Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

INSTITUTE OF APPLIED MATHEMATICS AND MECHANICS
DEPARTMENT OF THEORETICAL AND APPLIED MECHANICS

M. B. Babenkov

LECTURE 10

Lasers for Medical Applications

Lecture slides for Bachelors of Technical Sciences

Санкт-Петербургский государственный политехнический университет 2012

Popular lasers' types

- Excimer lasers provide pulse energies at the mJ level and beyond.
- Semiconductor Diodes (the wavelength range from 785 To 980 nm, with power levels from multiple Watts to multiple kWs)
- Optically Pumped Semiconductor Lasers (uses a semiconductor chip instead of a laser crystal as the laser medium)

Photothermal Reactions

- Laser light absorbed by chromophores in the tissue is converted into heat.
- A typical application is photocoagulation, where the laser light is absorbed by hemoglobin to stop bleeding or to seal blood vessels.
- Another example is thermal ablation when laser light vaporizes tissue water for tissue cutting.
- This interaction requires laser solutions that have high average power and a wavelength that matches the absorption levels of target tissue.

Ophthalmology

- Ophthalmology: excimer laser based solutions for vision correction (LASIK).
- Laser photocoagulation, an important application to treat wet form age related macular degeneration (AMD).
- Yellow light couples effectively with hemoglobin which enables more efficient sealing of blood vessels (photocoagulation).
- The direct modulation capability of OPSL enables us to use pulsing modes proven beneficial in recent applications.

Photochemical Reactions

- Photons absorbed by tissue molecules. Excited molecules can undergo chemical reactions.
- A prominent example is Photodynamic therapy
 (PDT) where a photosensitive drug is administered.
 Using specific wavelengths enables applications such as selective photo thermolysis.
- Tattoo removal is an example of this.
- This interaction requires laser solutions that have high average power and a wavelength defined by molecule absorption.

Photoablation

- Laser light is used to break the molecular bonds in the tissue. Key applications include ophthalmology where UV laser light is used for refractive surgery of the cornea;
- As well as in lithotripsy where high energy laser pulses are used to generate plasma and shock waves that can break up kidney stones.
- Typical laser solutions operate in pulsed mode for high peak power and, depending on the type of tissue, have UV to NIR wavelengths.

