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Transient diffusion and thermal processes in a finite one-dimensional harmonic crystal

A.M. Krivtsov,∗ A.S. Murachev,† and D.V. Tsvetkov
Department of Theoretical Mechanics, Peter the Great St. Petersburg Polytechnic University

In this paper, an instant homogeneous thermal perturbation in the periodic one-dimensional har-
monic crystal is studied. The exact solution for thermal and diffusive characteristics is obtained,
namely, particle velocity dispersion (kinetic temperature) and particle displacement dispersion. It is
found that thermal and diffusion processes demonstrate a quasi-periodic recurrence. The recurrence
interval is equal to the time it takes the sound wave to travel the half-length of the crystal. The
“thermal echo” (sharp peaks in kinetic temperature) occurs in the system with the specified peri-
odicity. Diffusion characteristics reveal large-scale time changes with a nearly complete return to
the initial state at each quasi-period. It is also shown that the spatial mean squared displacements
of particles are significantly different from the ensemble mean squared displacements.

I. INTRODUCTION

It is a difficult problem to develop an exact analyti-
cal model of non-stationary thermal and diffusion pro-
cesses observed at the molecular level. So far, it has
been done only for a limited group of systems. Con-
siderable progress has been achieved for harmonic crys-
tals [1–6] with linearized atomic interaction forces. Such
an approximation is justified if the temperatures are far
from melting points and the electronic subsystem does
not significantly contribute to the overall dynamics of
the crystal lattice. These conditions are naturally satis-
fied for covalent crystals. In the present paper, we an-
alyze non-stationary thermo-diffusion processes in finite
systems on the example of a one-dimensional harmonic
crystal. Thermal processes are those involving random
velocities of crystal particles and diffusion processes in-
volve random displacements.

There are two types of thermal processes in crystals:
fast and slow [6]. Fast processes are transient and are as-
sociated with energy redistribution between degrees of
freedom, and slow processes are associated with heat
transfer. In this paper, we will focus on fast processes
only, so that the system state can be regarded as spa-
tially uniform. Current technologies used to generate
and measure ultra-short laser impulses [7–9] will make ex-
perimental studies of such processes possible in the near
future. Additionally to thermal processes, the related
diffusion processes are considered. No changes of parti-
cle order occur in a harmonic crystal, so the diffusion as
particle mixing does not exist. However, a particle can
move away to significant distances from its initial posi-
tion as a result of thermal motion, so the corresponding
diffusion processes are rather complicated and differ sig-
nificantly from thermal processes. In particular, as we
will show later, both fast and slow processes are realized
for diffusion in the spatially uniform case. The study of
systems containing a finite number of atoms [10–14] be-
comes especially relevant with nanotechnology develop-
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ment. Thermo-diffusion processes in such systems have
several specific features related to their finite nature. In
particular, the paper will demonstrate that fast thermal
processes in the finite crystal periodically spontaneously
recur. That is called the “thermal echo”. Because of the
slow diffusion processes the system returns to its initial
state in time with an order of magnitude of the sound
wave passing the crystal.

II. THE MODEL

One-dimensional crystals (chains) provide a convenient
model to study thermomechanical processes in solids an-
alytically [1, 15–19]. The equation of motion of one-
dimensional harmonic crystal particles in the simplest
case is

ük = ω2
e (uk−1 − 2uk + uk+1) , (1)

where ωe
def
=
√
C/m is the elementary frequency, m is the

particle mass, C is the stiffness of interparticle spring, uk

is the displacement of the kth particle. Periodic bound-
ary conditions are used for equation (1):

uk+N = uk, (2)

where N is the number of particles in the crystal. Condi-
tion (2) might be interpreted as a one-dimensional crystal
closed in a circle (Born-von Karman boundary condition
[20]). We use thermal shock conditions as the initial con-
dition:

t = 0 : uk = 0 , u̇k = σρk, (3)

where ρk are independent random numbers, σ is the ini-
tial velocity dispersion. For the random numbers ρk we
have:

ρk+N = ρk , ⟨ρk⟩ = 0 , ⟨ρkρk+n⟩ = δNn . (4)

Here and below angle brackets stand for mathematical
expectation, δNn = 1 when n is divisible by N and δNn = 0
otherwise. Formulae (4) imply that the random variables
are periodic in n, have zero mathematical expectation
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and unit dispersion, and they are independent if the in-
dexes differ by less than N (in other words, there are N
independent random variables).

Due to the linearity of the system (1), the displace-
ments and velocities have zero mathematical expecta-
tions:

⟨uk⟩ = 0 , ⟨vk⟩ = 0, (5)

where vk
def
= u̇k. Let us denote:

u
def
=

1

N

N∑
k=1

uk , v
def
=

1

N

N∑
k=1

vn (6)

the spatial averages of particle displacements and veloc-
ities (hereafter, the dash above denotes the spatial av-
erage). Quantities (6) do not depend on k and are the
velocity and displacement of the system’s center of mass.
For finite N , these quantities, unlike the mathematical
expectations (5), are random and, generally speaking,
nonzero. Only at N → ∞ do the averages (6) tend to
zero. This is the main difference between finite and infi-
nite crystals.

Let us introduce centered displacements and velocities

ũk
def
= uk − u , ṽk

def
= vk − v. (7)

Unlike uk and vk, these quantities are materially objec-
tive, i. e., they do not change when the system’s center
of mass moves. Diffusion and thermal processes are de-
fined, respectively, by centered displacement and velocity
dispersions:

⟨ũ2
k⟩ , ⟨ṽ2k⟩. (8)

In particular, the kinetic temperature of a one-
dimensional crystal is

kBT = m⟨ṽ2k⟩, (9)

where kB is the Boltzmann constant. According to the
problem statement, the values (8)–(9) depend on time
but do not depend on the spatial index k.

Non-stationary processes are described using a method
based on correlation analysis [1, 3, 4, 6, 21, 22]. Corre-
lation analysis considers deterministic equations for sta-
tistical motion characteristics, i.e., covariances of par-
ticle displacements and velocities. These equations are
closed-formed and allow one to obtain an analytical solu-
tion that includes, among other things, the dispersion (8)
time function.

III. CORRELATION ANALYSIS

Let us consider the covariances of displacements and
velocities:

ξn
def
= ⟨ukuk+n⟩ , κn

def
= ⟨vkvk+n⟩. (10)

Since the problem is spatially uniform, the covariances
are independent of the index k, and depend only on
the index n, which determines the distance between the
correlating particles. Periodicity conditions (2) produce
equivalent periodicity conditions for the covariances:

ξn+N = ξn , κn+N = κn. (11)

The covariances differentiation considering the chain dy-
namics equation (1) leads to a closed system of dynamics
equations for covariance. The simplest form can be ob-
tained using an additional variable

λn
def
= κn + ω2

e (ξn−1 − 2ξn + ξn+1) . (12)

Then the following IVP ( initial value problem) is a con-
sequence of problem (1)–(3) [3, 22]:

λ̈n = 4ω2
e (λn−1 − 2λn + λn+1) , (13)

t = 0 : λn = σ2δNn , λ̇n = 0. (14)

This problem is equivalent to the IVP for a one-
dimensional crystal (1), with one particle displaced at
the initial moment and the rest being stationary. The im-
portant difference between the initial value problem (13)–
(14) and the original IVP (1)–(3) is that it describes the
dynamics of deterministic quantities λn, while the orig-
inal IVP describes the dynamics of stochastic quantities
uk. The main difference comes from the initial condi-
tions: in problem (13)–(14), they are deterministic, while
in problem (1)–(3) the initial conditions are stochastic.
Given the periodic boundary conditions (11), problem

(13)–(14) can be solved as the initial value problem for
the system of N linear differential equations, which gives

λn =
σ2

N

N−1∑
k=0

cos qkn cos 2ωkt ,

qk
def
=

2πk

N
, ωk

def
= 2ωe sin

πk

N
.

(15)

Once λn are determined, the displacement and velocity
covariances are obtained from the relations:

2κn = λn + σ2δNn , ξ̈n = 2λn ,

ξn|t=0 = 0 , ξ̇n|t=0 = 0;
(16)

and centered displacement and velocity dispersions are
determined by the covariance values at n = 0:

⟨ũ2
k⟩ = ξ0 −

σ2t2

N
, ⟨ṽ2k⟩ = κ0 −

σ2

N
. (17)

The dispersions can be conveniently expressed through

the function λ(t)
def
= λ0 ≡ λn|n=0:

⟨ũ2
k⟩ = 2I2λ(t)− σ2t2

N
, ⟨ṽ2k⟩ =

λ(t)

2
+
σ2

2
− σ2

N
, (18)
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where we use the integral operator

If(t) def
=

∫ t

0

f(τ)dτ. (19)

According to [3], the λ(t) value is proportional to the
Lagrangian (the difference of the system’s kinetic and
potential energies): L = mN

2 λ(t). Hereafter λ(t) is re-
ferred to as the reduced Lagrangian. From formula (15)
we obtain

λ(t) =
σ2

N

N−1∑
k=0

cos 2ωkt , ωk
def
= 2ωe sin

πk

N
. (20)

Substituting expression (20) into relations (18) gives ex-
plicit expressions for centered dispersions

⟨ũ2
k⟩ =

σ2

N

N−1∑
k=1

sin2 ωkt

ω2
k

, ⟨ṽ2k⟩ =
σ2

N

N−1∑
k=1

cos2 ωkt,

(21)
where the frequencies ωk are defined by formula (20).

IV. THERMAL ECHO

The time dependences for the diffusion and thermal
processes are fully determined by the exact analytical
formula (21). These relationships are useful for numer-
ical computations, however, they are difficult to use for
analytical evaluation because they contain a large num-
ber of terms for large N (the most interesting case from
a practical point of view). The summands are equivalent
and none of them can be neglected. The following iden-
tity significantly simplifies the analytical solution [14]

1

N

N−1∑
k=0

cos

(
z sin

πk

N

)
= J0(z) + 2

∞∑
p=1

J2pN (z), (22)

where Jn(z) is the Bessel function of the first kind. The
identity is proved in the appendix. Using identity (22),
formula (20) for λ(t) transforms into

λ(t) = σ2

(
J0(4ωet) + 2

∞∑
p=1

J2pN (4ωet)

)
. (23)

It may seem that the formula has become more compli-
cated because the sum of a finite number of elementary
functions is replaced by an infinite sum of special func-
tions. However, this is not the case. The Bessel functions
are virtually zero if the argument value is less (with some
margin) than the index value. Therefore, in many prac-
tically important cases, formula (23) contains only one
or a few important terms. Moreover, the largest Bessel
function values for large N occur when the argument val-
ues are close to the index value. This is true for the time
moments

t = pt∗ , t∗
def
=

N

2ωe
; p = 0, 1, 2, 3, ... (24)

Then, in the proximity of these time moments, the sum
(23) has one main summand, and the rest give only a
minor contribution.

FIG. 1. Time dependence of the reduced Lagrangian for N =
106. The top figure shows the oscillations near the peak (time
resolution increased by 2000 times).

The aforementioned allows us to analyze the diffusion
and thermal processes described by formulae (18). The
quantity t∗ is the quasi-period of these processes. Al-
though the considered processes, strictly speaking, are
not periodic, they exhibit certain repeatability with pe-
riod t∗. As will be shown below, under certain condi-
tions these processes can be assumed to be periodic. The
quasi-period has a simple physical meaning:

t∗
def
=

N

2ωe
=

1

2

L

ce
, (25)

where L = Na is the crystal length, ce = ωea is the speed
of sound, a is the lattice step. Thus, the quasi-period
is the time needed for long (sound) waves to pass half-
length of the crystal. Over this time, the waves coming
from the point source go around the circular (periodic)
crystal and meet on its opposite side. At this moment the
thermal oscillation amplitude increases rapidly, so-called
“thermal echo” occurs. The function λ(t) calculated for
one million particles is shown in Fig. 1. The abrupt in-
creases in the thermal oscillation amplitude at t = t∗ and
t = 2t∗ are evident. Each of these increases corresponds
to one summand in (23), i.e., the respective Bessel func-
tion, which is a wave packet with successively decreasing
amplitudes. Thus, the physical meaning of transforma-
tion (22) is that the summation over the hard-to-observe
crystal eigenforms is replaced by the summation over the
wave packets perceived as the “thermal echo”.
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V. INFINITE CRYSTAL

At N → ∞, quasi-period t∗ (24) tends to infinity.
In this case, for finite t, only the first term is left in
formula (23). Then from formulae (18) at the limit of
N → ∞ we obtain:

⟨ũ2
k⟩ = 2σ2I2J0(4ωet) , ⟨ṽ2k⟩ =

σ2

2

(
1 + J0(4ωet)

)
.

(26)
The formula for ⟨ṽ2k⟩ = kBT/m was previously obtained
in [3]. The displacement dispersion calculation provides

⟨ũ2
k⟩ =

σ2

8ω2
e

Φ(4ωet) , Φ(z)
def
= I2J0(z), (27)

where the function Φ(z) is defined through the Bessel
functions Jn and the Struve functions Hn [23]:

Φ(z) = z2J0(z)−zJ1(z)+
π

2
z2
(
J1(z)H0(z)− J0(z)H1(z)

)
.

(28)
The function Φ(z) is plotted in Fig. 2. The function is
monotonically increasing, its asymptotics for small and
large z are:

z ≪ 1 ⇒ Φ(z) ≃ z2

2
, z ≫ 1 ⇒ Φ(z) ≃ z.

(29)
More accurate asymptotics for larger z take the form:

z ≫ 1 ⇒ Φ(z) ≃ z − J0(z). (30)

Thus, the displacement dispersion of an infinite crystal
is a monotonically increasing function of time, which
exhibits decaying oscillations near the inclined asymp-
tote. Starting from a certain moment time, the disper-
sion growth becomes almost linear, coinciding with the
asymptote:

t ≫ te
def
=

2π

ωe
: ⟨ũ2

k⟩ ≃
σ2

2ωe
t. (31)

VI. THE FIRST QUASI-PERIOD

Let us consider t ∈ [0, t∗]. In this case, the first
two terms in the representation (23) for the reduced La-
grangian must be taken into account

λ(t) = σ2
(
J0(4ωet) + 2J2N (4ωet)

)
, (32)

which gives the dispersion formulae:

⟨ũ2
k⟩ = 2σ2I2

(
J0(4ωet) + 2J2N (4ωet)

)
− σ2t2

N
, (33)

⟨ṽ2k⟩ =
σ2

2

(
1 + J0(4ωet) + 2J2N (4ωet)

)
− σ2

N
. (34)

FIG. 2. The function Φ(z), shows the displacement disper-
sion growth in an infinite crystal. The dashed line shows the
asymptote Φ(z) ≃ z.

Here, unlike in the infinite crystal case, the 1/N terms
are kept.
Using the formula (34), a simple asymptotic formula

can be derived for larger N . Let us use the following ap-
proximations: the term 2J2N (4ωet) is neglected until ap-
proaching the time t = t∗, and the iterated integral of the
term J0(4ωet) is replaced by the linear dependence (31).
Then we obtain:

⟨ũ2
k⟩ ≃

σ2

N
t (t∗ − t) , ⟨ṽ2k⟩ ≃

σ2

2
− σ2

N
(35)

i.e., displacement dispersion has a quadratic time depen-
dence (inverted parabola), velocity dispersion is a con-
stant. The most significant deviations are at the interval
boundaries, but the greater the number of crystal parti-
cles, the less noticeable these deviations will be. Fig. 3
shows a comparison [26] of the exact and asymptotic so-
lutions for the displacement dispersion.

FIG. 3. The centered displacement disper-
sion dependence on time for N = 100 (solid
line), the limit at N → ∞ (dashed line), where

A
def
= σ2t2∗/(4N) is the maximum dispersion value at N → ∞.

An unexpected result of the formula (35) is that the
displacement dispersion turns zero at t = t∗. This in-
dicates that at these time moments the displacements
of all particles in the chain turn to zero, i.e., it returns
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to the initial state. The required time is large from a
microscopic point of view (much more than the atomic
oscillation period) but rather short from a macroscopic
point of view, i.e., the time it takes the sound to travel
half the length of the crystal. Certainly, the result is
not exact, because the formula (35) is an approximation.
However, it gets more accurate the larger the N is, and
for crystals that are long enough, it has a high degree of
accuracy. The result resembles the Poincaré recurrence
theorem, but this recurrence takes time several orders
smaller than that predicted by the Poincaré theorem.

A simple explanation for zero displacements can be
provided in terms of eigenforms (normal modes) of crys-
tal oscillations. In the macroscopic (long-wave) approx-
imation, all natural frequencies are divisible by the low-
est frequency corresponding to the quasi-period t∗. Thus,
the quasi-period t∗ contains an integer number of natural
periods and thus becomes the crystal’s oscillation period.
For exact formulae, the higher frequencies are not divisi-
ble by the lower frequencies. However, the deviation gets
smaller the more atoms the crystal contains, and, conse-
quently, the closer the system is to the macroscopic one.
Therefore, the longer the one-dimensional crystal is, the
closer the displacements are to zero.

VII. ASYMPTOTICS FOR LARGE N

For large z the following asymptotic representation [27]
can be used

J2pN (z) ≃ δ(z − 2pN), (36)

where δ is the Dirac delta function, p is a non-negative
integer. Therefore

λ(t) ≃ σ2

4ωe

(
δ(t) + 2

∞∑
p=1

δ(t− pt∗)

)
, (37)

where we use δ(ax) = δ(x)/a for positive a. The rep-
resentation is periodic, and the quasi-period t∗ (25) is
the period for function (37). For the quantity t∗, t∗ ∼ N
(25) is true, so the formula (37) corresponds to long peri-
ods for large N . In this case, the largest Bessel function
values are in the vicinity of time moments pt∗, where
p = 0, 1, 2, 3..., so the representation (37) can be used as
an approximation of expression (32), see Fig. 1.

The formula (37) on the open interval (0, t∗) gives the
formula (35) for the dispersions (18) as asymptotically
exact representations. At subsequent time intervals of
duration t∗ the functions are periodically repeated. The
result can be represented as

⟨ũ2
k⟩ ≃

∞∑
p=0

f(t− pt∗) , ⟨ṽ2k⟩ ≃
∞∑
p=0

φ(t− pt∗), (38)

where the functions on the closed interval [0, t∗] are

f(t)
def
=

σ2

N
t (t∗ − t) ,

φ(t)
def
=

σ2

8ωe

(
δ(t) + δ(t− t∗)

)
+

σ2

2
− σ2

N

(39)

and are equal to zero outside the specified interval.
According to the representation (38)–(39), after the

thermal perturbation the velocity dispersion (and hence
the temperature) is almost constant, except for the time
moments pt∗, in which localized peaks are observed (the
“thermal echo”). It happens because the crystal is finite,
so the elastic waves generated by the initial perturbation
of each atom interact with each other. This interaction
happens when the waves circle the crystal, so the corre-
sponding time t∗ is equal to the time it takes the sound
wave to travel half-length of the crystal (25). Accord-
ing to the representation (37), all peaks are the same.
But according to the exact formula (32), they are differ-
ent. The height of each successive peak is lower and the
width is larger as if the peaks were spreading out, while
still retaining the same energy. Based on the Bessel func-
tion behavior, each peak is a rapidly arising oscillation,
which amplitude then decays in inverse proportion to the
square root of time.
The displacement dispersion time function, according

to (38)–(39), shows a different behavior (Fig. 3). After
the initial thermal impact, the dispersion grows linearly
at first, then its growth slows down, and at t = t∗/2 it
reaches a maximum

⟨ũ2
k⟩max ≃ σ2t2∗

4N
=

σ2N

16ω2
e

. (40)

According to (40)), the dispersion maximum is propor-
tional to N , so the maximum displacements of the center
of mass are proportional to

√
N . After reaching the max-

imum, the dispersion symmetrically decreases and turns
to zero at t = t∗. Then the dispersion begins to in-
crease again, and the process repeats itself. This pattern
is observable at large macroscopic periods. At small mi-
croscopic periods near points t = pt∗ transient processes
occur. Formulae (38)–(39) define them as a break in dis-
placement time dependence. According to the exact for-
mula (32), the transients are high-frequency oscillatory
modes superimposed on the functions (38)–(39).
Note that in formulae (38)–(39) in order to achieve the

same accuracy for displacements and velocities we need
different N values that vary by orders of magnitude. Ac-
cording to Fig. 3, a good agreement between the exact
and asymptotic formulae for the displacement dispersion
is obtained for N = 100. For the velocity dispersion,
however, even at N = 106 the graphs are quite different
from the asymptotic representation[28] (see Fig. 1). This
difference occurs because we have to integrate twice in
order to get from the velocity dispersion to the displace-
ment dispersion, and the integration has a smoothing
effect. The switchback requires a double differentiation,
which increases the high-frequency component.
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VIII. COMPARISON OF ENSEMBLE AND
SPACE AVERAGES

The above-mentioned results for the displacement dis-
persion apply to the squared displacement mathematical
expectation, which is equivalent to averaging over a sta-
tistical ensemble. For real systems, this result agrees
with the average over a large number of realizations, i.e.,
experiments with similar initial conditions (statistically
identical, but different in terms of individual random val-
ues). Generally speaking, the situation for each particu-
lar experiment may differ from the one described above.
The numerical calculations, that can be verified analyti-
cally, show that the spatial average squared displacement
in any individual experiment is very different from the av-
erage statistical result given by formulae (38)–(39). This
phenomenon is shown [29] in Fig. 4, showing the time
dependences of

{ũ2
k}

def
=

1

N

N∑
k=1

ũ2
k =

1

N

N∑
k=1

(uk − u)2. (41)

Here the curly brackets denote averaging over space (or
over particles, the same thing in this case). Hereafter,
for the sake of brevity, we denote the value {ũ2

k} as the
mean squared displacement. The time dependences of
the mean squared displacements shown in Fig. 4 were
obtained from the numerical solution of the initial value
problem (1)–(3) for various realizations of random initial
conditions. Unlike the dispersion ⟨ũ2

k⟩, which is a deter-
ministic quantity, the mean squared displacement {ũ2

k}
is a stochastic quantity, and for different realizations, dif-
ferent graphs are obtained. The function {ũ2

k}(t), as well
as ⟨ũ2

k⟩(t), approaches zero periodically at t = pt∗, and
almost repeats in each new quasi-period. However, be-
tween zero points, the time dependences in different ex-
periments vary in shape, often significantly distinct from
the parabolic one. The maximum values can vary dra-
matically (by a factor of several times), and within a
single quasi-period there can be several maxima.

FIG. 4. Spatial mean squared displacement {ũ2
k} for different

realizations at N = 1000 (thin lines), displacement disper-

sion ⟨ũ2
k⟩ (bold line), scale multiplier A

def
= σ2t2∗/(4N).

The function ⟨ũ2
k⟩(t) is the mathematical expectation

of the functions {ũ2
k}(t), i.e., is the limit of averages over

random initial condition realizations. However, the func-
tions ⟨ũ2

k⟩(t) do not tend to {ũ2
k}(t) as the number of

particles increases. Even for very large N , the mean
squared displacement {ũ2

k} remains a stochastic variable.
Thus, the spatial average and the ensemble average are
essentially different for the squared displacements. Note
that the case is different for velocities: as N increases
the mean squared velocity {ṽ2k} tends to a deterministic
value ⟨ṽ2k⟩, i.e., the velocity dispersion proportional to
the crystal kinetic temperature. This is the fundamental
difference between thermal and diffusion processes. The
results of analogous calculations are given in the book [25]

IX. CONCLUSION

This paper considers the processes occurring in a pe-
riodic (circular) one-dimensional crystal under instanta-
neous spatially uniform thermal perturbation. We ob-
tained exact time dependences for thermal and diffusion
characteristics, such as dispersions of particle velocities
and displacements. The most notable formulae are: (21)
are the exact formulae for centered velocity and displace-
ment dispersions, convenient for numerical calculations;
(22) is the shift from the summation over eigenforms to
the summation over wave packets; (18), (23) are the al-
ternative formulae for velocity and displacement disper-
sions that are convenient for analytic analysis; (27)–(28)
are the time dependence of displacement dispersion for an
infinite crystal; (38)–(39) are the asymptotic expressions
for velocity and displacement dispersions for large N .
In the infinite crystals, thermal characteristics are rep-

resented by damped oscillations described by the Bessel
function, following the results obtained earlier [3]. Diffu-
sion characteristics show unlimited growth close to linear
(Fig. 2).
For a finite crystal, the oscillations of the thermal char-

acteristics resume after a time it takes the sound wave to
travel the half-length of the crystal (Fig. 1). Such kinetic
temperature peaks can be understood as “thermal echo”
caused by the elastic waves from the excited particle trav-
eling around the crystal and meeting on the opposite side
from their origin point. As time passes, the successive
peaks lose amplitude, but increase in width, preserving
the energy they contain. Thus, the crystal undergoes fast
periodic transient processes.
The diffusion characteristics, besides similar fast pro-

cesses, also demonstrate a slow process, namely the dis-
persion growth up to a value proportional to the number
of particles and further displacement dispersion reduc-
tion to zero at the time of the next temperature burst
(Fig. 3). Thus, the crystal returns to a state similar to
the initial state after half the time it takes for the sound
wave to travel through the crystal, a period insignificant
in macroscopic terms. The more particles are in the crys-
tal, the stronger is the recurrence phenomenon and the
closer the dispersion behavior is to the parabolic one.
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The space mean squared displacement differs from the
statistical average across realizations: the first quantity
is stochastic (for any number of particles), the second one
is deterministic (see Fig. 4).

Thus, thermal and diffusion processes in a finite crys-
tal are much more complex than in an infinite one. In
turn, diffusion processes in the finite crystal are more
complex than thermal processes. They include fast and
slow processes, the average across the crystal remains
stochastic even when the number of particles is huge.
The most important discovered phenomena are (i) the
thermal echo (periodic temperature peaks), (ii) the pe-
riodic return of system particles to their initial position,
and (iii) the stochastic nature of spatial mean squared
displacement.

The described results can be observed when an ul-
trashort laser impacts a nanostructure. They can also
provide a basis for a more complex process description,
such as heat and mass transfer in defectless crystals and
nanostructures.
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APPENDIXES

Appendix A: Proof of identity (22)

Let us use the formula [24]:

cos(z sin θ) =

∞∑
p=−∞

J2p(z) cos(2p θ), (A1)

where J2p(t) is the Bessel function of the first kind. Sub-
stituting θ = πk/N , where k = 0, 1, ..., N − 1, and sum-
ming over k, we obtain:

1

N

N−1∑
k=0

cos

(
z sin

πk

N

)
=

∞∑
p=−∞

J2p(z)SN (p), (A2)

where

SN (p)
def
=

1

N

N−1∑
k=0

cos

(
p
2πk

N

)
. (A3)

The sum of multiple angle cosines can be calculated
through the sum of exponents, which, in turn, is cal-
culated as the geometric progression sum:

N−1∑
k=0

cos kϕ = Re

N−1∑
k=0

eikϕ = Re

(
eiNϕ − 1

eiϕ − 1

)
. (A4)

Calculating the real part of (A4) gives the following rep-
resentation:

N−1∑
k=0

cos kϕ =
1

2
sin(Nϕ) ctg

ϕ

2
+ sin2

Nϕ

2
, (A5)

whence we find

SN (p) =
sin(2πp)

2N
ctg

πp

N
+

sin2(πp)

N
. (A6)

Analysis of the obtained expression shows that for p di-
visible by N it is equal to one and for all other integer
p it is equal to zero. To put it otherwise, SN (p) = δNp .
Then for the formula (A2) we finally get:

1

N

N−1∑
k=0

cos

(
z sin

πk

N

)
=

∞∑
p=−∞

J2pN (z) = J0(z)+2

∞∑
p=1

J2pN (z),

(A7)
where we use that Jn(x) = J−n(x) for all integer n.
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