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We show a new example of the mechanical sys-
tem where the phenomenon of the anti-localization
of non-stationary (quasi)-waves can be observed.
This is a 1D semi-infinite harmonic chain subjected
to an impulse loading at the free end. The anti-
localization of non-stationary waves is zeroing of the
non-localized propagating component of the wave-
field in a neighbourhood of an inclusion or defect.
The known examples of systems, where this wave
phenomenon occurs, are a 1D infinite harmonic
chain with an isotopic defect (Shishkina, Gavrilov,
2023, Continuum Mech. Thermodyn. 35, 431–456),
and an infinite string on the Winkler foundation
with a discrete oscillator (Shishkina, et al., 2023,
J. Sound Vib. 553, 117673).

1 Introduction

The anti-localization of non-stationary waves [1, 2]
is a phenomenon, which can be observed in infi-
nite dispersive systems with an inclusion or defect
provided that the dispersion relation of the cor-
responding homogeneous system involves a cut-off
frequency. A zero group velocity corresponds to
such a frequency, thus, in the uniform system the
corresponding perturbations accumulate in a neigh-
bourhood of a point of loading [3]. Insertion of an
inclusion or a defect into a loading point essentially
alternates the dynamic characteristics of this neigh-
bourhood, which can lead to the anti-localization,
i.e. destroying the accumulated waves. Note that
the wave phenomenon we discuss can be observed
for both continuum and discrete systems, though
in the discrete case it is reasonable to speak about
quasi-waves, since perturbations propagate at infi-
nite speed. Some observations, which indicate that
introducing a defect can essentially alternate prop-
agating non-localized wave-field, were obtained in
studies [4–8] mostly for the discrete systems where
a cut-off frequency always exists, though in all cases
the propagating part of the wave-field outside the
defect was not estimated.

The problem statement that we deal with is
similar to the one used in the classical study by
Lamb [9]. The essential difference is that in [9]

a non-dispersive system described by the 1D wave
equation is under consideration, and, thus, effect
of the perturbation accumulation in the uniform
system is impossible. Contrariwise, in the frame-
work of the Lamb problem, introducing of a dis-
crete defect leads to the accumulation of perturba-
tions (non-zero strains or particle velocities) near
the defect.

In this paper we demonstrate a new example
of a discrete mechanical system where the phe-
nomenon of the anti-localization of non-stationary
quasi-waves can be observed. This is a 1D semi-
infinite harmonic chain subjected to an impulse
loading at the free end. The dynamics of this sys-
tem was investigated in [10, 11], where the phe-
nomenon under consideration was not discovered.

2 The problem formulation

Consider a semi-infinite chain of point masses con-
nected by linear springs. The equations of motion
in the dimensionless form are

ün − (un+1 − 2un + un−1) = 0, n ∈ N, (1)

ü0 − (u1 − u0) = δ(t). (2)

Here un(t) is the dimensionless displacement of the
particle with a number n ∈ N ∪ {0}, overdot de-
notes the derivative with respect to the dimension-
less time t. The term in the right-hand side of
Eq. (2) in the form of the Dirac delta-function δ(t)
is the impulse loading applied to the particle at the
free end. The initial conditions are zero:

un
∣∣
t<0
≡ 0. (3)

Remark 1. The equations of motion (1), (2) can
be rewritten as the corresponding equations for the
infinite chain with a defective spring between par-
ticles with numbers −1 and 0:

ün − (un+1 − 2un + un−1) = (K − 1)
(
(u−1 − u0)δn

+ (u0 − u−1)δn+1

)
+ δ(t)δn, n ∈ Z, (4)
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in the particular case where the defective spring
stiffness is K = 0. Here δn is the Kronecker delta
(1 if and only if n = 0, 0 otherwise). Thus, the
problem under consideration in this paper has the
same physical nature as those considered in [1, 2],
where the systems with an impulse loading applied
to a defect are investigated.

3 The Green function in the frequency
domain

Consider now Eqs. (1), (2), wherein we take

un(t) = Un(Ω) e−iΩt, n ∈ N ∪ {0}, (5)

and a harmonic load in the form of e−iΩt is substi-
tuted in the right-hand side of Eq. (2) instead of
δ(t). This yields

(−Ω2 + 2)Un − Un+1 − Un−1 = 0, (6)

(−Ω2 + 1)U0 − U1 = 1. (7)

The corresponding steady-state solution Un = Gn
of Eqs. (6), (7) is the Green function in the fre-
quency domain. We look for the solution in the
following form:

Un = U0(Ω) eiqn sign Ω, q = a(Ω), Ω ∈ P; (8)

Un = U0(Ω) eiqn, q = π + ib(Ω), Ω ∈ S; (9)

where

a = arccos
2− Ω2

2
, (10)

b = arccosh
Ω2 − 2

2
(11)

are such that the dispersion relation [1, 12]

Ω2 = 4 sin2 q

2
≡ 2(1− cos q) (12)

for an infinite uniform chain is satisfied. Here

P def
= [−Ω∗,Ω∗] (13)

is the pass-band, where the corresponding wave-
numbers q(Ω) are reals, and

S def
= (−∞,−Ω∗) ∪ (Ω∗,∞) (14)

is the stop-band, where the corresponding wave-
numbers are imaginary, Ω∗

def
= 2 is the cut-off (or

boundary) frequency. Expression (8) satisfies the
Sommerfeld radiation conditions, whereas Eq. (9)

satisfies vanishing boundary conditions at infinity.
For n ≥ 1, Eqs. (6)–(7) transform into the corre-
sponding homogeneous equations, which are clearly
satisfied by exponential functions (8), (9). To find
unknown U0, we need to consider the equation cor-
responding to n = 0. This yields

Gn(Ω) =
eian sign Ω

−Ω2 − eia sign Ω + 1
, Ω ∈ P; (15)

Gn(Ω) =
(−1)ne−bn

−Ω2 + e−b + 1
, Ω ∈ S. (16)

Substituting Eqs. (10), (11) into Eqs. (15), (16),
respectively, yields

Gn(Ω) = −2ein sign Ω arccos 2−Ω2

2

−Ω2 − iΩ
√

4− Ω2
, Ω ∈ P;

(17)

Gn(Ω) =
(−1)n2n

Φn−1(Ω)
(
(−Ω2 + 1)Φ(Ω) + 2

) , Ω ∈ S;

(18)

where

Φ(Ω)
def
= Ω2 − 2 + |Ω|

√
Ω2 − 4. (19)

4 Solution of the non-stationary problem

To find the expression for the displacements un, we
apply the Fourier transform with respect to t to
Eqs. (1), (2). As a result we obtain Eqs. (6), (7),
wherein Un has the meaning of the Fourier trans-
form of un with respect to time t. The solution
of this equation is the Green function Gn given by
Eqs. (15), (16). Now un(t) can be represented as

un =
1

2π

(∫
P

+

∫
S

)
Gn(Ω)e−iΩt dΩ. (20)

The Green function (17) has a pole at Ω = 0, which
corresponds to the chain motion as a whole. Thus,
it is not Lebesgue integrable. The integral term in
the right-hand side of Eq. (20) should be treated as
a generalized Fourier transform. To work around
this difficulty, in what follows, analogously to [1],
we deal with the particle velocities u̇n:

u̇n = u̇pass
n + u̇stop

n

= − i

2π

(∫
P

+

∫
S

)
ΩGn(Ω)e−iΩt dΩ

= − i

2π

(∫
P+

+

∫
S+

)
ΩGn(Ω)e−iΩt dΩ + c.c.

= Ipass
n + Istop

n + c.c. (21)
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Here

P+
def
= [0,Ω∗], S+

def
= (Ω∗,∞), (22)

c.c. are the complex conjugate terms.
The integrals Ipass

n and Istop
n have the structure

of a Fourier integral:

I =

∫
A(Ω) eiφ(Ω)t dΩ. (23)

To estimate them at t → ∞, we use, in what fol-
lows, the procedure of asymptotic evaluation for
large times based on the method of stationary phase
[13–15]. Asymptotics of (23) is the sum of contri-
butions I(Ωi) from the critical points Ωi:

I =
∑
i

I(Ωi) +O(t−∞), t→∞; (24)

I(Ωi)
def
=

∫
A(Ω)χΩi(Ω)eiφ(Ω)t dΩ. (25)

The critical points are stationary points for the
phase φ(Ω), finite end-points of the integration in-
tervals and singular points for the phase φ(Ω) and
the amplitude A(Ω). Here χΩi(Ω) is a neutraliser
[14,15] at Ω = Ωi such that χΩi(Ω) ≡ 0 in a neigh-
bourhood of any Ωj for j 6= i.

At first, consider integral Istop
n . Generally, the

contribution from the stop-band involves non-van-
ishing oscillation if localized modes exist in the sys-
tem. It is easy to show that there is no localized
mode (in particular, this fact follows from general
considerations in [16]). In such a case the only criti-
cal points for integral Istop

n are the finite end-points
Ω = Ω∗ of integration intervals, and according to
the Erdélyi lemma [13,14], one has

Istop
n = O(t−1). (26)

Now consider Ipass
n . One has

Ipass
n = − i

2π

∫ 2

0

2ein arccos 2−Ω2

2 −iΩt

−Ω− i
√

4− Ω2
dΩ. (27)

Since the contribution from the pass-band de-
scribes propagating waves, following to [17], we es-
timate the large-time asymptotics of the right-hand
side of Eq. (27) at the moving front

n = wt, w = const, t→∞, 0 ≤ n ∈ R, (28)

considering n as a continuum spatial variable. Here
the meaning of the quantity

0 < w < 1 (29)

is the speed for the observation point. This ap-
proach, which is known to us due to [18] in the
context of continuum problems, allows one to de-
scribe the wave-field as a whole, compared with the
evaluation of the corresponding asymptotics at a
fixed position. Denote

φ = w arccos
2− Ω2

2
− Ω, (30)

Apass(Ω)
def
= D−1(Ω), (31)

where

D = −1

2

(
Ω + i

√
4− Ω2

)
. (32)

Thus,

Ipass
wt = − i

2π

∫ 2

0

Apass(Ω)eiφ(Ω)t dΩ. (33)

The critical points for Ipass
wt are the stationary point

for φ, where

φ′Ω = 0, (34)

and the singular end-point Ω = Ω∗ = 2. Note that
the contribution Ipass

wt (0) from the end-point Ω = 0
totally compensates by the complex conjugate in-
tegral over (−2, 0), see the term c.c. in Eq. (21).

To estimate the contribution from the singular
end-point Ω = 2, we consider the behaviour of the
amplitude Apass(Ω) and the phase φ(Ω) at Ω →
2− 0. One has

Apass(Ω) = Apass
0 +Apass

1/2

√
2− Ω +O(2− Ω)

= −1 + i
√

2− Ω +O(2− Ω), (35)

φ(Ω) = πw − 2− 2w
√

2− Ω + (2− Ω) + o(2− Ω).
(36)

Taking into account the Erdélyi lemma, one gets
that the contribution Ipass

wt (Ω∗) from the end-point
Ω = Ω∗ ≡ 2 is O(t−2) if (29) is fulfilled.

The stationary point is the solution of Eq. (34):

w

(
arccos

2− Ω2

2

)′
Ω

− 1 = 0. (37)

Thus, the expression for the stationary point Ωs is

Ωs = 2
√

1− w2, (38)

and

0 < Ωs < 2. (39)
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One can see that the stationary point exists and
unique for all w in interval (29). Put

φs
def
= φ(Ωs) = w arccos(2w2 − 1)− 2

√
1− w2

= 2(w arccosw −
√

1− w2). (40)

It is easy to check that the stationary point Ωs is
not a degenerate one:

φ′′ =
Ωw

4(1− Ω2

4 )3/2
> 0, (41)

φ′′(Ωs) =

√
1− w2

2w2
, (42)

provided that inequalities (29) and (39) are fulfilled.
Applying the classical formula, see, e.g., [14,15], we
obtain the principal term of the contribution from
a non-degenerate stationary point Ωs. Thus, we get
the following asymptotics:

u̇pass
wt = Ipass

wt (Ωs) + Ipass
wt (Ω∗) + c.c.+O(t−∞)

= Ipass
wt (Ωs) + c.c.+O(t−2)

= − iH(1− w)√
2π|φ′′(Ωs)|t

ei(φst+
π
4 )

D(Ωs)

+ c.c.+O(t−3/2). (43)

Here H(·) is the Heaviside step-function. The mul-
tiplier H(1 − w) is introduced because there is no
stationary point for w > 1. Using Eq. (31), one
gets

ReD = −1

2
Ωs = −

√
1− w2, (44)

ImD = −1

2

√
4− Ω2

s = −w, (45)

|D| = 1. (46)

Hence, we can obtain

u̇pass
wt = −2H(1− w)√

2πφ′′s t

1

|D|2

×
(

ImD cos
(
φst+

π

4

)
− ReD sin

(
φst+

π

4

))
+O(t−3/2)

=
A(w)H(1− w)cos

(
φst+ ψ + π

4

)
√
t

+O(t−3/2),

(47)

where

A(w) =
2w

√
π 4
√

1− w2
, (48)

ψ = arctan
ReD
ImD

= arctan

√
1− w2

w
. (49)

Figure 1: Comparing the approximate solu-
tion u̇n ' Ipass

n in the form of Eqs. (40), (47)–
(49) wherein w = n/t and the numerical solu-
tion (the particle velocity versus the particle
number). The anti-localization near n = 0 is
clearly visible.

5 Behaviour of the chain near the free
end: the anti-localization

Consider the case w → +0: this choice corresponds
to a neighbourhood of the free end of the chain.
One has

A(w) =
2√
π
w +O(w3), (50)

and A(0) = 0. This means that the amplitude
of the chain oscillation is small near the free end,
i.e., we observe in the system under considera-
tion the anti-localization of non-stationary waves
near the defect (the spring with zero stiffness). In
Fig. 1 we compare our asymptotic solution with the
numerical solution obtained by numerical integra-
tion of truncated ODE system, which corresponds
to Eqs. (1), (2) with n < N for large enough N .
The asymptotic solution is in a very good agree-
ment with the numerical one everywhere excepting
a neighbourhood of the leading wave front w = 1,
where the coalescence of the critical points should
be taken into account [1].

In the case w = 0 (n = 0), which does not sat-
isfy restriction (29), the principal term (47) of the
asymptotics becomes zero. To obtain the expres-
sion for the principal term in the last case, one
needs to calculate the contribution from the cut-
off frequency, which is the only critical point for
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both Istop
n and Ipass

n . One has

u̇0 = u̇stop
0 + u̇pass

0

= Istop
0 (Ω∗) + Ipass

0 (Ω∗) +O(t−∞) + c.c., (51)

Istop
0 (Ω∗) = − i

2π

∫ ∞
2

χ2(Ω)Astop(Ω)e−iΩt dΩ,

(52)

Ipass
0 (Ω∗) = − i

2π

∫ 2

−∞
χ2(Ω)Apass(Ω)e−iΩt dΩ,

(53)

where χ2(Ω) is a neutralizer, Apass can be expressed
by Eq. (35),

Astop =
Ω

−Ω2 + e−b + 1

= Astop
0 +Astop

1/2

√
Ω− 2 + o(Ω− 2)

= −1 +
√

Ω− 2 + o(Ω− 2), Ω→ 2 + 0.
(54)

Since Apass
0 = Astop

0 ,∫ 2

−∞
χ2(Ω)Apass

0 (Ω) e−iΩt dΩ︸ ︷︷ ︸
J

+

∫ ∞
2

χ2(Ω)Astop
0 (Ω) e−iΩt dΩ = O(t−∞). (55)

Applying the Erdélyi lemma yields

u̇pass
0 = J +

1

2π

∫ ∞
0

χ0(µ)
(
|Apass

1/2 |
√
µ+ o(

√
µ)
)

× ei(µ−2)t dµ+ c.c.+O(t−∞)

= 2 Re J + 2 Re
|Apass

1/2 |Γ
(

3
2

)
ei(2t− 3π

4 )

2π t3/2

+ o(t−3/2)

= 2 Re J +
sin
(
2t− π

4

)
2
√
π t3/2

+ o(t−3/2), (56)

u̇stop
0 = −J − 1

2π

∫ ∞
0

χ0(µ)
(
Astop

1/2

√
µ+ o(

√
µ)
)

× e−i(2+µ)t dµ+ c.c.+O(t−∞)

= −2 Re J + 2 Re
Astop

1/2 Γ
(

3
2

)
ei(2t+ 3π

4 +π
2 )

2π t3/2

+ o(t−3/2)

= −2 Re J +
sin
(
2t− π

4

)
2
√
π t3/2

+ o(t−3/2). (57)

Figure 2: Comparing the asymptotics for u̇0

in the form of Eq. (59) and the numerical so-
lution (the particle velocity versus the time).

Here Γ(·) is the Gamma function;

Γ

(
3

2

)
=

√
π

2
. (58)

Finally,

u̇0 = u̇pass
0 + u̇stop

0 =
sin
(
2t− π

4

)
√
π t3/2

+ o(t−3/2). (59)

In Fig. 2 we demonstrate a very good agreement
between the asymptotic solution (59) and the nu-
merical one.

6 Conclusion

We have shown a new example of a mechanical sys-
tem, where the phenomenon of anti-localization of
non-stationary waves is observed. Namely, this is
a semi-infinite chain of point masses connected by
linear springs. The semi-infinite chain can be con-
sidered as a particular case of an infinite one with
one defected spring of a zero stiffness. It is interest-
ing that in the continuum case, cutting an infinite
uniform system (e.g., a string on the Winkler foun-
dation) into two semi-infinite ones, clearly, does not
lead to the anti-localization [19].
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