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ABSTRACT

Linear elastic deformation of the two-dimensional triangular lattice
with multiple vacancies is considered. Closed-form analytical
expressions for displacement field in the lattice with doubly periodic
systemof vacancies arederived. Effective elasticmoduli are calculated.
The results are compared with the ones obtained by molecular
dynamics simulations of a lattice with random distribution of
vacancies. At low vacancy concentrations, less than 4%, random and
periodic distributions of vacancies produce the same effect on elastic
moduli. One of the main goals is to examine the possibilities and
limitations of modelling of the lattice with vacancies by an elastic
continuum with holes. It is found that the effective elastic properties
are modelled adequately, provided the shape of the holes is chosen
appropriately. On the contrary, the strain field, in particular, strain
concentration differs significantly.
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1. Introduction

The influence of point defects on physical properties of crystals is a long-standing problem
in mechanics and physics of solids. This problem has been considered in literature from
both continuum and discrete points of view. Foundations of continuum theory of lattice
defects havebeendeveloped inpioneeringworks ofEshelby [1,2]. In continuummechanics,
such defects are modelled as pores in a homogeneous elastic medium, and continuum
mechanics tools are used for calculation of displacement fields [1], elastic interaction of
defects [2], effective properties of imperfect crystals [3], etc. Although the continuum
mechanics modelling is expected to be appropriate for the effective properties [4], it may
become inadequate at microscale, in particular, near vacancies, where the discreteness
plays important role [5,6]. For example, Krivtsov and Morozov [7] have shown that the
effect of discreteness is significant even in the absence of surface tension [8]. Examination
of these issues is the main motivation for the present work.

One of the first attempts to solve the problem in the discrete formulation was made
by Kanzaki [9], who has developed foundations of the so-called lattice statics method.
Kanzaki considered a periodic cell in FCC crystal containing a vacancy at the centre of
the cell. The effect of vacancy is simulated by applying forces to atoms that simulate

CONTACT E. A. Podolskaya katepodolskaya@gmail.com
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2 V. A. KUZKIN ET AL.

Figure 1. Scanning electron microscopy images of polystyrene (PS) colloids and carbon black
nanoparticles (CB-NPs) used to prepare hybrid colloidal crystal coatings: (a) 190 nm PS colloids; (b)
217 nm PS colloids; (c) 308 nm PS colloids; (d) 33 nm CB-NPs. Reprinted with permission from [29].

interatomic interactions with both the nearest and farther lying atoms. Then, equations
of lattice statics in harmonic approximation are solved using discrete Fourier transform
(DFT). Kanzaki approach and its modifications [10] have been widely used for studying
vacancies and interstitials in various metals [11–16] and alloys [17]. Generalisation of
lattice statics approach for anharmonic interactions has been developed in papers [18–20].

An alternative discrete approach based on lattice Green’s function has been proposed
by Tewary [21], who showed that this approach is equivalent to the lattice statics method,
but is computationally simpler. The Green’s function has been calculated for a variety
of systems including triangular [22,23], diamond-like [24], graphene [25] and hexagonal
close-packed lattices [26].

The two-dimensional modelling taken in the present work is relevant for a variety of
2-D materials, such as 2-D colloids [27–30] (see e.g. Figure 1), boron nitride [31], etc. that
have become available due to recent advances in technology. Effective elastic properties and
displacement fields in carbon nanosheets having ideal hexagonal structure were identified
in [31]. Displacement fields caused by point defects in two-dimensional colloidal crystals
were studied in papers [27,28]. Authors have adopted Ewald summation technique for
solution of continuum elasticity problems with periodic boundary conditions. It has been
demonstrated that the continuum theory loses accuracy in close vicinity of defects. In
the case of triangular lattice, the method of discrete Green’s function has been used for
calculation of the effective elastic moduli [23]. However, explicit analytical expressions for
displacement fields around vacancies, in the discrete formulation, have not been given in
the above-mentioned works.

The present work focuses on elastic deformation of a triangular lattice with periodic
array of vacancies. Firstly, the displacements of all particles are expressed in terms of amean
strain; secondly, usingHooke’s law and defining themean traction as themean force acting
on the cell boundary (that, in turn, is a function of displacements), the effective moduli
are calculated that can be used further to find the relation between displacements and
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PHILOSOPHICAL MAGAZINE 3

stresses applied at infinity. This approach differs fromKanzaki and lattice Green’s function
approaches, where the displacements are expressed in terms of interatomic forces. Note
that our approach constitutes a discrete analogue of doubly periodic problem in continuum
elasticity [32–35]. Analytical treatment of the discrete doubly periodic problem is based on
the exact solution of corresponding partial difference equations. Closed-form expressions
for particle displacements in thementioned discrete doubly periodic problem are obtained
by the use of DFT.

The main focus of the present work is to examine the following issue: ‘to what extent a
vacancy in triangular lattice can be modeled by a pore (hole) in elastic continuum media
and what the pore shape should be?’ The equivalence is considered from two points of
view: (i) displacement field around a vacancy and (ii) effective elastic properties of a lattice
with vacancies.

2. Analytical solution for triangular lattice with a doubly periodic system of
vacancies

We present an analytical solution for the displacement field in a triangular lattice [36] with
a doubly periodic system of vacancies subjected to stresses applied at infinity (Figure 2).
The periodic cell (sometimes referred to as supercell [37]) has the shape of a rhombus
with 2N + 1 particles on each side. The vacancies are located at rhombi centres. We
assume that each atom interacts only with the nearest neighbours (the justification being
that interatomic forces decrease very rapidly with distance), and the interaction forces are
modelled by linear elastic springs (as justified by the small deformations formulation).
The atom displacements are calculated in terms of the mean deformation of the cell. The
displacements can be recalculated in terms of applied stresses with the use of the effective
elastic moduli, introduced in Section 3.

Figure 2. Triangular lattice with a doubly periodic system of vacancies, N = 2. Solid line shows the
periodic cell.
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4 V. A. KUZKIN ET AL.

2.1. Equilibrium equations for a lattice with vacancy

Consider triangular lattice consisting of identical particles connected with the nearest
neighbours by linear springs. Infinitesimal deformations of the lattice are considered.
Equilibrium equations for the lattice are written as partial difference equations [38].

We introduce unit vectors eu, ev , ew that correspond to the bonds’ directions in the
lattice:

eu =
√
3
2

i + 1
2
j, ev = −

√
3
2

i + 1
2
j, ew = eu + ev , (1)

where i, j are unit vectors of 2-D Cartesian coordinate system and correspond to the
x- and y-axis, respectively (see Figure 2); I = ii + jj = 2

3 (eueu + evev + ewew) is the
two-dimensional unit tensor. A displacement vector u can be represented as:

u = 2
3
(ueu + vev + wew), u = u · eu, v = u · ev , w = u · ew = u + v. (2)

We introduce two indices n,m that enumerate the particles so that their position vectors
are:

rn,m = a(neu + mev), (3)

where a is the equilibrium distance between the nearest neighbours. Consider the second-
order partial difference operators �u, �v , �w which correspond to the directions u, v,w:

�u(un,m) = un+1,m − 2un,m + un−1,m, �v(un,m) = un,m+1 − 2un,m + un,m−1,
�w(un,m) = un+1,m+1 − 2un,m + un−1,m−1. (4)

These operators are discrete analogues of partial derivatives with respect to the spatial
coordinates used in continuum theory. The equilibrium equations for the particle n,m
having six nearest neighbours are the following:

�uun,meu + �vvn,mev + �wwn,mew = 0. (5)

Hereafter, there is no summation over repeated indices. The projections of this equation
on the basis vectors eu, ev yield:

�uun,m + �w(un,m + vn,m) = 0,
�vvn,m + �w(un,m + vn,m) = 0. (6)

Equation (6) describe the equilibrium of a particle ‘in the bulk’ (having six nearest neigh-
bours) in the absence of body forces.

Now, consider a single vacancy at r0,0 = 0. The particles surrounding the vacancy have
only five nearest neighbours. Therefore, their equilibrium equations differ from those for
particles that are not adjacent to the vacancy. In order to write the equilibrium equations
for all particles in a unified way, the following ‘bond-elimination’ difference operators are
introduced:
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PHILOSOPHICAL MAGAZINE 5

β±
u u

n,m = δn,m(un±1,m − un,m) + δn∓1,m(un∓1,m − un,m),
β±
v u

n,m = δn,m(un,m±1 − un,m) + δn,m∓1(un,m∓1 − un,m),
β±
w u

n,m = δn,m(un±1,m±1 − un,m) + δn∓1,m∓1(un∓1,m∓1 − un,m). (7)

Here δn,m = 1 for n = m = 0, and δn,m = 0 for the other cases. Then, the equilibrium
equations for any particle {n,m} in a lattice with vacancy have the form:

(�u − β+
u − β−

u )un,m + (�w − β+
w − β−

w )(un,m + vn,m) = 0,
(�v − β+

v − β−
v )vn,m + (�w − β+

w − β−
w )(un,m + vn,m) = 0. (8)

The effect of bond-elimination operators is identical to bonds of negative stiffness.
Thus, we have obtained the unified form (8) of the equilibrium equation for the trian-

gular lattice with a single vacancy. These equations together with the periodic boundary
conditions will be used for calculation of the displacement field.

2.2. Displacement field in a triangular lattice with doubly periodic system of
vacancies

Equilibrium Equation (8) can be solved analytically for a lattice with doubly periodic
system of vacancies (see Figure 2). We denote the mean strain tensor of the periodic cell,
induced by remotely applied stress, by ε and express particles’ displacements in terms of
ε. In the present section, the displacements of particles are calculated and compared with
the solution of continuum Kirsch problem.

We represent displacement of a particle as a sum of a doubly periodic part ũn,m and a
linear function of the strain tensor ε (quasi-periodicity [34]):

un,m = ũn,m + aε · (neu + mev), ũn+α(2N+1),m+β(2N+1) = ũn,m, (9)

where α and β denote the cell’s number. This expression is substituted into equilibrium
Equations (8). The resulting equations are solved with respect to ũn,m using DFT. The DFT
allows one to satisfy periodicity conditions (9) automatically. The solution procedure in
detail is presented in Appendix 1. The general solution is rather cumbersome, so in the
present section, we consider only several special cases.

2.2.1. Volumetric mean strain
Consider the case of volumetric mean strain ε = εI. We focus on the effect of elastic
interaction of vacancies. This effect is analysed by comparing the solution for infinite cell
(one vacancy) with the solution for a cell of finite size. Solution for infinite cell will be
denoted by subscript∞. The displacements of particles have the form (see Appendix 2 for
derivation):

un,m = vm,n = aε
(
n − m

2
− Gn,m

1 + G1,0

)
, (10)
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6 V. A. KUZKIN ET AL.

where

Gn,m = 1
2(2N + 1)2

N∑
s,p=−N

g(sθ , pθ) sin ((sn + pm)θ), θ = 2π
2N + 1

,

g(x, y) = sin y sin2 x
2 − sin x sin2 x+y

2

sin2 x
2 sin

2 y
2 + sin2 x

2 sin
2 x+y

2 + sin2 y
2 sin

2 x+y
2

. (11)

Note that the sum in formula (11) converges quite fast with the increase in N . For a
particle adjacent to the vacancy, the convergence is very fast and the limiting valueN → ∞
is practically reached at N ∼ 10 (see Figure 3(a)). In the case of infinite cell (one vacancy
only), Gn,m is given by the integral:

Gn,m∞ = 1
8π2

∫ π

−π

∫ π

−π

g(x, y) sin (nx + my)dx dy. (12)

Formulae (10)–(12) give exact expressions for particle displacements.
Consider displacements of particles forming the vacancy. Taking the limit N → ∞

(infinite cell), formulae (10)–(12) yield:

u1,0∞ ≈ 1.642aε. (13)

Here, aε is the displacement of the same particles in the case of perfect crystal (no vacancy).
We estimate the effect of elastic interaction of vacancies by comparing total displace-

ments of particles near the vacancy atN = 1 (minimal cell size) andN → ∞ (one vacancy
in infinite crystal). Calculations show that the difference is about 20% (Figure 3(a)).

We now compare the obtained results with results of the elasticity theory. Displacement
field in a plate with1 ν0 = 1/3 containing a circular hole of radius R loaded by remotely
applied hydrostatic stress σ0 (Kirsch problem) has the form:

u · er = εr + 2
εR2

r
, ε = σ0

2K0
, (14)

where r is the distance from the hole centre, er = r/r, K0 is the bulk modulus.
The radial component of particle displacements in a lattice is represented in a similar

form:
un,m · er = εr + ũn,m · er . (15)

The first terms in formulae (14), (15) for continuum and discrete displacement fields
coincide. Let us check at what distance from the vacancy the second part ũn,m · er can be
approximated by a function A/r.

Figure 3(b) shows the radial component ũn,m · er as a function of the dimensionless
distance r/a from the vacancy for N = 100. Without loss of generality, it is assumed
that ε = 1. Circles denote the analytical discrete solution. Continuous curve denotes
the corresponding continuum dependency; A = 0.604a2, and it is determined with 0.5%
accuracy. It is seen that for r/a > 10, the displacements of the particles approach the
continuum curve. According to formula (14), the coefficient A determines the equivalent
radius of the vacancy:
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PHILOSOPHICAL MAGAZINE 7

(a) (b)

Figure 3. Volumetric mean strain. (a) The total displacement of particle 1, 0 forming the vacancy (n = 1,
m = 0) as a function of the periodic cell size N. (b) The radial displacement ũn,m · er as a function of the
dimensionless distance r/a from the vacancy (N = 100).

R ≈ 0.55a. (16)

The main difference between the discrete and continuum solutions is demonstrated in
the offset figure in Figure 3(b). In the vicinity of vacancy, the dependence ur(r/a) is non-
monotonic. This shows inadequacy of continuum modelling of the lattice in the vicinity
of the defect. Similar effect is observed in ab initio calculations of displacements around
a vacancy in nickel [39]. Further evidence of inadequacy of such modelling is given in
Section 6, in the context of strain concentration near the vacancy.

2.2.2. Biaxial mean strain
Consider the biaxial mean strain of the lattice, i.e. the mean strain tensor has the form:

ε = εxx

3
(eu − ev)(eu − ev) + εyyewew , εu = εv = 3εxx + εyy

4
, εw = εyy. (17)

In the Appendix 3, it is shown that the doubly periodic part of the displacement field has
the form:

ũn,m = ṽm,n = Hn,m(aεu + ũ1,0) + Kn,m(aεw + w̃1,1),

ũ1,0 = a
(H1,0(1 − 2K1,1) + 2H1,1K1,0)εu + K1,0εw

(1 − H1,0)(1 − 2K1,1) − 2K1,0H1,1 ,

w̃1,1 = 2a
H1,1εu + (K1,1(1 − H1,0) + H1,1K1,0)εw

(1 − H1,0)(1 − 2K1,1) − 2K1,0H1,1 , (18)

where

Hn,m = 1
2(2N+1)2

N∑
s,p=−N

sin ((sn+pm)θ)

Ds,p

(
sin sθ sin2

pθ
2

(19)

+ sin2
(s + p)θ

2
( sin sθ − sin pθ)

)
,
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8 V. A. KUZKIN ET AL.

Kn,m = 1
2(2N + 1)2

N∑
s,p=−N

sin ((sn + pm)θ)

Ds,p sin ((s + p)θ) sin2
pθ
2
,

Ds,p = sin2
sθ
2
sin2

pθ
2

+ sin2
pθ
2

sin2
(s + p)θ

2
+ sin2

sθ
2
sin2

(s + p)θ
2

.

In the case of the infinite crystalN → ∞, the sums in formulae (19) can be replaced by
integrals, similar to (12). In the next section, these expressions are employed for calculation
of the effective elastic moduli. In Section 6, they are used to find concentrations of the local
fields near vacancies.

3. Effective elastic moduli of a triangular lattice with doubly periodic system
of vacancies

Consider the influence of vacancies on the effective elastic properties of the crystal. Since
the geometrical pattern of the microstructure has the hexagonal symmetry, the effective
elastic properties are isotropic. To determine the effective bulk modulus K and shear
modulus μ, it is sufficient to consider two cases of the mean strain: hydrostatic strain
εxx = εyy and deviatoric strain εxx = −εyy . Using Hooke’s law, we express the effective
elastic moduli in terms of the mean traction T on the periodic cell boundary with normal
n:

K = 1
2

T · n
n · ε · n |εxx=εyy , μ = 1

2
T · n

n · ε · n |εxx=−εyy , n = 1
2
(i + √

3j). (20)

We define the mean traction as the mean force acting on the cell boundary per unit
length, i.e. interparticle distancea. Then, addingup the forceswhich act along thedirections
eu and ew , we get:

T = Tueu + Twew , Tu = c
4
(3εxx + εyy) + c

(2N + 1)a

N∑
m=−N

(̃u−N ,m − ũN ,m),

Tw = cεyy + c
(2N + 1)a

N∑
m=−N

(w̃−N ,m+1 − w̃N ,m). (21)

Here, c is the bond stiffness; aTu, aTw aremean forces in the bonds directed along eu and
ew , respectively. The values of Tu and Tw are determined by the particles’ displacements
(18). Thus, the effective elastic moduli are calculated by substituting (18) and (21) into
(20).

Figure 4 shows the convergence of the effective elastic constants to the values for an
ideal lattice as the concentration of vacancies decreases. In Section 5, we compare the
above-mentioned results with the ones obtained using the continuum theory.

4. Triangular lattice with random distribution of vacancies: a molecular
dynamics study

Wenow consider themolecular dynamics (MD) simulations of the effective elastic proper-
ties of triangular lattice with vacancies. As discussed in Section 2, the interaction between
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PHILOSOPHICAL MAGAZINE 9

(a) (b)

Figure 4. Ratios of the Poisson’s ratio and bulk modulus of the lattice with doubly periodic systems
of vacancies to their values for the lattice without vacancies (ν0 = 1/3) as the cell size N increases
(concentration of vacancies decreases).

particles is modelled by linear elastic springs of stiffness c, and only interactions between
the nearest neighbours are considered. Bonds breaking and related phenomena are not
considered (see [40] for more details). We use the periodic boundary conditions for the
square cell containing large number of vacancies (Figure 5). From the computational point
of view, it is advantageous to consider the static problem as the limiting case of dynamic
problem with viscous friction as time tends to infinity. In the beginning of the simulation,
the particles are attributed to random velocities uniformly distributed in a circle of radius
v0. Equations of motion of the particles are solved numerically using Verlet symplectic
integration scheme [41].

Effective elastic moduli of the lattice with vacancies are calculated as follows. Initially,
the lattice is subjected to uniform strain. In order to calculate the bulk and shear moduli,
the cases εxx = εyy and εxx = −εyy are considered. In the presence of a vacancy, such state
is non-equilibrial. Hence, motions occur, which are then damped by viscous forces. After
certain time, the motions cease, and this state is treated as the elastostatic limit of interest.
Average traction vector is calculated in the cross sections with normal n = j. Then, bulk
and shear moduli are obtained by formulae (20). The following values of parameters are
used in the simulations:

M = 2.25 · 104, εxx = ±εyy = ±10−5,
b
b0

= 5 · 10−3,
�t
T∗

= 0.02,
v0
vs

= 10−4, smax = 25 · 103. (22)

where M is the number of particles; vs = a/T∗; T∗ is the period of oscillations of one
particle attached to a spring of stiffness c; b0 = 2

√
mc is the critical viscosity coefficient;

�t is the time step; smax the number of integration steps. For each value of porosity, 10
calculations with various random vacancy distributions have been carried out.

The effective elastic moduli of a lattice with random distribution of vacancies are shown
in Figure 6. In particular, Figure 6 demonstrates that the latticewith periodic distribution of
vacancies is stiffer than the one with random distribution. Note that the dependencies are
nearly linear for random distribution, whereas for periodic case, nonlinearity is visible. In
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10 V. A. KUZKIN ET AL.

(a)

(c)

(b)

(d)

Figure 5. (colour online) Triangular lattice with randomly distributed vacancies. Porosity is defined as
the fraction of those particles that have been removed: (a) p = 0.01, (b) p = 0.025, (c) p = 0.05, (d)
p = 0.1.

Section 5, the results of MD simulations are compared with predictions of the continuum
elasticity theory.

5. Comparison with continuum model for effective properties of triangular
lattice with vacancies

We examine to what extent the lattice with vacancies can be modelled as a continuum
elastic material with pores, and what shape should the pores have for adequate modelling.

For a lattice with vacancies, porosity is defined as the fraction of removed particles. For
example, in doubly periodic problem, p = 1/(2N + 1)2, where N determines the periodic
cell size. In the case of continuum 2-D elasticity, porosity is defined as the area fraction
of pores. Both definitions correspond to experimentally measurable quantities, in terms of
specific weight.

In continuum elasticity models (see e.g. [42–45]), the effective elastic moduli depend on
pore shapes, with the circular shape being the stiffest one among all shapes of given area.
Figure 6 shows that the circular pore shape assumption results in poor agreement with
discrete models: the discrete system is softer. This indicates that shapes other than circular
have to be chosen for the best matching.
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PHILOSOPHICAL MAGAZINE 11

(b)

(a)

Figure 6. The porosity dependence of the effective elastic moduli of a triangular lattice with periodic
(Section 3) and random (Section 4) distributions of vacancies: (a) the Poisson’s ratio, (b) the bulk
modulus. The moduli are normalised to their values in absence of vacancies. Comparison with the
continuum results for best-fit shape factors (solid line) and for circular pores (dashed line).

Stiffness of a pore can be described by shape factors h1, h2 that characterise the contribu-
tionof a pore to the overall compliances. Shape factorswerederived, for anumber of shapes,
by Kachanov et al. [43] who also found that the factor of concavity substantially increases
pore compliance and by Ekneligoda and Zimmerman [44,45]. Hence, the effective elastic
properties of a solid with pores depend, in addition to porosity p, on the shape factors. For
a 2-D material with randomly oriented pores, the effective moduli are given by:

E = E0
1 + 2h1p

, K = K0

1 + 2(h1 − h2)p/(1 − ν0)
,
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12 V. A. KUZKIN ET AL.

ν = ν0 + 2h2p
1 + 2h1p

, μ = μ0

1 + 2(h1 + h2)p/(1 + ν0)
, (23)

where shape factors h1, h2 for a number of polygonal shapes of varying degree of concavity
were calculated in papers [43–45]. For a circle, h1 = 1.5, h2 = 0.5; for other shapes, hi are
larger.

Trying to match the effective moduli given by the discrete model calculations by
the moduli of an elastic plate with pores of the circular shape – while keeping porosity p
the same as in the lattice – results in poor agreement (Figure 6). Good fit is provided by the
following shape factors: h1 = 2.036, h2 = 0.810. Note, however, that the geometrical shape
corresponding to these values is not immediately identifiable (and may not be unique).
Attention should also be drawn to the increase in the Poisson’s ratio with the porosity, as
this behaviour is opposite to that observed for polycrystalline materials [46].

Thus, from the viewpoint of effective moduli, triangular lattice with vacancies can
be modelled by an elastic plate with holes (that has the same porosity). However, the
geometrical shape of the holes required for the best fit is not circular, and is not easily
identified. Hence, for other lattice types, the best-fit shape factors of holes need to be
computed anew, for each lattice type.

6. Inadequacy of continuummechanics modelling of local fields

In an elastic plate with a hole, the presence of the hole leads to concentration of stresses.
The stress concentration factor for a circular hole under imposed volumetric strain is equal
to 2 at all points of the boundary; for other shapes, the maximal, around the boundary,
concentration factor is higher. Vacancy causes similar effect; however, calculation of stress
concentration factor is not straightforward, since stresses in discrete media are defined
somewhat ambiguously [47,48].

(a) (b)

Figure 7. Strain concentration at uniaxial loading: (a) along the horizontal axis (σ0xx = 0, σ0yy = σ0),
(b) along the vertical axis (σ0xx = σ0, σ0yy = 0). The bonds, where the maximum strain is reached, are
crossed.
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PHILOSOPHICAL MAGAZINE 13

We define and compute the strain concentration factor, k, as the ratio of the maximal
deformation of the bonds adjacent to the vacancy to the deformations of bonds at infinity.
In the case of volumetric deformation, the maximum elongation is reached in the bonds
that surround the vacancy. Calculating the strain concentration factor, kvol , using formula
(13), we get:

kvol = u1,0∞
aε

≈ 1.642, (24)

that is substantially smaller than the value of 2 for the circular hole; the difference with
non-circular shape(s) providing the best fit for the effective moduli will be larger.

The difference is even larger for othermodes of loading. Consider, for example, uniaxial
loading of the triangular lattice with vacancy in horizontal, y, and vertical, x, directions
(Figure 2). The mean deformations corresponding to uniaxial stress loading in horizontal
direction have the form:

εxx = −ν0ε, εyy = ε, ν0 = 1
3

⇒ εu = εv = 0, εw = ε. (25)

As expected, the maximum elongation is reached in the bonds bordering the vacancy
(Figure 7(a)). The strain concentration factor calculated using displacement field (18),
(19) is:

ky ≈ 1.283, (26)

that is much smaller than the factor of 3 in the continuum Kirsch problem for a circular
hole (that is even higher for non-circular shapes).

Now, consider the uniaxial stress loading in vertical, x, direction:

εxx = ε, εyy = −ν0ε ⇒ εu = εv = 2
3
ε, εw = −1

3
ε. (27)

Calculating the strain concentration factor using displacement field (18), (19) we obtain:

kx ≈ 1.449, (28)

that is, again, much smaller than the factor of 3 in the continuum problem.
The above examples show that the concentrations of fields near vacancies cannot be

adequately modelled in the framework of the continuum elasticity theory.

7. Conclusions

We have shown that, from the viewpoint of the effective elastic properties, a lattice
with vacancies can be modelled in the framework of 2-D elasticity (plate with holes).
However, the strength characteristics and local fields – in particular, strain concentrations
near vacancies – cannot be adequately modelled in the said framework. The absence of
correlations between pore compliances and local fields has been noted earlier, in a different
context by Ekneligoda and Zimmerman [49].

We note that hole shape factors required for the best fit are substantially different from
the ones for a circle. We add that the geometrical shape corresponding to the mentioned
shape factors is not easily identifiable (and may even be non-unique).

D
ow

nl
oa

de
d 

by
 [

St
 P

et
er

sb
ur

g 
St

at
e 

T
ec

hn
ic

al
 U

ni
ve

rs
ity

] 
at

 0
1:

42
 1

5 
A

pr
il 

20
16

 



14 V. A. KUZKIN ET AL.

The problem of continuum mechanics modelling of lattices was considered in the 2-D
formulation, and this is relevant for a number of material systems (such as 2-D colloids,
graphene, boron nitride, etc.). However, the general conclusions reached on limitations of
such modelling are relevant for 3-D lattices as well.

Note

1. Poisson’s ratio for a triangular lattice with the nearest neighbours interactions is equal to 1/3.
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Appendix 1. General solution of a discrete doubly periodic problem
Consider the general solution of the discrete doubly periodic problem (8), (9). Substituting (9) into
the equilibrium Equations (8) yields the equations with respect to doubly periodic function ũn,m:

(�u − β+
u − β−

u )̃un,m + (�w − β+
w − β−

w )(̃un,m + ṽn,m) = du + dw ,
(�v − β+

v − β−
v )̃vn,m + (�w − β+

w − β−
w )(̃un,m + ṽn,m) = dv + dw ,

n,m = −N , . . . ,N , (A1)

where

du = εua(δn−1,m − δn+1,m), dv = εva(δn,m−1 − δn,m+1),
dw = εwa(δn−1,m−1 − δn+1,m+1), εs = es · ε · es, s = u, v,w. (A2)

Thus, we obtain a system of 2(2N + 1)2 equations for the displacements. Due to the fact that
ũn,m is a doubly periodic function, it is convenient to seek the solution of (A1) using the DFT. This
allows to satisfy the conditions of double periodicity (9) automatically. The direct and inverse DFTs
have the forms:

Zs,p = �(zn,m) =
N∑

n,m=−N

zn,mξ−sn−mp, ξ = eiθ , θ = 2π
2N + 1

,

zn,m = �−1(Zs,p) = 1
(2N + 1)2

N∑
s,p=−N

Zs,pξ sn+mp, (A3)

where i is the imaginary unit. Thus, the system of equations for the Fourier images Us,p = �(un,m),
Vs,p = �(vn,m) yields:

(
sin2

sθ
2

+ sin2
(s + p)θ

2

)
Us,p + sin2

(s + p)θ
2

Vs,p = Q1,

sin2
(s + p)θ

2
Us,p +

(
sin2

pθ
2

+ sin2
(s + p)θ

2

)
Vs,p = Q2, (A4)
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PHILOSOPHICAL MAGAZINE 17

where Q1, Q2:

Q1 = Ys,p − ia
2

(
εu sin sθ + εw sin (s + p)θ

)
,

Q2 = Yp,s − ia
2

(
εv sin pθ + εw sin (s + p)θ

)
,

Ys,p = 1
4

[
w̃1,1(ξ−p−s − 1) + w̃−1,−1(ξp+s − 1) + ũ1,0(ξ−s − 1) + ũ−1,0(ξ s − 1)

]
. (A5)

Note, that, if s = p = 0, the equations hold identically, hence, U0,0, V0,0 are arbitrary. The
determinant of the system is:

Ds,p = sin2
sθ
2
sin2

pθ
2

+ sin2
pθ
2

sin2
(s + p)θ

2
+ sin2

sθ
2
sin2

(s + p)θ
2

. (A6)

Solving the equations for images and using the inverse DFT, we obtain the doubly periodic part
of the displacements:

ũn,m = �−1
(

1
Ds,p

[
Q1

(
sin2

pθ
2

+ sin2
(s + p)θ

2

)
− Q2 sin2

(s + p)θ
2

])
,

ṽn,m = �−1
(

1
Ds,p

[
Q2

(
sin2

sθ
2

+ sin2
(s + p)θ

2

)
− Q1 sin2

(s + p)θ
2

])
. (A7)

Formula (A7) gives the general solution of the discrete doubly periodic problem for a triangular
lattice with vacancies.

Appendix 2. Displacement field in the case of volumetric mean strain
Let us calculate the displacement field around a vacancy in the case of volumetric mean strain:

ε = εI, εu = εv = εw = ε. (B8)

Due to symmetry of the problem, displacements of the particles that surround the vacancy satisfy
the identities:

ũ1,0 = −ũ−1,0 = ũ1,0eu, ũ0,1 = −ũ0,−1 = ũ1,0ev , ũ1,1 = −ũ−1,−1 = ũ1,0ew. (B9)

Thus, the right parts of (A4) have the form:

Q1(s, p) = − i
(
aε + ũ1,0

)
2

[sin sθ + sin (s + p)θ ], Q2(s, p) = Q1(p, s). (B10)

Solving (A4) with the use of (B10) and the inverse DFT, we obtain:

ũn,m = ṽm,n = − (
aε + ũ1,0

)
Gn,m,

Gn,m = 1
2(2N + 1)2

N∑
s,p=−N

sin ((sn + pm)θ)

Ds,p

(
sin pθ sin2

sθ
2

− sin sθ sin2
(s + p)θ

2

)
. (B11)

In order to exclude ũ1,0, we substitute n = 1,m = 0. Finally, the displacement field in the triangular
lattice with doubly periodic system of vacancies under volumetric mean strain has the form:

un,m = vm,n = aε
(
n − m

2
− Gn,m

1 + G1,0

)
. (B12)
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18 V. A. KUZKIN ET AL.

Appendix 3. Displacement field in the case of biaxial mean strain
Let us calculate the displacement field in the case of biaxial mean strain along the orthogonal
directions i = (eu − ev)/

√
3 and j = eu + ev . The mean strain tensor is given by:

ε = εxx

3
(eu − ev)(eu − ev) + εyyewew , εu = εv = 3εxx + εyy

4
, εw = εyy. (C13)

Due to symmetry of the problem, displacements of the particles that surround the vacancy satisfy
the identities:

ũ1,0 = −ũ−1,0, ṽ0,1 = −̃v0,−1, ũ1,0 = ṽ0,1, w̃1,1 = −w̃−1,−1. (C14)

The displacements ũ1,0, w̃1,1 are independent variables. The right parts of (A4) yield:

Q1(s, p) = Q2(p, s) = − i
2

[
(aεu + ũ1,0) sin sθ + (aεw + w̃1,1) sin (s + p)θ

]
. (C15)

Hence, the doubly periodic part of the displacements has the form:

ũn,m = ṽm,n = Hn,m(aεu + ũ1,0) + Kn,m(aεw + w̃1,1), (C16)

where Hn,m,Kn,m are defined by formula (19). Substituting n = 1,m = 0 and n = 1,m = 1 into
(C16) yields a system of equations for ũ1,0, w̃1,1. The solution of this system is:

ũ1,0 = a
(H1,0(1 − 2K1,1) + 2H1,1K1,0)εu + K1,0εw

(1 − H1,0)(1 − 2K1,1) − 2K1,0H1,1 ,

w̃1,1 = 2a
H1,1εu + (K1,1(1 − H1,0) + H1,1K1,0)εw

(1 − H1,0)(1 − 2K1,1) − 2K1,0H1,1 . (C17)

Thus, substitution of (C17) and (9) into (C16) gives the displacement field in the crystal with
vacancies under biaxial strain. Note that coefficients in the formulae (C16), (C17) depend only on
the distance between the vacancies, i.e. on the parameter N .
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