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a  b  s  t  r  a  c  t

Resonance  electronic  states  and  scattering  by point  defects  are studied  for  the  monolayer  graphene
solving  the  2+1-dimensional  Dirac  equation.  Exact  S- and  T-matrices  are  calculated  for  the  model  poten-
tial. This  effective  potential  takes  into  account  possible  band  asymmetry  of  the  point  defect  potential
matrix  elements.  Regularization  of  the  scattering  problem  for a singular  potential  has  been carried  out.
Asymptotic  analysis  allowed  us  to  obtain  the  conductivity  dependence  on  the  Fermi  level position  in the
low-energy  limit.  Numerical  calculations  were  carried  out  in  the  wide  range  of electronic  energies.  The
transport relaxation  time  behaves  as  1/E in  the  limit  of  E  tending  to  zero  and  oscillates  around  a constant
value due  to the  resonance  scattering  at higher  energy  magnitudes.

© 2012 Elsevier B.V. All rights reserved.

The main novel element in our works is the band asymme-
try of the defect potential in the Dirac equation. This asymmetry
appears naturally if the defect violates the symmetry between the
sublattices. Our goal in this work is to continue the study of the
electron scattering in graphene with short range defects. We  use
the suggested in [1,2] shell delta function potential model taking
into account a local band symmetry violation arising due to the
defect presence. We  analyze effect of the electron scattering on the
electronic transport in the monolayer graphene and compare our
theoretical results with the available experimental data.

The Dirac equation describing electronic states in zero-gap
graphene reads [3](

−ivF�
2∑
�=1

��∂� − �3ımv
2

F

)
  = (E − V) , (1)

where vF is the Fermi velocity, �� are the Pauli matrices,  (r) is
the two-component spinor. Here ım is the local mass (gap) per-
turbation related to a local sublattices symmetry violation. Let us
comment the use of the terms “gap” and “mass” in the paper. Elec-
tronic spectrum of graphene in the vicinity of the Dirac points can be
approximated by the “relativistic” formula E = ±

√
m2v4

F + �2k2v2
F .

Here m is the effective mass in the critical point. The gap equals
Eg = 2mv2

F . In pristine graphene m = 0. Defects can locally make
m /= 0 and consequently, Eg /= 0. So, the mass perturbation means
a local gap perturbation according to the physicist’s jargon placing
mass and gap on the same footing.
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The spinor structure takes into account the two-sublattice struc-
ture of graphene. V(r) is the local perturbations of the chemical
potential. A local mass (gap) perturbation can be induced by defects
in the graphene film or in the substrate [4].  The perturbation matrix
elements

diag(V1, V2)r0ı(r − r0) (2)

are related to the a, b parameters as follows

−V1 = a + b, −V2 = a − b (3)

Solving the Dirac equation in regions 0 < r < r0 and matching
these solutions at the circumference of the circle of radius r = r0,
we obtain the scattering matrix and a characteristic equation for
the resonance states. Calculating the ratio of the out-going and in-
going waves, we  obtain the S-matrix components in the angular
momentum representation:

Sj (�) = −
F(2)
j

F(1)
j

, (4)

where F(˛)
j

is given by the formula:

F(˛)
j

=
(
Jj−1/2 (�)H(˛)

j+1/2 (�) − Jj+1/2 (�)H(˛)
j−1/2 (�)

)
−[

(a − b) Jj+1/2 (�)H(˛)
j+1/2 (�) + (a + b) Jj−1/2 (�)H(˛)

j−1/2 (�)
]
,

 ̨ = 1, 2.

(5)

Poles of the scattering matrix (4) are determined by the charac-
teristic equation

F(1)
j (�) = 0, (6)
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or

(a − b) J2j+1/2 (�) + (a + b) J2j−1/2 (�) = i
[
(a − b) Jj+1/2 (�)Nj+1/2 (�)

+ (a + b) Jj−1/2 (�)Nj−1/2 (�)
]

= −i 2
��

(7)

Using the relations H(1)
n (z) = Jn + iNn, H(2)

n = Jn − iNn, we  can
write S-matrix as follows

Sj (�) = −Aj (�) − iBj (�)
Aj (�) + iBj (�)

= Bj (�) + iAj (�)
Bj (�) − iAj (�)

, (8)

and, therefore, it can be presented in the standard form:

Sj (�) = exp
[
i2ıj (�)

]
, (9)

where the scattering phase is given by the expression

ıj (�) = arctan
Aj (�)
Bj (�)

.  (10)

Formulae (8),  (9) show that the scattering matrix Sj (�) is unitary on
the continuum spectrum. The functions Aj (�) and Bj (�) are deter-
mined as follows

Aj (�) = −
[
(a + b) J2j−1/2 (�) + (a − b) J2j+1/2 (�)

]
, (11)

Bj (�) =  − 2
��

[
(a + b) Jj−1/2 (�)Nj−1/2 (�) + (a − b) Jj+1/2 (�)Nj+1/2 (�)

]
+[

Jj+1/2 (�)Nj−1/2 (�) − Jj−1/2 (�)Nj+1/2 (�)
] (12)

Asymptotic behaviour of the scattering phases and other scattering
data at �→ 0 can be obtained expanding the cylinder functions for
small arguments:

Jn (z) ∼ 1
n!

(
z/2
)2
, Nn (z) =

⎧⎨⎩ −� (n)
�

(
2/z
)n

for n > 0,(
2/�
)

log
(
�Ez/2

)
for n = 0, z → 0,

(13)

where �E ≈ 0, 577 is the Eyler–Masceroni constant, � (n) is the
gamma-function. Then we have for the scattering phases in the
lower order in �:

tan ı±1/2 ≈ (b ± a)
�

2
�, � → 0, (14)

tan ı±(n+1/2) ≈ ±�
(
�/2
)2n+1

(b ± a) � → 0. (15)

The transport cross section can be written in terms of the scat-
tering phases (we have returned to dimensional variables here)

	tr = 2r0
�

∑
j=± 1

2 ,± 3
2 ,...

sin2 (ıj+1 − ıj
)
. (16)

The transport relaxation time can be calculated using the following
relation:

1/
tr = NIvF	tr. (17)

Taking into account the approximate formulae for phases (14),
(15), the series (16) can be written in the following asymptotic form
for � → 0:

	tr = 2r0
�

[(
ı1/2 − ı−1/2

)2
+
(
ı3/2 − ı1/2

)2
+
(
ı−3/2 − ı−1/2

)2
+ · · ·(

ın+1/2 − ın−1/2

)2
+
(
ı−n−1/2 − ı−n+1/2

)2
+ · · ·
]

≈ �r0�2
[

2a2 + O (�)
]
.

(18)

Then the asymptotic formula for the transport relaxation time
reads:

1/
tr = �NIvF�22a2 [1 + O (�)] (19)

It is seen from (19) that asymptotic behaviour of the relaxation
time at �→ 0 is determined by the parameter a, i.e. by the symmet-
ric component of the perturbation.

Let us consider now the Born approximation for the scatter-
ing amplitude. A series of works was dedicated recently to this
point with controversial conclusions. The partial wave series for
the transport cross section converges rather slowly. That is why
we consider a behaviour of the transport cross section without the
partial wave expansion. In return we can use the Born approxima-
tion in this limit. The Born formula for the scattering amplitude
reads:

f Born
(
p, �
)

= − 1
�vF

√
p

8�
V (q) , (20)

where �q = �  p − �  p′ is the transferred momentum, q = 2p sin �/2,
V (q) is the perturbation Fourier transform:

V (q) =
∫
d2re−iqrV (r) =

∫ ∞

0

drrV (r)

∫ 2�

0

d� exp [−iqr cos �]

= 2�

∫ ∞

0

drrV (r) J0 (qr) . (21)

Inserting the potential (2) into (21) we obtain

Vi (q) ≡ V
(
p, �
)

= 2�V0
i r

2
0 J0
(

2pr0 sin �/2
)
. (22)

Substituting (22) into (20) we  obtain the scattering amplitude:

f Borni

(
p, �
)

= −2�r20V
0
i

�vF

√
p

8�
J0
(

2pr0 sin �/2
)
, (23)

Now we can calculate the transport cross section:

	Borntr =
∫ �

0

d�
(

1 − cos �
) ∣∣f Born (p, �

)∣∣2
= (pr0) r0

(
V0
i

�vF/r0

)2

�/2

∫ �

0

d�

×
(

1 − cos �
)
J20
(

2pr0 sin �/2
)
. (24)

This integral can be expressed in terms of the hypergeometric
functions [5]:∫ �

0

d�
(

1 − cos �
)
J20
(

2pr0 sin �/2
)

= �

(
1/2, 3/2

2, 1, 1

)
·

3F4

(
3/2, 1/2, 1, 2, 1, 1, 1; −(2pr0)2

)
,

(25)

where �

(
˛1, ˛2
ˇ1, ˇ2, ˇ3

)
≡ � (˛1)� (˛2)

�
(
ˇ1
)
�
(
ˇ2
)
�
(
ˇ3
) , � (˛) is the

gamma  function, 3F4

(
˛1, ˛2, ˛3; ˇ1, ˇ2, ˇ3, ˇ4; x

)
is the general-

ized hypergeometric function. It is determined by the series:

3F4

(
˛1, ˛2, ˛3; ˇ1, ˇ2, ˇ3, ˇ4; x

)
=

∞∑
k=0

(˛1)k(˛2)k(˛3)k(
ˇ1
)
k

(
ˇ2
)
k

(
ˇ3
)
k

(
ˇ4
)
k

xk

k!
,

(26)

where (˛)k = �(˛+k)
�(k) is the rising Pohhammer symbol. When pr0 < 1,

we can neglect all higher terms of this series and obtain in result
the transport scattering cross section 	Borntr p̃r0. The Born approx-
imation is here asymptotically exact in the limit pr0 → 0 . It must
be noted here that the limit of pr0, EF, kBT, �ω tending to zero is
obviously nontrivial and many-particle effects must be taken into
account in this case. Notice that while the Fermi energy of a 3d sys-
tem is really completely determined by it’s chemical content (apart
from the temperature factor), the Fermi level position of the 2d sys-
tem (the only example is now graphene) can be controlled by the
field effect. Therefore, the Fermi energy of graphene can be consid-
ered as an easily variable parameter. The opposite limit of pr0 > 1 is
not actual for scattering on rare point defects. It can be urgent for
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the model of random potential with large correlation radius and
for the quantum dot model, but they are outside of the scope of
this work. However, there exist at least two other possibilities to
obtain the cross section behaviour, different from the power law
	Borntr p̃r0. First of them corresponds to a random potential with the
correlation radius r0 » a . In this case one can consider scattering of
electrons with pr0 ∼ 1 .

Let us consider the limit of large angular momentum j »1 using
the Bessel function asymptotics [5]:

J� (z) ∼ 1√
2��

(
ez

2�

)� (
1 + O

(
1/�
))
, � → ∞,  (27)

N� (z) ∼ −
√

2
��

(
ez

2�

)−� (
1 + O

(
1/�
))
, � → ∞,  (28)

H(1)
� (z) ∼ 1√

2��

[(
ez

2�

)�
− 2i
(
ez

2�

)−�](
1 + O

(
1/�
))
, � → ∞,

(29)

where e is the base of natural logarithms. The characteristic equa-
tion takes the following form in the limit of j »1 :

a − b

(2j + 1) (2j − 1)2j+2
(e�)2j+2 + a + b

(2j − 1) (2j − 1)2j
(e�)2j

= ie
[ �

2j − 1

(
a − b

j + 1/2
+ a + b

j − 1/2

)
− 2

2j − 1

]
, (30)

Our numerical analysis shows that the energy dependence of
the relaxation time crosses over to an approximate constant at high
energy, and position of the crossing-over point depends on the ratio
a/b. The Boltzmannian conductivity is determined by the formula:

� = e2

h

(
EF
tr/�

)
, (31)

where 
tr is determined as follows


−1
tr = NI�trvF . (32)

The mobility can be determined as the ratio:

� = �

en
, (33)

where the carrier density at low temperature is determined as fol-
lows

n ≡ N/S = 1
2�

(
EF
�vF

)2
. (34)

Substituting (31) and (34) into (33) and taking account of the
obtained in our work result for the transport cross section �tr and
the transport relaxation time 
tr (see (32)) we  find:

� = evF
tr
EF

. (35)

Notice that the obtained formula (35) is in good agreement with
the experimenal results published by Bolotin et al. in paper [6].

Using (19), (31), and (32) we conclude that the conductivity
tends to a constant value in the limit EF → 0 .

We  considered the electron scattering problem in the mono-
layer graphene with short-range impurities. Characteristic for the
electronic two-band theory band asymmetry of the potential is
equivalently described by the scalar potential and the mass (gap)
local perturbation. The crystal perturbation by a single impurity
is modelled by the shell delta function potential. Exact explicit
formulae for a single-impurity S-matrix and other scattering data
have been obtained and analyzed for the short-range perturbation
with the band-asymmetric potential. The characteristic equation
for bound and resonance states is derived for this case. The obtained
results are in good agreement with the experimental data [6] and
can be useful for understanding of the graphene electron proper-
ties.
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