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a b s t r a c t 

In this work the energy transfer in a one-dimensional harmonic crystal is investigated. In particular, a 

comparison between the discrete approach presented by Klein, Prigogine, and Hemmer with the contin- 

uum approach presented by Krivtsov is made. In the pioneering work of Klein and Prigogine the trans- 

fer of thermal energy is considered. In particular, an expression is obtained, which allows to calculate 

the thermal energy of each particle as a function of time. Later, Hemmer derived and used similar ex- 

pressions to solve several particular problems in context of heat conduction. In the work of Krivtsov—in 

contrast to the discrete approach—a partial differential continuum equation is derived from the lattice dy- 

namics of a 1D harmonic crystal. This so-called ballistic heat equation describes the propagation of heat 

at a finite speed in a continuous one-dimensional medium. The current work compares analyses based 

on the discrete equation of Klein, Prigogine, and Hemmer with those from the continuum-PDE-based one 

by Krivtsov. There is an important difference between the approaches. The continuum approach is de- 

rived from the dynamics of the crystal lattice, in which only kinetic degrees of freedom were excited and 

then thermal equilibration occurred. In contrast to that we consider in the discrete approach explicitly 

given equal kinetic and potential initial energies. Several exactly solvable initial problems are studied by 

using both methods. The problem of point perturbation shows a discrepancy in the results obtained in 

the framework of the continuous and discrete approaches. It is caused by the fact that the smoothness 

conditions of the initial perturbation is violated for the continuum approach. For other problems it is 

shown that at large spatial scales, where the one-dimensional crystal can be considered as a continuous 

medium, the discrete and the continuum relations converge. The asymptotic behavior of the difference 

between two aforementioned approaches is analyzed. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The one-dimensional chain is a very instructive object for in- 

estigating properties of crystals on the micro- and nanoscale. It 

llows to derive all statistical quantities analytically from the dy- 

amics of the lattice. One of the first pioneering papers where the 

ne-dimensional chain was examined goes back to Schrödinger in 

914, [1] . An exact solution for the displacements of particles for 

n arbitrary initial configuration in terms of Bessel functions was 

btained. It was observed that unlike to the case of signals in an 

lastic string the perturbations in the one-dimensional harmonic 

hain propagate at an infinite speed. 

Later these results were used by Klein and Prigogine [2] for 

he description of stochastic non-equilibrium transient processes 
∗ Corresponding author. 
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n a 1D chain. A formula, which determines the evolution of ini- 

ial distribution of individual particles’ energies, was obtained. Af- 

erwards, in 1959, Hemmer obtained a similar expression [3] and 

llustrated some important aspects of this process based on the ex- 

mple of several initial value problems. Hemmer pointed out that 

he process described by this formula is not consistent with the 

lassical law of Fourier. However, no continuum based alternatives 

ere proposed at that time. In several later works including [4,5] it 

as shown that, indeed, the heat flow in a one-dimensional har- 

onic crystal cannot be described by Fourier’s law in the station- 

ry non-equilibrium case. Since then, discrete systems were con- 

idered by many authors as an attractive model for the investiga- 

ion of heat conduction [6–12] . However, a number of questions 

egarding continuum description remain to be addressed. 

Recently, a continuum based approach was proposed by 

rivtsov in [13,14] . This approach is aimed at building contin- 

um models of heat conduction based on lattice dynamics. In the 

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121442
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2021.121442&domain=pdf
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ast years this approach was extensively developed for more com- 

lex systems [15–22] . It was shown by Krivtsov that in the one- 

imensional chain two different types of processes occur, namely 

a) fast motions [13] , when the kinetic and potential energies equi- 

ibrate, and (b) slow motions [14] , when the temperature propa- 

ates along the spatial coordinate. By using covariance analysis an 

quation for the generalized nonlocal temperatures was obtained 

rom the lattice dynamics, and after spatial continualization a con- 

inuum equation for the temperature was obtained in [14] . This 

quation describes the propagation of heat in a one-dimensional 

hain at a finite speed (this is a “slow” process (b)). The finite sig- 

al speed in this model does not contradict the results showing in- 

nite speed of mechanical signals in discrete systems [1,3,7] since 

n the derivation of Krivtsov [14] coarse graining of the initial dis- 

rete model is performed. The model introduced in [14] is a rel- 

vant model for the description of the ballistic heat process on a 

ontinuum scale. However, it lacks the ability to describe several 

henomena observed on the discrete level. 

The aim of the presenting work is to consider the process of 

eat conduction in a 1D crystal from the viewpoints of two ap- 

roaches: the continuum and the discrete one. In order to illus- 

rate the differences and the similarities of the approaches, several 

nitial problems are considered. 

. One-dimensional harmonic chain 

The harmonic chain allows us to investigate anomalous heat 

onduction phenomena in a simple and powerful manner. Fol- 

owing on to the work [14] we consider an infinite harmonic 

hain. Each particle with mass m is connected to its neighbors by 

ookean springs with stiffnesses C. The equation for the particle 

otion reads in nearest neighbor approximation: 

¨
 n = ω 

2 
0 (u n −1 − 2 u n + u n +1 ) , ω 0 = 

√ 

C 

m 

, (1) 

here u n is the displacements of the particle with index n , dot 
˙ ... ) denotes a derivative with respect to time t . Let us consider the 

hain described by (1) with the following stochastic initial condi- 

ions: 

 n | t=0 = 0 , ˙ u n | t=0 = σ (x ) ρn , (2) 

here ρn are independent random variables with zero mathemat- 

cal expectation 〈 ρn 〉 = 0 and unit variance 〈 ρ2 
n 〉 = 1 (see for de-

ails Ref. [14] ); σ (x ) is the smooth function of a spatial coordinate

 = an ; σ 2 is the variance of the initial particle velocity; a is a dis-

ance between neighboring particles at the equilibrium. Such initial 

onditions can be implemented by an ultrafast laser heating [23] . 

For a spatially homogeneous problem σ (x ) = const , after the 

eginning of the process described by Eq. (1) and the initial con- 

itions (2) , the kinetic and potential energies of each particle os- 

illate, until they eventually tend to an equal value. These oscilla- 

ions decay according to a power law (for an analytical explanation 

ee [13,22] and Section 5 in this work). At large times, t � 2 π/ω 0 

he energies can be assumed equal. We will now explain this pro- 

ess in more detail. 

Following [13,14,24] we introduce the kinetic, potential, and to- 

al specific (per particle) energies, K n , P n , E n of a particle, respec-

ively: 

 n = 

1 

2 

m 〈 ̇ u 

2 
n 〉 , P n = 

1 

2 

C〈 ε2 
n 〉 , E n = K n + P n , (3)

here εn = u n − u n +1 (this definition is after works [1,3] ), and 〈 ... 〉
s the mathematical expectation value. At the initial moment, t = 0 , 

he displacements and deformations are zero, and the velocities 

re assigned randomly to the particles, according to Eq. (2) . There- 

ore the initial kinetic energy K 

0 
n = K n | t=0 will be equal to the total
2 
nergy, and the potential initial energy P 0 n = P n | t=0 is zero: 

 

0 
n = E n , P 0 n = 0 . (4) 

he kinetic and potential energies will equilibrate at large times: 

 n | t�2 π/ω 0 
� P n | t�2 π/ω 0 

. New equilibrated energies can be in- 

roduced K 

eq 
n = K n | t�2 π/ω 0 

, P 
eq 
n = P n | t�2 π/ω 0 

. Thus, the following

quality holds: 

 

eq 

n = P 
eq 

n = 

E n 

2 

. (5) 

fter this transition process the kinetic temperature can be defined 

roportional to the kinetic energy: 

1 

2 

k B T n 
def = K 

eq 
n = 

E n 

2 

, (6) 

here k B is the Boltzmann constant. Note that the definition of 

emperature in non-equilibrium is a classical challenge that has 

eceived considerable attention in the community [25–28] . The 

quality k B T = E, which follows from (6) , corresponds to the de- 

cription of a classical harmonic oscillator in contact with a heat 

ath of temperature T (see Appendix B ). Alternatively to the def- 

nition (6) one can assume each particle to be at local quasi- 

quilibrium with its surroundings and, following the considera- 

ions from Appendix B , define the temperature as proportional to 

he total energy k B T = E. This case, however, is beyond the scope 

f this work. 

.1. The continuum approach of Krivtsov [14] 

Recall the equation of motion (1) and the initial conditions (2) . 

n case of a spatially nonhomogeneous problem, σ (x ) � = const and 

hen σ (x ) is a smooth function, the following equation, which de- 

cribes the dynamics of the kinetic temperature field T (x, t) can be 

erived based on the analysis of equations of motions (1) (see for 

etails [29] ): 

 ̈+ 

1 

t 
˙ T = c 2 T ′′ , c = ω 0 a. (7) 

ere c is the speed of sound in the one-dimensional crystal, prime 

... ) ′ denotes derivative with respect to spatial coordinate x . In the 

ramework of the continuum model we assume that 

• the spatial coordinate x is continuous, x ∈ R ; 
• the relation following from (6) , 

k B T (x ) = E(x ) (8) 

is considered to hold for all values of the spatial coordinate x . 

The initial conditions which follow from the stochastic initial 

onditions (2) are used with Eq. (7) : 

 | t=0 = T 0 (x ) , ˙ T | t=0 = 0 , (9) 

here T 0 (x ) is the initial temperature profile. The initial condi- 

ions (9) for the PDE (7) are the consequence of the initial condi- 

ions (2) for the Eq. (1) of lattice dynamics. A solution for this ini-

ial value problem (7) , (9) can be found in the following form [24] :

 (x, t) = 

1 

π

1 ∫ 
−1 

T 0 (x − cts ) √ 

1 − s 2 
ds = 

1 

2 π

2 π∫ 
0 

T 0 
(

x + ct cos 
p 

2 

)
d p. (10) 

he second relation for the kinetic temperature in (10) shows that 

here is no singularity, which by premature judgment of the form 

f Eq. (7) seems to occur at t = 0 . 

In the case when σ (x ) is a slowly varying function of coordi- 

ate, first, at each point in space, thermal equilibration occurs lo- 

ally, similar to the one described above for the spatially homo- 

eneous problem. The initial kinetic temperature T 0 is defined as 
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roportional to the kinetic energy (5) that is reached after equili- 

ration: 

 

0 = 

2 K 

eq 

k B 
= 

mσ 2 

2 k B 
. (11) 

et us comment on the term “initial” used in Eq. (11) . Strictly 

peaking, the relation (8) holds only for large times. However, in 

q. (11) we assume Eq. (5) valid from the very beginning of the 

rocess. This assumption is an approximation. 

To summarize, there are limitations to (7) . The continuous ap- 

roach implicitly assumes that 

• the process of thermal equilibration in the case of slowly vary- 

ing σ (x ) is close to the one observed in the case of constant

σ (x ) ; 
• the ballistic heat Eq. (7) becomes valid only for large times after 

equilibration, i.e., when (8) holds. 

.2. The discrete approach 

Following on to the works [2,3] the infinite system of equations 

f motion (1) is considered. The following quantities [1] are intro- 

uced (they are called Schrödinger coordinates in [3] ): 

2 n 
def = m 

1 
2 ˙ u n , ξ2 n +1 

def = C 
1 
2 (u n − u n +1 ) . (12) 

t is seen (for more details see [1,2] ) that the system of Eq. (1) can

e solved in terms of (12) , giving the solution 

n = 

∞ ∑ 

k = −∞ 

ξ 0 
n J n −k (2 ω 0 t) , (13) 

here J n is the Bessel function of the first kind, ξ 0 
n are the values 

f ξn at the initial moment of time. Eq. (13) describes the evolution 

f coordinates ξn based on the deterministic initial values ξ 0 
n . 

Following [2] let us now assume that the initial conditions ξ 0 
n 

re random and obey 〈 ξ 0 
n 〉 = 0 , 〈 ξ 0 

k 
ξ 0 

n 〉 = δk,n , where δk,n is the

ronecker delta, since we are interested in the macroparameters 

f the system, e.g., the temperature. Following [2] we introduce the 

alues 

 n = 

1 

2 

〈 ξn 
2 〉 . (14) 

t was shown in [2,3] that the evolution of (14) can be described 

y the relation 

 n ( t ) = 

∞ ∑ 

k = −∞ 

E 0 k J 
2 
n −k ( 2 ω 0 t ) , (15) 

here E 0 n = 

1 
2 〈 ξ 0 

n 
2 〉 are the values of (14) at the initial moment of

ime. From (14) , (12) , (3) follows that introduced values (14) are 

onnected with kinetic and potential respectively 

 2 n = K n , E 2 n +1 = P n . (16) 

herefore, it is seen from Eq. (6) and the first equality 

rom (16) that the kinetic temperature T n of a particle with index 

 can be calculated by use of (15) , 

 B T n = 2 E 2 n = 2 

∞ ∑ 

k = −∞ 

E 0 k J 
2 
2 n −k (2 ω 0 t) . (17)

To summarize this section, two expressions describing the evo- 

ution of initial temperature field are considered. One is a function 

f time and spatial coordinate (10) , the other is a function of time

nd the particle index (17) . We will further compare the tempera- 

ure fields described by both equations using the examples of sev- 

ral initial value problems. 

Within the framework of the discrete approach, there are initial 

alues E 0 
2 n 

and E 0 
2 n +1 

, they correspond to kinetic and potential en- 

rgies respectively of a particle with index n at the position x = an .
3 
s discussed above, the continuum approach implies local thermal 

quilibration. Thus these initial values are assigned with an equal 

alue corresponding to the kinetic temperature in the continuum 

odel T 0 (x ) at the coordinate x = an , i.e., 

 

0 
2 n = E 0 2 n +1 = k B T 

0 (an ) / 2 . (18) 

. Comparison of the approaches 

In the next sections, we will consider several initial value prob- 

ems (see Tab. 1 ) for the two aforementioned approaches. 

The approaches are compared in dimensionless form. Equa- 

ion (7) depends on the continuous coordinate x while (15) de- 

ends on the dimensionless index n . A dimensionless coordinate is 

hosen as ˜ x = x/a . In this case x matches the position of the parti-

le with index n , namely x = an , then ˜ x = n . We choose τ = ω 0 t as

he dimensionless time. For the temperature we choose ˜ T = T /T ref , 

here T ref is the background temperature. 

.1. The problem of point thermal perturbation 

Continuum approach. Let us consider an initial localized in- 

nitely narrow perturbation. For the continuum Eq. (7) the initial 

onditions are modeled by the Dirac delta function δ(x ) , 

 

0 (x ) = a 
T δ(x ) . (19) 

ubstitution of the initial conditions (19) into the first relation 

rom (10) gives the solution of Eq. (7) : 

 (x, t) = 

a 
T H(ct − | x | ) 
π

√ 

c 2 t 2 − x 2 
, (20) 

here H(x ) is the Heaviside function. Eq. (20) in dimensionless 

orm reads: 

˜ 
 ( ̃  x , τ ) = 

H(τ − | ̃  x | ) 
π

√ 

τ 2 − ˜ x 2 
. (21) 

The total energy assigned to the system E tot at time t = 0 , ac-

ording to initial conditions Eqs. (20) and (8) is: 

 

tot = 

∫ ∞ 

−∞ 

ρ E(x ) d x = 

∫ ∞ 

−∞ 

ρk B 
T aδ(x )d x = k B 
T , (22)

here ρ = 1 /a is the number of particles per unit length. 

Discrete approach. A similar problem at the discrete level is mod- 

led by the perturbation of the one kinetic and one potential de- 

ree of freedom. Local equilibration is assumed. In this case, the 

nitial conditions are written 

 

0 
n = 

k B 
T 

2 

[ δn, 0 + δn, 1 ] . (23) 

ote that the energy of the system is 

 

tot = 

∞ ∑ 

n = −∞ 

E 0 n = k B 
T , (24) 

hich agrees with (22) . By substituting the initial condi- 

ions (23) into Eq. (15) the solution reads [3] : 

 n = 

k B 
T 

2 

[
J 2 n (2 τ ) + J 2 n −1 (2 τ ) 

]
. (25) 

he relation for the temperature is obtained by using Eq. (25) to- 

ether with (17) : 

 n = 
T 
[
J 2 2 n (2 τ ) + J 2 2 n −1 (2 τ ) 

]
. (26) 

y taking into account T ref = 
T , the dimensionless form 

f (26) reads: 

˜ 
 n (τ ) = J 2 2 n (2 τ ) + J 2 2 n −1 (2 τ ) . (27) 

It is seen in Fig. 1 that the solution (27) has discrepancies with 

ontinuum solution (21) , especially near the wavefront ˜ x = τ . The 
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Table 1 

Initial conditions for considered problems: point, step and rectangular initial profiles T 0 . 

Point Step Rectangular 

Plot 

Continuum, T 0 
Taδ(x ) 

{

T, x ≥ 0 

0 , x < 0 

{

T, −l ≤ x ≤ l 

0 , x < −l, x > l 

Discrete, E 0 n 
k B 
2 

T [ δn, 0 + δn, 1 ] 

{
k B 
2 

T, n ≥ 0 

0 , n < 0 

{
k B 
2 

T, −2 N ≤ n ≤ 2 N + 1 

0 , n < −2 N, n > 2 N + 1 

Fig. 1. Comparison of continuum (21) (red line) and discrete (27) (blue connected crosses) solutions for an initial point thermal perturbation at different values of dimen- 

sionless time τ . 
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t

ontinuum solution is an average curve for the discrete points. This 

ismatch between the obtained solutions is due to the fact that on 

he discrete level the function describing initial perturbation (23) is 

ot smooth in space. A rigorous comparison of point perturbations 

eserves a separate consideration and is beyond the scope of this 

ork. 

.2. The heat step problem 

Continuum approach The contact between a hot and a cold half- 

pace is investigated. For Eq. (7) this problem was first considered 

n [14] . The problem is described by the following initial condi- 

ions: 

 

0 = 

{

T , x ≥ 0 , 

0 , x < 0 . 
(28) 

n [14] the solution of Eq. (7) with the initial conditions (28) was 

btained, 

 (x, t) = 

{ 
T 
π arccos 

(
− x 

ct 

)
, | x | ≤ ct, 


T , x > ct, 
0 , x < −ct. 

(29) 

q. (29) can be represented in dimensionless form as follows: 

˜ 
 ( ̃  x , τ ) = 

{ 

1 
π arccos 

(
− ˜ x 

τ

)
, | ̃  x | ≤ τ, 

1 , ˜ x > τ, 

0 , ˜ x < −τ, 

(30) 

here the temperature is normalized by 
T . 

Discrete approach. Following the work [3] , the initial problem, 

orresponding to (28) is considered. According to (18) , 

E 0 n = 

1 
2 

k B 
T , n ≥ 0 , 

E 0 n = 0 , n < 0 . 
(31) 
4 
y substituting the initial conditions (31) into Eq. (15) the solution 

s: 

 n = 

1 

2 

k B 
T 

+ ∞ ∑ 

k = −n 

J 2 k (2 ω 0 t) . (32) 

y applying Eqs. (17) to (32) , the corresponding kinetic tempera- 

ures are obtained: 

 n = 
T 

+ ∞ ∑ 

k = −2 n 

J 2 k (2 ω 0 t) . (33) 

n dimensionless form Eq. (33) reads: 

˜ 
 n = 

+ ∞ ∑ 

k = −2 n 

J 2 k (2 τ ) . (34) 

Relation (34) can be transformed by using the relation 1 = 

 

2 
0 (2 τ ) + 2 

∑ + ∞ 

k =1 
J 2 
k 
(2 τ ) (see [30] pg. 363 for details) to avoid in-

nite summation: 

˜ 
 n = 

{
1 
2 

(
1 + J 2 0 (2 τ ) + 2 

∑ 2 n 
k =1 J 

2 
k 
(2 τ ) 

)
, n ≥ 0 , 

1 
2 

(
1 − J 2 0 (2 τ ) − 2 

∑ −2 n −1 
k =1 J 2 

k 
(2 τ ) 

)
, n < 0 . 

(35) 

The solutions (30) and (34) are plotted in Fig. 2 for comparison. 

he continuum equation (7) describes the propagation of heat with 

nite speed. In the region ˜ x > τ and ˜ x < −τ the original tempera- 

ure distribution remains. It can be seen in Fig. 2 that the contin- 

um solution (30) has a pronounced wavefront which has vertical 

angent, a jump in the spatial derivative, and propagates at finite 

peed. The discrete solution tends to converge to the continuum 

ne except for a region near the wavefront, where it detaches from 

ontinuum curve and smoothly reaches the horizontal line (see in- 

et Fig. 2 ). 

It can be seen from Fig. 3 that on the large times, i.e., if the dis-

ance traveled by a thermal wave greatly exceeds the interatomic 
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Fig. 2. Propagation of the heat front for the problem of a heat step for the continuum (30) (red solid line) and the discrete (34) (blue connected crosses) solutions at 

different values of dimensionless time τ . 
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istance, the solutions converge and the discrete and the contin- 

um solution become indistinguishable for an observer on that 

cale. 

.3. Rectangular initial perturbation. Comparison on a large scale 

Continuum approach. Let us consider a rectangular initial tem- 

erature perturbation. It was considered in [31] in context with 

he ballistic heat equation. The initial conditions are written as 

 

0 (x ) = 
T for | x | ≤ l, otherwise T 0 = 0 , where l is the width of

he initial impulse. We are interested in the behavior at large 

imes. The solution for t > l/c, x ≥ 0 is the following one [31] : 

 (x, t) = 

⎧ ⎨ 

⎩ 

0 , ct + l ≤ x, 

T 
π arccos x −l 

ct 
, ct − l ≤ x ≤ ct + l, 


T 
π

(
− arccos x + l 

ct 
+ arccos x −l 

ct 

)
, 0 ≤ x ≤ ct − l;

(36) 

or x < 0 the solution is symmetric. Eq. (36) in dimensionless form 

eads: 

˜ 
 ( ̃  x , τ ) = 

⎧ ⎨ 

⎩ 

0 , τ + l/a ≤ ˜ x , 
1 
π arccos ˜ x −l/a 

τ , τ − l/a ≤ ˜ x ≤ τ + 

1 
π

(
− arccos ˜ x + l/a 

τ + arccos ˜ x −l/a 
τ

)
, 0 ≤ ˜ x ≤ τ − l/a. 

(37) 

Discrete approach. On the discrete level the initial conditions 

or the rectangular impulse are modeled as follows. The particles 
5 
ith indices from −N to N are thermally excited, aN = l. Thus 

hermal energies E 0 n with indices from −2 N to 2 N + 1 are excited. 

he degree of freedom with index 2 N + 1 is also excited, since we

ant that the kinetic and the potential degrees of freedom are 

oth equally excited. The amplitude of perturbation 

1 
2 k B 
T is cho- 

en to correspond to the initial conditions on to continuum level, 

s it was done in the problem of step perturbation. In analogy 

o (31) the initial conditions for the discrete problem are written 

s follows: 

E 0 
k 

= 

1 
2 

k B 
T , −2 N ≤ k ≤ 2 N + 1 , 

E 0 
k 

= 0 , k < −2 N, k > 2 N + 1 . 
(38) 

he solution for the initial conditions (38) is: 

 n = 

1 

2 

k B 
T 

2 N+1 ∑ 

k = −2 N 

J 2 n −k ( 2 ω 0 t ) . (39) 

rom Eq. (39) the temperature of a particle is calculated by using 

ormula (17) : 

 n = 
T 

2 N+1 ∑ 

k = −2 N 

J 2 2 n −k ( 2 ω 0 t ) . (40) 

he dimensionless form for the temperatures of particles with in- 

ex n thus reads: 

˜ 
 n ( τ ) = 

2 N+1 ∑ 

k = −2 N 

J 2 2 n −k ( 2 ω 0 t ) . (41) 
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Fig. 3. Kinetic temperature profiles for the continuum (red solid line) and the discrete(blue connected crosses) solutions for the problem of heat step (upper row) and the 

difference between discrete and continuum solutions (lower row) at different values of dimensionless time τ . 
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n large spatial scales the width of the initial rectangular pertur- 

ation (38) tends to zero compared to the spatial scale of obser- 

ation. In this context it is similar to the delta function (20) . The

mount of energy stored in the system is: 

 

tot = 

2 N+1 ∑ 

−2 N 

1 

2 

k B 
T = 

4 N + 1 

2 

k B 
T . (42) 

n the following paragraph the solutions (41) and (37) are com- 

ared. In order to keep the same amount of energy in both prob- 

ems, the solution (41) is normalized by the amount of stored en- 

rgy (42) when plotted in Fig. 4 . It is seen from Fig. 4 that for

arge times the discrete solution converges to the continuum one. 

he initial rectangular perturbation for the discrete equation is fi- 

ite, unlike for the delta function. Therefore, the discrete solution 

as no singularity at the wavefront, unlike the continuum solution 

or the delta function. 

The formula (39) , describing the propagation of rectangular ini- 

ial perturbation within the discrete approach, is obtained in this 

ork by using the general solution from [3] . 

.4. Rectangular initial perturbation. Comparison near the wavefront 

Let us now compare the discrete solution (39) and the con- 

inuum one for an initial rectangular perturbation (36) near the 

avefront (see Fig. 5 ). The behavior of the solution (36) was dis- 
6 
ussed in detail in [31] . It was shown in [31] that the width of

he wavefront does not change in time and only depends on the 

idth of the initial perturbation. The continuum solution has verti- 

al tangents and jumps in the spatial derivative at points ˜ x = τ − N, 

˜  = τ + N. 

Solutions for different initial width N at dimensionless time 

= 400 are presented in Fig. 5 . The spatial scale is normalized by 

he width of the initial impulse. Analogous to the case discussed 

n the section on the heat step perturbation, the discrete solution 

etaches from the continuum one in the points where the contin- 

um solution has a vertical tangent and the spatial derivative has 

 jump (see Fig. 5 (a)). However, if the initial perturbation is wider, 

hen the wavefront is observed on a bigger spatial scale, and this 

eviation becomes almost indistinguishable (see Fig. 5 (b)). 

. Asymptotics 

Eq. (17) shows that the solution of a discrete problem (as a 

unction of dimensionless time τ and particle index n ) is repre- 

ented as a superposition of terms of the form J 2 
2 n −k 

(2 τ ) , where k

s integer. We will consider the asymptotic behavior of the basic 

olution, k = 0 , 

 n = J 2 2 n (2 τ ) (43) 
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Fig. 4. Comparison of discrete (41) (blue connected crosses) and continuum (20) (red solid line) solutions at different values of dimensionless time τ . 

Fig. 5. Comparison of discrete (41) (blue connected crosses) and continuum (36) (red solid line) solutions for different initial impulse half-width l = aN. 
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or large distance n � τ and near the wavefront n ∼ τ � 1 . The 

esults obtained will also hold for solutions composed of a finite 

umber of terms in (17) . 

Large distance asymptotics The asymptotic representation of the 

essel function of large index (see [32] ) is given by 

 n (x ) ∼ e n 
(

x 

2 

)n 

n 

−2 n − 1 
2 

(
c 0 + 

c 1 
n 

+ 

c 2 
n 

2 
+ ... 

)
, c 0 = 1 / 

√ 

(2 π) , 

(44) 

here x is the argument and n is the index. We take only first 

erm c 0 of the asymptotic expansion (44) into account. Applying 

he expansion (44) to (43) gives 

 n (τ ) = J 2 2 n (2 τ ) ∼ 1 

2 π
e 4 n τ 4 n (2 n ) −4 n −1 . (45) 

he dominating decay behavior from formula (45) is: 

 n ∼ (2 n ) −4 n −1 . (46) 

rom Eq. (46) it can be concluded that already at several inter- 

tomic distances from the wavefront the perturbation is of the or- 

er 10 −10 . 

Asymptotics near the wavefront We are interested in the asymp- 

otics of (43) near the wavefront at large times. This corresponds 
7 
o n ∼ τ . The asymptotics of Bessel functions for near-equal index 

nd argument is given by Airy function Ai (x ) (see [17] for details), 

 n (x ) = 

(
2 

n 

)1 / 3 

Ai 

((
2 

n 

)1 / 3 

(n − x ) 

)
+ O 

(
n 

−1 
)
. (47) 

pplying (47) to (43) gives the approximation of the wavefront 

 n (τ ) ∼
(

1 

n 

)2 / 3 

Ai 
2 

((
1 

n 

)1 / 3 

(2 n − 2 τ ) 

)
. (48) 

q. (48) allows further analysis. Airy function can be represented 

y an approximation 

i (x ) = 

1 

2 

√ 

π
x −1 / 4 e −

2 
3 x 

3 / 2 

. (49) 

ubstitution of (49) into (48) gives 

 n (τ ) = 

1 

4 

√ 

2 πn 

√ 

1 − τ/n 

exp 

[
−8 

√ 

2 

3 

n 

(
1 − τ

n 

)3 / 2 
]
. (50) 

t is seen that for a fixed τ , for large n formula (50) gives 

 n (τ ) ∼ A 

e −Bn , (51) 

n 
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Fig. 6. Plot of basic solution (43) (blue connected crosses), large distance asymptotics (45) (red connected points), approximation (50) plotted for n > τ (green connected 

points). 
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here A = (4 
√ 

2 π) −1 , B = 8 
√ 

2 / 3 are the constants. In Fig. 6 , the

asic solution (43) , large distance asymptotics (45) , and an approx- 

mation by Airy function (48) are presented. 

The speed of signal propagation described by the discrete 

odel is infinite, however, it is seen from (46) that on large dis- 

ances the decay rate of the perturbation is very fast. In compar- 

son, the classical Fourier model, which also predicts an infinite 

peed of signal propagation has an exponential decay rate, which is 

lower. In the discrete model the major amount of energy is trans- 

erred with the speed of sound in the medium, which coincides 

ith the result of Krivtsov [14] . 

As seen from Fig. 6 (a), an approximation Airy function (48) is 

ood near the wave-front, but not so accurate for description of 

ecay behavior ar large-distances. On the large distances the for- 

ula (45) gives a better approximation as seen from Fig. 6 (b) on a

ogarithmic scale. 

. Equilibration of energies 

Let us now follow the paper [13] and consider a situation, when 

he crystal is uniformly heated at time zero. Only the kinetic de- 

rees of freedom are excited. For the discrete problem (15) the ini- 

ial conditions are written: 

 

0 
n = 
E 

∞ ∑ 

k = −∞ 

δn, 2 k . (52) 

y substituting (52) into (15) we obtain: 

 n (t) = 
E 
∞ ∑ 

k = −∞ 

J 2 n −2 k (2 ω 0 t) . (53) 

et us consider the solution (53) only for even or odd indices. It 

ields: 

 n (t) = 

{

E 

∑ ∞ 

k = −∞ 

J 2 
2 k 

(2 ω 0 t) , n is even , 


E 
∑ ∞ 

k = −∞ 

J 2 
2 k +1 

(2 ω 0 t) , n is odd . 
(54) 

et us consider the behavior of thermal energy associated with the 

inetic part, namely when n is even. An algebraic transformation 

see Appendix A ) of the first relation from (54) yields, 

 2 n (t) = 
E 
∞ ∑ 

k = −∞ 

J 2 2 k (2 ω 0 t) = 


E 
2 

[ 1 + J 0 (4 ω 0 t) ] , (55) 
8 
nd in the dimensionless form, 

˜ 
 2 n (t) = 

1 

2 

[ 1 + J 0 (4 τ ) ] . (56) 

ormula (56) was first derived from the discrete considerations 

n [2] . Formula (55) coincides with the formula derived in Ref. [13] ,

here it has been obtained from covariance based approach. 

We will finally compare the result (55) with a result obtained 

rom computer simulations, a.k.a. Molecular Dynamics. 

Numerical simulations Following [13,33] in the computer simula- 

ions we solve Eq. (1) numerically. In order to obtain the numerical 

olution we use the leap frog scheme: 

v i,k = ω 

2 
0 

(
u i +1 ,k − 2 u i,k + u i −1 ,k 

)

t, 

 i,k +1 = v i,k + 
v i,k , 
 i,k +1 = u i,k + v i,k +1 
t, 

(57) 

here in { . . . } i,k the first lower index refers to i -th particle, sec- 

nd lower index refers to k -th timestep of simulation, 
t is the 

imestep. We consider a chain with N particles in total and with 

eriodic boundary conditions, 

 1 = u N+1 , u 0 = u N . (58) 

n our simulation we use a timestep of 
t = 0 . 01 2 πω 0 
, 401 parti-

les and 10 4 realizations (samples). At timestep zero R realisations 

samples) of the system are generated. All particles have zero dis- 

lacements and random velocities corresponding to initial condi- 

ions (2) . The average over realizations 〈 . . . 〉 is used: 

 y 〉 = 

∑ R 
r=1 y 

r 

R 

, (59) 

here y is arbitrary quantity of interest, upper index { . . . } r refer to 

alue from r-th realization. 

As seen explicitly from right hand side of Eq. (56) for a homo- 

eneous problem behavior of kinetic energies does not depend on 

ndex n . Therefore, for certainty, in numerical calculation we con- 

ider the particle with index N+1 
2 and find the average (59) of it’s 

inetic energy as a function of a discrete time t k = k 
t: 

 K N+1 
2 

(t k ) 〉 = 

∑ R 
r=1 

1 
2 

m v r N+1 
2 ,k 

R 

. (60) 

n Fig. 7 the average kinetic energy of a (N + 1) / 2 -th particle

60) normalized to it’s initial value at time zero 〈 K (N+1) / 2 (0) 〉 and
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Fig. 7. Oscillations of kinetic energy. The red solid line refers to analytical expres- 

sion (55) , blue crosses are normalized kinetic energy (60) obtained from the simu- 

lation. 
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inetic energy calculated by analytical expression (56) are plotted. 

s seen from Fig. 7 the potential and kinetic energies equilibrate, 

hich corresponds to the virial theorem and was shown for a 1D 

rystal in [13] . In Ref. [18] this approach was extended to the de-

cription of such phenomena in 2D scalar lattices. However, it was 

hown in [18] that, in general, equilibrium temperatures, corre- 

ponding to different degrees of freedom of the unit cell, are not 

qual. This fact led to formulation of a non-equipartition theorem 

see Ref. [18] ). 

To sum up this section, it has been demonstrated that three ap- 

roaches: discrete (see Section 2.2 and Ref. [2,3] ), continuum (see 

ection 2.1 and Ref. [13] ), and numerical lead to the same result 

or the problem of a homogeneous initial perturbation. Potential 

nd kinetic energies oscillate according to formula (55) and tend 

o equal value for large times. This result is consistent with the 

eneral concepts of statistical mechanics. 

. Conclusions 

In this work, the heat conduction in the 1D chain is investi- 

ated. A comparison between the discrete approach from [2,3] and 

he continuum PDE derived in [14] was made. 

The continuum approach is based on excitation of only kinetic 

attice degrees of freedom, while initial potential degrees of free- 

om are zero. The function determining the amplitude of the ini- 

ial perturbation is considered to be a smooth function of the spa- 

ial coordinate. Such initial conditions lead to fast equilibration 

etween potential and kinetic energies locally in space. Strictly 

peaking, the obtained continuum PDE becomes valid after this ini- 

ial equilibration. However, within the framework of the proposed 

ontinuum approach, the equilibration time is approximately as- 

umed to be infinitely small and the proposed PDE is considered 

rom the moment t = 0 . On the other hand, the discrete approach

as no limitiations on the ratio between initial kinetic and poten- 

ial energies. However, in order to compare the discrete approach 

ith the continuum one, we consider the initial kinetic and po- 

ential energies to be explicitly equal for each particle respectively 

ithin the framework of the discrete approach. 

Examples of several initial profiles were considered. The prob- 

em of a point perturbation in a discrete system is of particular 

nterest since, strictly speaking, it does not satisfy the condition 

f smoothness of the continuum model. As a result, discrepancies 

etween kinetic temperature fields in the discrete and continuum 
9 
odels are observed. A rigorous description of point sources con- 

istent with both approaches is beyond the scope of this paper. 

For the rest of the considered problems, the discrepancy be- 

ween the discrete and continuous approaches is also caused by 

he nonsmoothness of the initial conditions. However, in this case, 

he difference between approaches become indistinguishable when 

onsidering the process on scales much larger than the equilibrium 

istance between particles. 

The discrete model [2,3] predicts infinite speed of signal propa- 

ation, in contrast to the continuum model [14] . Therefore, from 

he discrete viewpoint a localized initial perturbation causes an 

nstant change in the field at large distances far away from the 

ource. However, the asymptotical analysis of discrete model shows 

hat this change rapidly decays as the observer moves away from 

he source and can be neglected on larger scales. 

The obtained results help to understand the connection be- 

ween the discrete and continuum description of heat conduction 

n low dimensional structures and allow to choose the type of de- 

cription, depending on the considered scale level. 
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ppendix A. Representation of Bessel function of double 

rgument 

According to Ref. [30] the following relation holds: 

 0 (2 x ) = J 2 0 (x ) + 2 

∞ ∑ 

k =1 

(−1) k J 2 k (x ) . (A.1)

y adding and substituting 2 
∑ ∞ 

k =1 J 
2 
k 
(x ) from the right part of 

q. (A.1) we obtain: 

 0 (2 x ) = J 2 0 (x ) + 2 

∞ ∑ 

k =1 

[(−1) k + 1] J 2 k (x ) − 2 

∞ ∑ 

k =1 

J 2 k (x ) . (A.2)

he factor (−1) k + 1 in front of the Bessel function in the second 

erm of (A.2) is equal to zero for odd values of k and to 2 for even

alues of k . Applying the relation (see Ref. [30] ) 

 = J 2 0 (x ) + 2 

∞ ∑ 

k =1 

J 2 k (x ) (A.3) 

o Eq. (A.2) yields 

 0 (2 x ) = −1 + 2 J 2 0 (x ) + 4 

∞ ∑ 

k =1 

J 2 2 k (x ) , (A.4)

https://doi.org/10.13039/501100001659
https://doi.org/10.13039/501100006769
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nd by taking into account that J 2 
0 
(x ) + 2 

∑ ∞ 

k =1 J 
2 
2 k 

(x ) =
 ∞ 

k = −∞ 

J 2 
2 k 

(x ) it leads to: 

∞ ∑ 

 = −∞ 

J 2 2 k ( x ) = 

1 

2 

[ 1 + J 0 ( 2 x ) ] . (A.5) 

ppendix B. Mean energy of a harmonic oscillator 

Let us consider the classical harmonic oscillator in 1D in a con- 

act with a heat bath at temperature T . The oscillator’s Hamilto- 

ian is 

(q, p) = 

p 2 

2 m 

+ 

1 

2 

mω 

2 
0 q 

2 , (B.1) 

here p = m ̇ q is the momentum, q spatial coordinate of the oscil- 

ator. The partition function for this system is [34] 

 = 

1 

h 

∫ 
e −βH(q,p) d q d p , (B.2) 

here β = (k B T ) 
−1 is Boltzmann’s factor, h is Planck’s constant. 

he integration is done over all possible values of coordinate q and 

omentum p, and we denote here and further down 

∫ = 

∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

. 

y substituting the Hamiltonian (B.1) into (B.2) one obtains: 

 = 

1 
h 

∫ 
e 

−β
(

p 2 

2 m + 1 2 mω 2 0 q 
2 

)
d q d p = 

= 

1 
h 

∫ ∞ 

−∞ 

e −β p 2 

2 m d p 
∫ ∞ 

−∞ 

e −
1 
2 βmω 2 0 q 

2 
d q = 

= 

2 
βhω 0 

(∫ ∞ 

−∞ 

e −ξ 2 
d ξ

)2 = 

2 π
βhω 0 

= 

k B T 
h̄ ω 0 

, 

(B.3) 

here h̄ = h/ (2 π) is the reduced Planck constant. The mean value 

 A 〉 of the value A is found by using the relation [34] : 

 A 〉 = 

∫ 
f (q, p) A (q, p) dq dp , (B.4) 

here f (q, p) is the probability density function. The probability 

ensity function is calculated with the relation [34] 

f (q, p) = 

1 

hZ 
e −βH(q,p) . (B.5) 

y substituting the probability density function (B.5) into the re- 

ation for the mean value (B.4) and by applying it to the energy 

given by the Hamiltonian) one obtains: 

 E〉 = 

1 

hZ 

∫ 
e −βH H dq dp = 

1 

hZ 

∫ 
∂e −βH 

∂β
dq dp = 

1 

hZ 

d 

d β

∫ 
e −βH dq dp = 

1 

Z 

d Z 

d β
. 

(B.6) 

hen the mean energy of the system with partition func- 

ion (B.2) is 

 E〉 = 

d ln Z 

d β
= 

1 

β
= k B T . (B.7) 

or the description of non-equilibrium process discussed in 

ection 2 we can consider each particle as an oscillator in quasi- 

quilibrium with the surroundings, if the temperature profile is a 

lowly changing function. Thus one can define the temperature by 

he relation (B.7) . Equipartition theorem Let us consider the mean 

alues of the kinetic and the potential energies, K = p 2 / (2 m ) and

 = 

1 
2 mω 

2 
0 

q 2 , respectively, by using the relation (B.4) . Substituting 

he kinetic energy K into (B.4) yields 

 K〉 = 

1 

hZ 

∫ 
p 2 

2 m 

e −βH dq dp = 

2 

hZω 0 β2 

∫ ∞ 

−∞ 

e −ξ 2 

d ξ

∫ ∞ 

−∞ 

ζ 2 e −ζ 2 

d ζ = 

1 

2 h̄ ω 0 β2 Z 
= 

1 

2 
k B T. 

(B.8) 

n a similar manner one obtains the mean potential energy 

 P 〉 = 

1 

hZ 

∫ 
1 

2 

mω 

2 
0 q 

2 e −βH dq dp = 

1 

2 

k B T , (B.9) 

hich is equal to the mean kinetic energy. This result corresponds 

ith the equipartition theorem. More generally it states, that each 

ariable appearing quadratically in the Hamiltonian contributes 
1 k B T to the total average energy. 
2 

10 
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