interrelation between the corresponding discrete
solutions for the kinetic temperature. In Sect. 7, results of the paper are discussed.

2 Discrete solution for the kinetic temperature

2.1 Formulation of the problem and derivation of expression for particle velocities

We consider the semi-infinite Hooke chain5, having one free end and assume that the particles of the chain
interact with the nearest neighbors. Therefore, the dynamical equations can be written as

u̇n = vn,

v̇0 = ω2
e (u1 − u0),

v̇n = ω2
e (un+1 − 2un + un−1), n ∈ N, ωe = √

c/m,

(1)

1 i.e., changing in dependence of the particle number.
2 See also English translation of the Schrödinger article [23].
3 This is the monoatomic harmonic chain of identical particles, connected by the linear identical springs, see [24].
4 Ends of chain are connected with the fixed points by linear stiffness springs.
5 Definition of the Hooke chain is given in Sect. 1 and in [24].
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wherem is the particle mass; c is the spring stiffness; and un and vn are displacement and velocity of particle n,
respectively. The equations are supplemented by the following initial conditions:

un = 0, vn = Vn . (2)

Here, Vn is the initial velocity field such that

Vn = ρn

√
kBT 0

n

m
, (3)

where kB is the Boltzmann constant; T 0
n is the initial kinetic temperature of particle (see definition 5); ρn are

uncorrelated random numbers with zero mean and unit variance:

〈ρn〉 = 0, 〈ρ jρn〉 = δ jn, (4)

where δ jn is the Kronecker delta and 〈...〉 stands for the mathematical expectation sign. Therefore, the initial
conditions (2) with (3) and (4) imply an existence of some initial temperature field in the chain and zero initial
heat fluxes6 [26].

In order to define the kinetic temperature in the chain, we introduce an infinite set of realizations with
different initial conditions (2). For the one-dimensional Hooke chain, we determine the kinetic temperature, Tn ,
as follows:7

m〈v2n〉 def= kBTn . (5)

In general, two approaches are followed to obtain the kinetic temperature in the harmonic crystals. The first
involves introducing of covariances of particle displacements and velocities and transformation of the stochastic
dynamical equations to the deterministic PDE with respect to these covariances. This approach is extensively
studied in, e.g., [26,38–40]. The second approach is to substitute exact expression for particle velocity into (5).
One possible way to solve Eq. (1) analytically is to reformulate the dynamical problem for the finite chain with
two free ends, exact solution of which is known [25,41] and then to proceed to the thermodynamic limit. The
second way, based on operating of the difference equations, is described in [42,43]. However, these ways are
harder than one, which is proposed below.

We introduce the direct and inverse discrete cosine transforms (DCT) as follows [44]:

û(θ) =
∞∑

n=0

un cos
(2n + 1)θ

2
, un = 1

π

∫ π

−π

û(θ) cos
(2n + 1)θ

2
dθ, (6)

where θ is the wave number and û is some time-dependent function. Note that representation for the particle
displacement (6) satisfies free boundary condition. Applying DCT (6) to Eqs. (1–2) yields equation

¨̂u + ω2û = 0, ω(θ) = 2ωe

∣∣∣ sin
θ

2

∣∣∣, (7)

where ω is the dispersion relation for the Hooke chain, with the initial conditions

û = 0, ˙̂u =
∞∑

n=0

Vn cos
(2n + 1)θ

2
, (8)

whence

û = sin (ωt)

ω

∞∑

n=0

Vn cos
(2n + 1)θ

2
. (9)

6 The statement of problem corresponds to experimental heating of the crystal by the ultrashort laser pulse. Since the expression
for heat flux in the Hooke chain contains covariances of displacements and velocities (see, e.g., [3,34]), initial zero field of initial
displacements means zero initial heat fluxes.

7 We determine the kinetic temperature by its statistical definition (see, e.g., chapter 3, Sect. 29 in [35]). Unambiguous definition
of the temperature for systems far from equilibrium is still unresolved fundamental problem (see, e.g., [36,37]). In this paper,
we calculate the kinetic temperature as average of kinetic energy over realizations, because it has simple physical meaning.
Discussion of the ergodicity remains out of frameworks of this study.
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Note that the dispersion relations for the semi-infinite and infinite chains coincide. Applying the inverse DCT
to (9) with subsequent differentiationwith respect to time gives the following equation for the particle velocity:

vn = 1

π

∞∑

j=0

V j

∫ π

−π

cos
(2 j + 1)θ

2
cos

(2n + 1)θ

2
cos(ω(θ)t)dθ. (10)

Thus, we have the exact expression for velocity of each particle in the semi-infinite chain. In the next subsection,
Eq. (10) is employed to obtain the kinetic temperature.

2.2 Exact expression for the kinetic temperature

Substitution of the solution for particle velocity (10) to (5) using uncorrelatedness of the initial velocity field (4)
and (3) yields

Tn = 1

π2

∞∑

j=0

T 0
j

(∫ π

−π

cos
(2 j + 1)θ

2
cos

(2n + 1)θ

2
cos(ω(θ)t)dθ

)2

. (11)

Equation (11) is the exact solution for the kinetic temperature in the semi-infinite chain with free end and will
be further referred to as the discrete solution. Recall that the discrete solution for kinetic temperature in the
infinite Hooke chain has the form [21,25,27]

Tinfn =
∞∑

j=−∞
T 0
j J

2
2(n− j)(2ωet), (12)

where J is the Bessel function of the first kind. From comparison of Eqs. (11) and (12), it follows that equation
for the discrete solution for kinetic temperature in the Hooke chain with arbitrary boundary conditions can be
constructed as

Tn =
∑

j∈P
T 0
j

(
�̇nj (t)

ωe

)2

, (13)

where �nj (t) is the solution of the equation

�̈n − ω2
eLn�n = ωeδ(t)δnj , n ∈ P, (14)

whereLn is the linear difference operator,which depends on specific boundary conditions; δ(t) is theDirac delta
function; P is set of numbers, by which particles in the system are indexed. The function �n is supplemented
by the initial condition [45]:

�n|t<0 = 0. (15)

Equation (11) is further employed to obtain the kinetic temperature in the continuum limit.

3 Kinetic temperature in the continuum limit

In the section, we derive the kinetic temperature in the continuum limit, namely as a function of the continuum
coordinate, x . This representation is suitable for general case when expression (11) becomes hard to use. We
show that kinetic temperature in the continuum limit can be expressed as

T (x, t) = T F (x, t) + T S(x, t),

T F = T 0(x)

2
J0(4ωet), T S = 1

2π

∫ π

0
T 0(|x + vs t cos θ |)dθ,

(16)

where vs
def=ωea is the speed of sound; a is the equilibrium distance (length of undeformed bond between

particles); T 0(x) is the continuum field of the kinetic temperature such that T 0(an) = T 0
n (see derivation for

details). We further refer (16) to as the continuum solution. Derivation of Eq. (16) is given below.
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Fig. 1 Initial temperature profile

3.1 Continualization

We use an approach, proposed in paper [20]. First of all, we separate Eq. (11) into two terms, corresponding
to the two physical processes:

Tn = T F
n + T S

n ,

T F
n =

∞∑
j=0

T 0
j Fnj , T S

n =
∞∑
j=0

T 0
j Snj ,

Fnj = 1
2π2

π∫∫

−π

cos (2 j+1)θ1
2 cos (2 j+1)θ2

2 cos (2n+1)θ1
2

× cos (2n+1)θ2
2 cos ((ω(θ1) + ω(θ2))t) dθ1dθ2,

Snj = 1
2π2

π∫∫

−π

cos (2 j+1)θ1
2 cos (2 j+1)θ2

2 cos (2n+1)θ1
2

× cos (2n+1)θ2
2 cos ((ω(θ1) − ω(θ2))t) dθ1dθ2.

(17)

We further show that the first term corresponds to high-frequency oscillations of the kinetic temperature,
caused by equilibration of the kinetic and potential energies [38]. This is a fast process, occurring in time of
order of several hundreds atomic periods. The second term corresponds to the slow process caused by ballistic
heat transport. Characteristic time scale of this process is much larger than one of the thermal equilibration.
Following [20], we perform a continualization for the slow and fast terms of the kinetic temperature, T S

and T F , respectively.
We introduce a mesoscale, which is larger than the distance between particles, a, but smaller than

macroscale,8 A, and divide the chain into the equal intervals, indexed by s. Each interval s has the
length 2a�N , �N � 1, a�N � A and is limited by the boundary particles, js . We assume that the
initial temperature profile, enclosed in the intervals s, changes slowly (Fig. 1). Therefore, the length of the
mesoscale is 2a�N . Then, the expression for T S

n in (17) can be rewritten as

T S
n =

∞∑

s=0

js+�N∑

j= js−�N+1

T 0
j Snj ≈

∞∑

s=0

T 0
js

js+�N∑

j= js−�N+1

Snj

= 2a�N
∞∑

s=0

T 0
js g

S
n, js (�N ), gSn, js (�N ) = 1

2a�N

js+�N∑

j= js−�N+1

Snj ,

(18)

where gn, js (�N ) determines contribution of the point js to the kinetic temperature at point n. Expression (18)
is also valid for T F if we replace S by F . It can also be interpreted as a discrete analogue of the fundamental
solution, obtained by averaging of Tn over the mesoscale. Further, we derive the continuum fundamental
solutions, corresponding to the slow term, gS (see Sect. 3.2), and to the fast term, gF (see Sect. 3.3).

8 A macroscale can be interpreted as a scale of the order of the length of chain.
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3.2 Slow term

The following expression for gSn, js
(�N ) is calculated up to the order O

( 1
�N

)
(see Appendix A) and is

represented as follows:

gSn, js (�N ) ≈ 1

16π2a

∫∫ π

−π

[
cos (�θω′(θ1)t)

[
cos((n + js)�θ) + cos((n − js)�θ)

+ cos (θ1(2n + 1) − (n + js)�θ) + cos(θ1(2n + 1) − (n − js)�θ)
]
sinc(�N�θ)

]
dθ1dθ2,

(19)

where �θ = θ1 − θ2, ()′ = d
dθ1

, sinc(x) = sin x

x
. We change the variables θ = θ1, q = �θ and rewrite (19),

using trigonometric identities and symmetry of the integrands with respect to zero:

gSn, js (�N ) ≈ 1

4π

∫ π

0

[
cos2

(2n + 1)θ

2

[
ψ1(n + js + ω′(θ)t) + ψ1(n + js − ω′(θ)t)

+ψ1(n − js + ω′(θ)t) + ψ1(n − js − ω′(θ)t)
]

+ sin ((2n + 1)θ)

2

[
ψ2(n + js + ω′(θ)t) + ψ2(n + js − ω′(θ)t)

+ψ2(n − js + ω′(θ)t) + ψ2(n − js − ω′(θ)t)
]]

dθ,

ψ1(
) = 1

2πa

∫ θ+π

θ−π

cos (
q)sinc(q�N )dq,

ψ2(
) = 1

2πa

∫ θ+π

θ−π

sin (
q)sinc(q�N )dq,

(20)

where ψ1 and ψ2 are referred to as wave packets propagating with group velocity vg = aω′. Averaging
of the function gSn, js

over the mesoscale leads to a sum of the integrals of these wave packets. In the limit
case (�N � 1), the wave packet ψ2 is negligible and the expression for ψ1 has the following approximate
form (see Appendix B):

ψ1(
) ≈ 1

2a�N
H

(
1 − |
|

�N

)
, (21)

where H(x) is the Heaviside function. Taking into account �N � 1, we obtain the final form of the discrete
fundamental solution:

gSn, js (�N ) ≈ 1

4π

∫ π

0

[
ψ(n − js + ω′(θ)t, �N ) + ψ(n − js − ω′(θ)t, �N )

+ψ(n + js + ω′(θ)t, �N ) + ψ(n + js − ω′(θ)t, �N )

]
dθ,

ψ(
, �N ) = 1

2a�N
cos2

(
θ(2n + 1)

2

)
H

(
1 − |
|

�N

)
.

(22)

We introduce continuous functions T S(x), T 0(x), gSc (x, y) such that

T 0(an) = T 0
n , gSc (x, y) = lim

a�N
A →0

gSn, js (�N ),

T S(x) = lim
a�N
A →0

T S
n =

∫ ∞

0
T 0(y)gSc (x, y)dy.

(23)

In the limit case a�N/A → 0, the function ψ can be replaced by the Dirac delta function. Using Eqs. (22)
and (23), we obtain the fundamental solution for the slow term of the kinetic temperature:

gSc (x, y) = gS(x − y) + gS(x + y),

gS(x) = 1

4π

∫ π

0

[
δ(x + vg(θ)t) + δ(x − vg(θ)t)

]
dθ,

(24)



Unsteady thermal transport in an instantly...

where vg(θ) = vs cos
θ

2
sgn

(
sin

θ

2

)
is the group velocity.9

The slow term T S is further obtained as the integral convolution of this fundamental solution with field of
the initial temperature:

T S = 1

4π

∫ ∞

0
T 0(y)

[ ∫ π

0
δ(x − y + vg(θ)t) dθ +

∫ π

0
δ(x − y − vg(θ)t) dθ

+
∫ π

0
δ(x + y − vg(θ)t) dθ +

∫ π

0
δ(x + y + vg(θ)t) dθ

]
dy.

(25)

It is shown from solution (25) that T S is represented as superposition of localized wave packets, which
propagate with the different group velocities and do not interact with each other. This is the property of
ballistic heat transport (see, e.g., [46]). In contrast to the infinite chain, the wave packets can propagate both
from the boundary (is described by second and third terms in (25)) and toward boundary (is described by first
term in 25). The fourth term is equal to zero, because T 0(−x) = 0. Using the property of convolutions, we
simplify Eq. (25):

T S = 1

2π

∫ π

0
T 0 (|x + vs t cos θ |)dθ. (26)

Remark 1. In [20], the heat transport in the infinite Hooke chain is investigated in the frameworks of
both the lattice dynamics approach and the Boltzmann kinetic theory. Following the latter, solution for the
continuum kinetic temperature field is derived using the distribution function as solution of the collisionless
Boltzmann transport equation. The result coincides with predictions from the lattice dynamics approach. As
for the semi-infinite free-end Hooke chain, the kinetic temperature can be obtained in the same way, if the
solution of the collisionless Boltzmann transport equation with evenness condition at the boundary (x = 0) is
known. This approach leads to the same result (Eq. (26)).

3.3 Fast term

Analogously, using assumption (18) with a�N � A and �N � 1 and (23), we obtain the expression for the
fast term T F . Since the main contribution to the terms T F comes from points θ1 ≈ θ2, as it is shown in Sect.
3.2, ω(θ1) + ω(θ2) ≈ 2ω(θ1). According to Sect. 3.2, the fundamental solution, gFc , can be written as

gFc (x, y) = δ(x − y) + δ(x + y)

2π

∫ π

0
cos (2ω(θ)t)dθ = δ(x − y) + δ(x + y)

2
J0(4ωet). (27)

Then, Eq. for T F has the form

T F = T 0(x)H(x) + T 0(−x)H(−x)

2
J0(4ωet) = T 0(x)

2
J0(4ωet). (28)

Therefore, the expression for the fast term of the kinetic temperature, T F , coincides with the same expression
for the infinite chain [38].

Thus, the final expression for kinetic temperature in the continuum limit (16) is the sum of the contributions
T F , corresponding to the fast processes caused by equilibration of the kinetic and potential energies and T S ,
corresponding to the slow processes caused by ballistic heat transport.

4 Fundamental continuum solution

We consider instantaneous thermal perturbation at some point ha, h ∈ N∪{0}. The initial temperature profile,
corresponding to the considered case, is

T 0(x) = Aδ(x − ha), (29)

9 Here, evenness property of the Dirac delta function is used.
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Fig. 2 Thermal waves at ωet = 5 (solid line), ωet = 10 (dashed line), ωet = 18 (dash-dotted line)

where A is a constant with dimension K ·m.We write the continuum solution for the kinetic temperature as10

T ≈ T S = A

2π

∫ π

0
δ(|x + vs cos θ t | − ha)dθ. (30)

Here, we omit the term T F because time scale of the fast process is much less than time scale of the ballistic
heat transport. Calculation of the integral (30) is carried out using the identity [47]:

∫

D
δ( f (ξ))dξ =

∑

i

| f ′(ξi )|−1, f (ξi ) = 0, (31)

where ξi are zeros of function f , lying inside the domainD. Therefore, we have the following solution for the
kinetic temperature:

T (x, t) = A

2π

(
H(vs t − |x − ha|)
√

v2s t
2 − (x − ha)2

+ H(vs t − |x + ha|)
√

v2s t
2 − (x + ha)2

)

. (32)

We have obtained the continuum solution for kinetic temperature in the semi-infinite chain in the case of
instantaneous point heat pulse. However, if we consider the infinite chain with heat pulses at the points ha
and −ha, the obtained continuum solution is the same (it follows from Eq. for T S in the infinite Hooke chain,
see (40)). Therefore, the continuum kinetic temperature field in the semi-infinite Hooke chain with free end
and some source coincides with the one in the infinite Hooke chain with the same and mirrored sources. The
aforesaid rule will be further referred to as a principle of continuum solution symmetry. Thus, expression for
kinetic temperature is represented as sum of two contributions. The first contribution is the solution for the
infinite chain [27,48] and corresponds to the propagating incident waves. The second term corresponds to the
wave, reflected from the free boundary. Note that, at times t < ha/vs , heat propagation can be described via
the first term in Eq. (32).

We consider the heat perturbation, located at some point from the boundary (h = 10). Behavior of thermal
waves, propagation of which obeys Eq. (32), is presented in Fig. 2. It is shown in Fig. 2 that the waves in the
semi-infinite chain travel in both directions before and after reflection from the boundary. The front instantly
changes direction of propagation after the reflection. Specifically, it is shown that the temperature profile is
not symmetric with respect to the heat source after the reflection.

Thus,wehave analytically described a property of the ballistically propagating thermalwaves to reflect from
free boundaries. The analytical solution, describing propagation of the waves before and after the reflection,
is derived. In the next section, we compare the continuum and discrete descriptions of the kinetic temperature
field in cases of perturbation on the finite domain.

10 The type of the initial temperature perturbation contradicts with the assumption, made in Sect. 3.1. However, as it is shown
below, the continuum solution has the same physical meaning, which is characteristic for one at arbitrary initial temperature
profile.
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Fig. 3 Discrete and continuum solutions for the kinetic temperature in the semi-infinite free-end Hooke chain in the case of
rectangular initial perturbation at ωet = 20 (left) and ωet = 100 (right). Width of the initial thermal perturbation (34) is limited
by the dash-dotted lines

5 Comparison of the discrete and continuum solutions

In this section, evolution of the kinetic temperature fields in the cases of rectangular and step thermal pertur-
bations is under consideration. The initial temperature profiles are chosen for convenience of determination
of the characteristic for heat propagation time scales, corresponding to the time for thermal wave to reach
the boundary and to reflect from the boundary. We compare the discrete and continuum solutions for kinetic
temperature fields and show that the continuum description of heat transport has some restrictions.

In numerical simulations, the kinetic temperature is calculated by its definition (5), where the mathematical
expectation is replaced by average over R realizations. To obtain the particle velocity, we solve dynamical
Eq. (1) for the finite11 chain with two free ends with initial conditions12 (2) and (3) using the fourth-order
Candy and Rozmus [49] integrator with the optimizing parameters, proposed in [50] and time step �t . The
following parameters are used:

R = 105, �t = 0.01/ωe, (33)

where ωe is defined in (1).

5.1 Rectangular initial perturbation

Consider a rectangular heat perturbation, which is defined as

kBT
0(x) = mv2s (H(x − L1) − H(x − L1 − L2)) , (34)

where L1 is a distance from the boundary to the perturbation and L2 is a width of perturbation. We take L1 =
25a and L2 = 50a and the investigate temperature profiles in two cases: before reflection of thermal wave
and after the reflection. Discrete and continuum solutions for kinetic temperature are presented in Fig. 3. It
is seen in Fig. 3 (left) that the continuum and discrete solutions practically coincide before thermal wave
reaches the boundary, except regions near wavefront and near the boundaries of initial perturbation. The
mismatches of the discrete and continuum solutions are caused by finiteness of the perturbation length and fast
process, which takes place at relatively short times. The discrepancies, mentioned above, become infinitesimal
at ωet = 100 (Fig. 3, right), when energy of the fast process is much less than the energy transferred along
the chain. However, the discrete solution undergoes a jump near the boundary (Fig. 3, inlet). Therefore, the
discrete and continuum solutions disagree after reflection of thermal wave from the boundary. In order to
investigate this jump in detail, we consider behavior of the kinetic temperature at the boundary.

11 Simulations are performed for the chain with 500 particles.
12 Random numbers ρn are uniformly distributed in the segment [−√

3; √
3], which satisfies condition (4).
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Fig. 4 Evolution of the kinetic temperature at the boundary

The continuum solution for the kinetic temperature at the boundary, T (0, t), has the following form, which
can be obtained by substitution of (34) to (16) with x = 0 and subsequent integration from 0 to π :

kBT (0, t) = mv2s

π

[
arccos

(
L1

vs t

)
H

(
t − L1

vs

)
− arccos

(
L1 + L2

vs t

)
H

(
t − L1 + L2

vs

) ]
. (35)

From (35), one can conclude that evolution of the kinetic temperature at the boundary, caused by rectangular
perturbation in the chain, has three stages. The first stage is related to fast processes and propagation of thermal
waves before reflection (t < L1/vs). The second stage, related to reflection of thermal wave, begins at t =
L1/vs and has duration t = L2/vs . Finally, the third stage begins after reflection of the wave from boundary
at t = (L1+ L2)/vs and is related to relaxation of the temperature at the boundary, which decays (according to
the continuum solution) as 1/t . Evolution of the discrete and continuum solutions at the boundary is presented
in Fig. 4. One can see from Fig. 4 that the discrete solution for the kinetic temperature at the boundary
significantly differs from the continuum one after front reaches the boundary. Growth of the discrete solution
at the boundary, caused by reflection of thermal wave and decrease of this, caused by propagation of wavefront
backwards, are faster than the same stages of evolution of the continuum solution.

Thus, the process of heat transport in the semi-infinite Hooke chain caused by rectangular perturbation can
be generally described by the continuum model, if we deal with the heat propagation far from the boundary.
However, there are discrepancies between the continuum and discrete solutions near and at the boundary.

5.2 Step initial perturbation

Consider a step heat perturbation:

kBT
0(x) = mv2s H(L − x), (36)

where L is a width of perturbation. The discrete and continuum solutions, corresponding to the case, are
presented in Fig. 5 for L = 50a.

It is shown in Fig. 5 that the discrete and continuum solutions are also significantly different near the
boundary after reflection of thermal wave by virtue of the jump (Fig. 5, inlet). Moreover, some mismatches
between the discrete and continuum solutions are observed both before (t < L/vs) and after (t > L/vs)
reflection of thermal wave from the boundary. On the one hand, these mismatches could be caused by influence
of the fast process, occurring at the same time of the wavefront propagation (Fig. 5, left). On the other hand,
however, it is seen from Fig. 5 (right) that the differences between the discrete and continuum solutions remain
after the reflection. Indeed, one can see a perturbation, propagating along the chain approximately with the
speed of sound, which is described not by the continuum but rather by the discrete solution. An explanation
of physical reason of this perturbation is beyond the scope of present paper.

The continuum solution for the kinetic temperature at the boundary can be expressed as

kBT (0, t) = mv2s

(
1

2

(
H

(
L

vs
− t

)
+ J0(4ωet)

)
+ 1

π
arcsin

(
L

vs t

)
H

(
t − L

vs

))
. (37)
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Fig. 5 Discrete and continuum solutions for the kinetic temperature in the semi-infinite free-end Hooke chain in the case of step
initial perturbation at ωet = 20 (left) and ωet = 100 (right). Width of the initial thermal perturbation (36) is limited by the
dash-dotted line
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Fig. 6 Evolution of the kinetic temperature at the boundary

The evolution of the kinetic temperature occurs in two stages: equilibration of the kinetic temperature (at
times t < L/vs), accompanied by the reflection of thermal wave. At times (t > L/vs) thewavefront propagates
after the reflection. Then, the kinetic temperature at the boundary decays.13 Evolution of functions of the kinetic
temperatures at the boundary is presented in Fig. 6.

It is shown in Fig. 6 behavior of the discrete and continuum kinetic temperature fields is significantly
different not only at t > L/vs (when discrete solution also asymptotically deviates from the continuum) but
also at t < L/vs .

Remark 2. According to the preliminary calculations, both discrete and continuum solutions for the kinetic
temperature at the boundary are scale invariant with respect to L .14

Thus, the continuum solution for kinetic temperature significantly differs from the discrete one, which is
shown by a jump of the latter near the boundary. The discrete solution at the boundary decays substantially
faster than the continuum one. This observation requires a detailed asymptotic analysis based on the stationary
phase method [51,52] and therefore needs a separate investigation, which remains beyond the scope of present
paper.

In the next section, we compare the discrete and continuumdescriptions of heat transport in the semi-infinite
and infinite chains.

13 As in the case of rectangular perturbation, the continuum solution decays also as 1/t .
14 i.e., the function T (t)

∣∣∣
0
at width of the initial thermal perturbation L + �L is equal to T

( L+�L
L t

) ∣∣∣
0
at the width L .
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Fig. 7 Discrete and continuum solutions for kinetic temperature in the infinite Hooke chain, in the case of double rectangular
initial perturbation (38) at ωet = 20 (left) and ωet = 100 (right). Width of the initial thermal perturbation (38) is limited by the
dash-dotted lines

6 Kinetic temperatures in the infinite chain

In the section, we investigate heat transport in the infinite Hooke chain in the case of two symmetric with
respect to zero initial thermal perturbations, i.e.,

kBT
0(x) = mv2s

(
H(x − L1) − H (x − L1 − L2) + H (x + L1 + L2) − H(x + L1)

)
, (38)

where the values L1 and L2 are defined in Sect. 5.1. The initial temperature profile (38) implies two mirrored
with respect to zero heat sources.

Further, we consider the two cases. The first case corresponds to symmetry of heat sources but uncorrelated
initial velocities. Therefore, the governing dynamical equations are

ün = ω2
e (un+1 − 2un + un−1), n ∈ Z \ {0}. (39)

with initial conditions (2), (3), and (4), corresponding to (38). The problem is solved numerically in the same
way as discussed in Sect. 5 and the periodic boundary conditions are used. Analytical solution of the problem
is also presented in both the discrete (see Eq. (12)) and continuum descriptions. The continuum solution is
proposed in [27,39]:

Tinf(x, t) = T F
inf(x, t) + T S

inf(x, t),

T F
inf = T 0(x)

2
J0(4ωet), T S

inf = 1

2π

∫ π

0
T 0(x + vs t cos θ)dθ.

(40)

The discrete and continuum solutions are presented in Fig. 7 for the different moments of time. It is seen from
Fig. 7 that the continuum and discrete solutions are in good agreement. Moreover, in the domain x � 0 the
continuum kinetic temperature field coincides with the same field in the semi-infinite chain15. As expected,
the principle of continuum solution, formulated in Sect. 4, is fulfilled. However, the corresponding discrete
solutions disagree (Fig. 3, right). The reason of the mismatch is the random initial velocities are uncorrelated.
If so, then the discrete solutions are not symmetric with respect to zero even in case of mirrored heat sources.

Consider another case, which is governed by the dynamical Eq. (39) with initial conditions (2). In addition,
we require the following condition for random numbers ρn:

ρ−n = ρn, (41)

which implies a symmetry with respect to zero of both initial temperature profile and field of initial velocities
simultaneously. To the best of our knowledge, analytical solution for the kinetic temperature (in both the

15 Therefore, before reflection from the boundary, the continuum solution for the kinetic temperature in the semi-infinite chain
obeys solution (40).
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Fig. 8 The discrete (numerical) solution for the kinetic temperature field in the infinite Hooke chain in the case of double
rectangular initial perturbation (38) with condition (41) (black circles) and the discrete solution for the kinetic temperature in the
semi-infinite free end Hooke chain in the case of rectangular initial perturbation (34) (blue crosses)

discrete and continuum formulations), corresponding to problem (39) with (41) is unknown. Therefore, we
calculate numerically the kinetic temperature in the same way as discussed earlier (for the case of uncorrelated
initial velocities). Comparison between kinetic temperature field in the considered model at ωet = 100 with
the corresponding solution for the semi-infinite chain (Eqs. (16) and (11)) is presented in Fig. 8. It is seen
from Fig. 8 that the discrete solution for the semi-infinite chain in the case of the rectangular perturbation is
the same as solution for the infinite Hooke chain with exactly mirrored heat sources (with symmetric initial
velocity fields with respect to zero). Therefore, the discrete solution for kinetic temperature in the semi-infinite
Hooke chain with free end and some field of initial velocities coincides with the one in the infinite Hooke
chain with the same and mirrored initial velocity fields.

Thus, symmetry of the initial kinetic temperature field (with respect to zero) is enough for symmetry of the
continuum solution, but the symmetry of the discrete solution should be in addition provided by the symmetry
of the initial velocity field.

7 Conclusions

In the paper, we have investigated the process of unsteady heat transfer in the semi-infinite free end Hooke
chain. We have proposed both discrete (exact) and continuum descriptions of this process, studying evolution
of the kinetic temperature after an instantaneous heat pulse.

The discrete kinetic temperature field can be constructed by discrete analogue of convolution of the initial
temperature profile and the corresponding time derivative of the fundamental solution (see Eqs. (13) and (14)).
On the other hand, the solution can be obtained by symmetry property of the kinetic temperature field in the
infinite chain with exactly mirrored heat sources (condition (41), implying symmetry of the initial velocity
field, is fulfilled). In turn, the continuum solution for the semi-infinite chain coincides with the continuum
solution for the infinite chain with mirrored heat sources, corresponding to the initial kinetic temperature field.

It was analytically shown that process of ballistic heat propagation in the chain has at least two transient
processes. The first is associated with reflection of thermal wave from the free boundary. The second transient
process is related to subsequent propagation of thermal waves backwards. Comparison of the discrete and
continuum solutions for the kinetic temperature revealed mismatch between themselves near the boundary and
at the boundary during the transient processes. Indeed, the continuum solution does not change in space near the
boundary, where the discrete solution undergoes a jump. Based on aforesaid, we conclude that the continuum
description (which may be obtained, e.g., from the Boltzmann kinetic theory) of ballistic heat transport in the
lattices with boundary conditions needs clarification with taking into account discreteness of the lattices.

The continuum solution can be improved at least in two ways. The first is obtaining large time asymptotics
for the discrete solution (either through Eq. (11) in the way, as proposed in [28], or through asymptotic solution
of Eq. (14) in the way, as proposed in [53]) and then to proceed to the continuum limit. The second way is to
solve heat transport problem in the infinite chain with mirrored with respect to zero fields of initial velocities
and then perform a continualization procedure, as proposed either in [20] or in [40]. The improved continuum
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solution can be used as the constitutive relation (in particular, for problems of thermoelasticity (see [54]) or
thermoelectricity (see, e.g., [55]).

An explanation of mechanism of origin of the kinetic temperature jump near the boundary has not been
provided by the model of the semi-infinite chain yet. In order to understand this, heat transport through the
boundary of the two chains with significantly different stiffnesses was numerically investigated, analogously
as discussed in Sect. 5. In this system, the jump of the kinetic temperature is the Kapitza jump, which was
discovered experimentally long time ago [56]. From these observations, one can assume that the jump of
the kinetic temperature near the free end is the limiting case of the Kapitza jump in the two interacting
chains with equal masses and stiffnesses, ratio of which is infinitesimal. However, this assumption requires
a confirmation based on the analytical treatments. The problem, considered and solved in the present paper,
can be auxiliary. In general, a problem of heat transport in the heterogeneous lattices is as yet hard to solve
analytically but some progress in studying it is attained in both the steady-state [57–59] and non-stationary [53,
60] formulations.

The results of the present paper are expected to be important for comprehensive understanding of unsteady
thermal processes in the lattices with free boundaries and thus to development of full-fledged theory of heat
transport therein, which can be verified by the experiments, described, e.g., in [9,31–33,61]. However, real
systems are generally anharmonic (nonlinear) and therefore investigation of heat propagation therein should
take into account nonlinearity. On the other hand, heat transport regime remains quasiballistic in weakly
anharmonic lattices at relatively short times and can be therefore qualitatively described in the harmonic
approximation (see, e.g., [54,57,62,63]). In particular, it is shown in paper [57] that the jump of the temperature
in the neighborhood of isotopic defect is preserved for insufficient time. However, the jump disappears in
process of long time owing to nonlinearity. We assume that, depending on width of the initial heat pulse and on
distance of the latter from the boundary, the similar effect may be likely observed in the nonlinear semi-infinite
lattices.
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A Derivation of the discrete analogue of fundamental solution

Here, we derive the discrete fundamental solution, namely gSn, js
(�N ). Expanding a product of cosines in (17)

yields

Snj = 1

16π2

∫∫ π

−π

[
cos((n + j + 1)(θ1 + θ2)) + cos((n + j + 1)(θ1 − θ2))

+ cos((n − j)(θ1 + θ2)) + cos((n − j)(θ1 − θ2)) + cos

(
(2 j + 1)(θ1 + θ2)

2
− (2n + 1)(θ1 − θ2)

2

)

+ cos

(
(2 j + 1)(θ1 + θ2)

2
+ (2n + 1)(θ1 − θ2)

2

)
+ cos

(
(2n + 1)(θ1 + θ2)

2
− (2 j + 1)(θ1 − θ2)

2

)

+ cos

(
(2n + 1)(θ1 + θ2)

2
+ (2 j + 1)(θ1 − θ2)

2

)]
cos ((ω(θ1) − ω(θ2))t) dθ1dθ2.

(42)

Therefore, the expression for gSn, js
(�N ) can be rewritten as a sum of the following eight terms:

gSn, js (�N ) = 1

16π2a

∫∫ π

−π

cos ((ω(θ1) − ω(θ2))t)
8∑

i=1

ϕi (θ1, θ2)dθ1dθ2,

ϕ1(θ1, θ2) = 1

2�N

js+�N∑

j= js−�N+1

cos ((n + j + 1)(θ1 + θ2))

= 1

2�N
cos

(3(θ1 + θ2)

2
+ (θ1 + θ2)(n + js)

) sin ((θ1 + θ2)�N )

sin
(

θ1+θ2
2

) ,

ϕ2(θ1, θ2) = 1

2�N

js+�N∑

j= js−�N+1

cos ((n + j + 1)�θ)
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= 1

2�N
cos

((
n + js + 3

2

)
�θ

)
sin (�N�θ)

sin �θ
2

,

ϕ3(θ1, θ2) = 1

2�N

js+�N∑

j= js−�N+1

cos ((n − j)(θ1 + θ2))

= 1

2�N
cos

(
(θ1 + θ2)

(
1

2
+ js − n

))
sin ((θ1 + θ2)�N )

sin
(

θ1+θ2
2

) ,

ϕ4(θ1, θ2) = 1

2�N

js+�N∑

j= js−�N+1

cos ((n − j)�θ)

= 1

2�N
cos

(
�θ

(
1

2
+ js − n

))
sin (�N�θ)

sin �θ
2

,

ϕ5(θ1, θ2) = 1

2�N

js+�N∑

j= js−�N+1

cos

(
(2 j + 1)(θ1 + θ2)

2
− (2n + 1)(θ1 − θ2)

2

)

= 1

2�N
cos

(
θ1

(
1

2
+ js − n

)
+ θ2

(
3

2
+ js + n

))
sin ((θ1 + θ2)�N )

sin
(

θ1+θ2
2

) ,

ϕ6(θ1, θ2) = 1

2�N

js+�N∑

j= js−�N+1

cos

(
(2 j + 1)(θ1 + θ2)

2
+ (2n + 1)(θ1 − θ2)

2

)

= 1

2�N
cos

(
θ2

(
1

2
+ js − n

)
+ θ1

(
3

2
+ js + n

))
sin ((θ1 + θ2)�N )

sin
(

θ1+θ2
2

) ,

ϕ7(θ1, θ2) = 1

2�N

js+�N∑

j= js−�N+1

cos

(
(2n + 1)(θ1 + θ2)

2
− (2 j + 1)(θ1 − θ2)

2

)

= 1

2�N
cos

(
θ1

(
1

2
+ js − n

)
− θ2

(
3

2
+ js + n

))
sin (�N�θ)

sin
(

�θ
2

) ,

ϕ8(θ1, θ2) = 1

2�N

js+�N∑

j= js−�N+1

cos

(
(2n + 1)(θ1 + θ2)

2
+ (2 j + 1)(θ1 − θ2)

2

)

= 1

2�N
cos

(
θ2

(
1

2
+ js − n

)
− θ1

(
3

2
+ js + n

))
sin (�N�θ)

sin
(

�θ
2

) , �θ = θ1 − θ2. (43)

We rewrite the components ϕ2, ϕ4, ϕ7, ϕ8, containing the difference of wave numbers �θ as follows:

ϕ2 = �θ

2

[
cos 3�θ

2

sin �θ
2

(cos ((n + js)�θ)) − sin 3�θ
2

sin �θ
2

(sin ((n + js)�θ))

]
sinc(�N�θ),

sinc(x) = sin x

x
,

ϕ4 = �θ

2

[
cot

�θ

2
cos ((n − js)�θ) + sin ((n − js)�θ)

]
sinc(�N�θ),

ϕ7 = �θ

2

[
cos 3�θ

2

sin �θ
2

cos (�θ(n + js) − θ1(2n + 1)) − sin 3�θ
2

sin �θ
2

sin (�θ(n + js) − θ1(2n + 1))

]

sinc(�N�θ),

ϕ8 = �θ

2

[
cot

�θ

2
cos (θ1(2n + 1) − �θ(n − js)) − sin (θ1(2n + 1) − �θ(n − js))

]

sinc(�N�θ).

(44)

Equation (44) can be simplified due to our assumptions about continualization (see Sect. 3.1). For �N � 1,
the function sinc(x) is equal to 1 if �θ is zero and fast tends to zero if �θ is not equal to zero. Therefore,
the main contribution to the function gSn, js

(�N ) comes from two close wavenumbers θ1, θ2. Therefore, in the
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limit cases of �θ → 0 and �N � 1, we have

ϕ2 = cos ((n + js)�θ)sinc(�N�θ) + O

(
1

�N

)
,

ϕ4 = cos ((n − js)�θ)sinc(�N�θ) + O

(
1

�N

)
,

ϕ7 = cos(θ1(2n + 1) − (n + js)�θ)sinc(�N�θ) + O

(
1

�N

)
,

ϕ8 = cos(θ1(2n + 1) − (n − js)�θ)sinc(�N�θ) + O

(
1

�N

)
,

ϕ1 = ϕ3 = ϕ5 = ϕ6 = O

(
1

�N

)
.

(45)

The difference ω(θ1) − ω(θ2) can be decomposed into series:

ω(θ1) − ω(θ2) ≈ ω′(θ1)�θ. (46)

Substitution of (45), (46) to (43) with dropping out of the terms of order O
( 1

�N

)
gives the expression (19).

B Derivation of expressions for wave packets in the limit of mesoscale

We show that approximation of expressions for wave packets in (20) in the limit case (�N � 1) approaches
us to the Fourier transform of the sinc function. Indeed,

1

2πa

∫ θ+π

θ−π

cos (q
)sinc(q�N )dq = 1

2πa�N

∫ (θ+π)�N

(θ−π)�N
cos

(
q


�N

)
sinc qdq

≈ 1

2πa�N

∫ ∞

−∞
cos

(
q


�N

)
sinc qdq = Re

(
1

2πa�N

∫ ∞

−∞
e
i
(

q

�N

)

sinc qdq

)
.

(47)

Analogously,

1

2πa

∫ θ+π

θ−π

sin (q
)sinc(q�N )dq ≈ Im

(
1

2πa�N

∫ ∞

−∞
e
i
(

q

�N

)

sinc qdq

)
. (48)

Since

1

2π

∫ ∞

−∞
eiξqsinc q dq = 1

2
H (1 − |ξ |) , (49)

then one gets

1

2πa�N

∫ ∞

−∞
cos

(
q


�N

)
sinc q dq = 1

2a�N
H

(
1 − |
|

�N

)
,

1

2πa�N

∫ ∞

−∞
sin

(
q


�N

)
sinc q dq = 0.

(50)
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