Министерство науки и высшего образования Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа теоретической механики и математической физики

Работа допущена к защите Директор ВШТМиМФ, д.ф.-м.н., чл.-корр. РАН _____А. М. Кривцов «__» _____ 2023 г.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

магистерская диссертация

ПОИСК ЭМПИРИЧЕСКОГО ВЫРАЖЕНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ДОПОЛНИТЕЛЬНОГО МОДУЛЯ УПРУГОСТИ КРИВОЛИНЕЙНОГО СТЕРЖНЯ НА ОСНОВЕ ЧИСЛЕННЫХ ЭКСПЕРИМЕНТОВ

по направлению подготовки (специальности)

01.04.03 Механика и математическое моделирование

Направленность (профиль)

01.04.03_02 Механика и математическое моделирование (международная

образовательная программа)

Выполнил

студент гр. 5040103/10201

Руководитель

Профессор ВШТМиМФ, д.ф.-м.н.

С.С.Шибаев

Е. А. Иванова

Санкт-Петербург 2023

САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО Физико-механический институт Высшая школа теоретической механики и математической физики

УТВЕРЖДАЮ

Директор ВШТМиМФ

А.М. Кривцов

«__»____20__г.

ЗАДАНИЕ

на выполнение выпускной квалификационной работы

студенту Шибаеву Степану Сергеевичу, группа 5040103/10201

- 1. Тема работы: Поиск эмпирического выражения для определения дополнительного модуля упругости криволинейного стержня на основе численных экспериментов
- 2. Срок сдачи студентом законченной работы: 26.05.2023
- Исходные данные по работе: постановка задачи для определения дополнительного модуля упругости, методы определения искомого модуля упругости, основные уравнения статики стержней, уравнения теории упругости
- 4. Содержание работы (перечень подлежащих разработке вопросов):

теоретическая постановка задачи, подготовка расчетной модели и проведение численного эксперимента в ANSYS, обработка результатов эксперимента и вычисление искомого модуля упругости, исследование зависимости модуля от параметров сечения стержня, обобщающий вывод

- 5. Перечень графического материала (с указанием обязательных чертежей): схематические изображения, поясняющие конфигурацию исследуемого стержня и постановку задачи; изображения моделей для численных экспериментов, включая граничные условия; изображения и графики обработанных результатов численных экспериментов, в первую очередь перемещений в определенных сечениях
- 6. Консультанты по работе: отсутствуют
- 7. Дата выдачи задания: 27.02.2023

Руководитель ВКР(подпись)	Е. А. Иванова, профессор ВШТМиМФ, д.фм.н.
Задание принял к исполнению (дата)	27.02.2023

Студент _____ С. С. Шибаев

ΡΕΦΕΡΑΤ

На 43 с., 19 рисунков, 8 таблиц, 2 приложения

ТЕОРИЯ СТЕРЖНЕЙ, КРИВОЛИНЕЙНЫЕ СТЕРЖНИ, ДОПОЛНИ-ТЕЛЬНЫЙ МОДУЛЬ УПРУГОСТИ В₃₂, ANSYS, SCILAB.

Тема выпускной квалификационной работы: «Поиск эмпирического выражения для определения дополнительного модуля упругости криволинейного стержня на основе численных экспериментов»

В работе представлены результаты вычисления модуля B₃₂ предложенным ранее методом, анализ получаемых значений, а именно их зависимость от других параметров и возможность формулировки выражения для определения B₃₂. Задачи, которые решались в ходе исследования:

- 1. Теоретический анализ предложенной ранее методики определения модуля B₃₂ на основе сопоставления трехмерной и одномерной теорий.
- 2. Подготовка и проведение соответствующих численных экспериментов в качестве решения трехмерной задачи.
- 3. Вычисление искомого модуля на основе данных численных экспериментов.
- 4. Анализ получаемых значений и поиск зависимостей (выражения).

Была проведена серия численных экспериментов с криволинейными стержнями различных прямоугольных сечений, испробованы две методики интегрирования при обработке результатов конечно-элементного расчета.

В результате проведенного исследования были вычислены модули B_{32} для стержней различного сечения, проведено сравнение с модулем жесткости на изгиб C_2 . Было отмечено высокое влияние численной погрешности, и сделано заключение о том, что сложно с достаточной степенью достоверности сделать обобщающее заключение о конкретном коэффициенте пропорциональности. В данной работе коэффициент получился равен 0,7.

ABSTRACT

43 pages, 19 figures, 13 tables, 2 appendices

THEORY OF RODS, CURVILINEAR RODS, ADDITIONAL ELASTIC MODULUS B₃₂, ANSYS, SCILAB.

The topic of the final qualification work is as follows: "Search for an empirical expression to determine the additional modulus of elasticity of a curvilinear rod based on numerical experiments".

The paper presents the results of the calculation of the modulus B_{32} by the previously proposed method, the analysis of the values obtained, namely their dependence on other parameters and the possibility of formulating an expression for determining B_{32} . Tasks that were solved in the course of the study:

- 1. Theoretical analysis of the previously proposed method for determining the B_{32} module based on a comparison of three-dimensional and one-dimensional theories.
- 2. Preparation and conduct of appropriate numerical experiments as a solution to the three-dimensional problem.
- 3. Calculation of the modulus based on data from numerical experiments.
- 4. Analysis of the obtained values and search for dependencies (expressions).

A series of numerical experiments with curvilinear rods of various rectangular cross-sections was carried out, two integration methods were tried when processing the results of finite element calculation.

As a result of the study, the B_{32} moduli for rods of various cross-sections were calculated, and a comparison was made with the C_2 bending stiffness modulus. The high influence of numerical error was noted, and it was concluded that it was difficult to make an overall conclusion about a specific proportionality coefficient with a sufficient degree of reliability. In this work, the coefficient turned out to be equal to 0.7.

ВВЕДЕНИЕ	5
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ	6
ГЛАВА 2. НАХОЖДЕНИЕ УПРУГОГО МОДУЛЯ В ₃₂ ДЛЯ СТЕРЖНЯ	
ПРЯМОУОЛЬНОГО СЕЧЕНИЯ	8
2.1. Постановка задачи	8
2.2. Численный эксперимент в ANSYS	11
2.3. Обработка результатов эксперимента в Scilab	14
2.4. Вычисление коэффициентов для выражения искомого B ₃₂	19
2.5. Вычисление модуля B ₃₂	21
ЗАКЛЮЧЕНИЕ	30
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	32
ПРИЛОЖЕНИЕ А	34
ПРИЛОЖЕНИЕ Б	38

введение

Цель данной работы – поиск выражения или зависимости для более быстрого вычисления дополнительного модуля упругости В₃₂ в рамках теории стержней. Данный модуль упругости является компонентой тензора В, описывающего взаимное влияние деформаций растяжения-сдвига и изгибакручения. Задачи работы включают изучение теоретических предпосылок и предыдущих исследований в этой области, вычисление искомого модуля упругости для стержней различных сечений, обработку и анализ результатов для выявления наличия или отсутствия зависимости и возможности сформулировать выражение. Для вычисления данного модуля ранее был предложен метод, основывающийся на проведении численного эксперимента над стержнем и сопоставлении трехмерной и одномерной теории. Выбрав стержень нужных параметров, возможно выразить неизвестный модуль через уже известные характеристики.

Тема работы и выбор исследуемого объекта обусловлены долгой историей теории стержней как раздела механики вкупе с неизменной актуальностью применения этой теории в инженерной и научной областях. Многие методы механики сплошных сред испытываются именно в рамках теории стержней. Также, например, линейная теория прямолинейных стержней является основой курса сопротивления материалов. Дополнительным фактором служит недостаток научных работ в некоторых менее исследованных областях теории стержней, таких как определение дополнительных модулей упругости.

ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ

Как уже было сказано, модель стержня давно и успешно применяется в различных инженерных задачах. Несмотря на это, до сих пор остаются не исследованными некоторые вопросы. Существуют отдельные работы, посвященные актуальной проблематике теории стержней [12].

Одним из неисследованных вопросов является определение дополнительных модулей упругости. Дело в том, что существуют два основных подхода к описанию стержней: асимптотический и прямой. При асимптотическом подходе выражения для модулей упругости получаются при формулировке основных уравнений. Однако, при таком подходе форма и структура стержней влияют на формулировку уравнений, что создает препятствия для анализа стержней сложной конфигурации или со сложной внутренней структурой. При прямом же подходе этого не происходит, но в случае криволинейных, не тонких стержней требуется отдельное определение дополнительных модулей упругости [4,5]. Решению этой задачи уже посвящено несколько работ [10,11], где был найден метод, дающий наименьшую погрешность и сделаны предположения о связи с модулем жесткости C_2 .

В одной из работ [11], по поиску метода для определения модуля B₃₂, было определено, что наилучшие результаты с погрешностью около 1% дает выражение B₃₂ через модули A₃ и C₂, и компоненту вектора вращения, направленную вдоль бинормали.

Опираясь на результаты вышеуказанной работы и используя предложенный метод, в работе Сударя А. Ю. [10] была проведена серия экспериментов и исследованы зависимости модуля от параметров сечения. Таким образом, оказалось, что модуль упругости B₃₂ не зависит от радиуса кривизны стержня и в случае прямоугольного сечения пропорционален модулю C₂. Так же было определено, что модуль B₃₂ не зависит от коэффициента Пуассона. В продолжение предыдущих работ текущими целями являются проверка и дальнейшее уточнение зависимостей модуля упругости в случае различных сечений, что в итоге может привести к формулировке выражения для модуля В₃₂ или уточнению зависимости (предполагаемого коэффициента пропорциональности) от C₂.

ГЛАВА 2. НАХОЖДЕНИЕ УПРУГОГО МОДУЛЯ В₃₂ ДЛЯ СТЕРЖНЯ ПРЯМОУОЛЬНОГО СЕЧЕНИЯ

2.1. Постановка задачи

Не будем напоминать фундамент теории стержней и задание оснащенной кривой, по этим темам достаточно учебной и научной литературы [6]. Обратимся к постановке задачи. Изначально постановка задачи, с помощью которой возможно найти дополнительные модули упругости, упоминается у П. А. Жилина, а наиболее подробно, включая выбор оптимального метода, приведена в работе В. А. Тимошенко [11]. Повторим основные специфические тезисы и теоретические соображения относящиеся к пониманию задачи. Рассмотрим лежащий в плоскости стержень без естественной крутки и запишем выражение для потенциальной упругой энергии (в рамках линейной задачи):

$$\rho_0 \mathbf{U} = \frac{1}{2} \boldsymbol{\mathcal{E}} \cdot \mathbf{A} \cdot \boldsymbol{\mathcal{E}} + \boldsymbol{\mathcal{E}} \cdot \mathbf{B} \cdot \boldsymbol{\Phi} + \frac{1}{2} \boldsymbol{\Phi} \cdot \mathbf{C} \cdot \boldsymbol{\Phi}, \qquad (2.1.1)$$

где E – вектор линейной деформации; Ф – вектор сдвиговой деформации; A, B и C – тензоры жесткости.

Рассмотрим структуру тензоров [1,5] жесткости для такого стержня. Тогда, для тензора **A**:

$$\mathbf{A} = A_1 d_1 d_1 + A_2 d_2 d_2 + A_3 d_3 d_3, \qquad (2.1.2)$$

где A_1 и A_2 – модули жесткости, характеризующие деформацию поперечного сдвига; A_3 – модуль жесткости, характеризующий деформацию растяжениясжатия. При этом под { d_1 , d_2 , d_3 } имеется в виду дополнительный ортонормированный трехгранник [6].

Структура тензора **В** сильно упрощается и приобретает следующий вид:

$$\mathbf{B} = \frac{1}{R_c} (B_{23} d_2 d_3 + B_{32} d_3 d_2), \qquad (2.1.3)$$

где модули жесткости B₂₃ и B₃₂ связаны как с угловыми, так и с линейными деформациями; R_c – радиус кривизны.

Структура тензора С:

$$\mathbf{C} = C_1 d_1 d_1 + C_2 d_2 d_2 + C_3 d_3 d_3, \qquad (2.1.4)$$

где C₁ и C₂ – модули жесткости, характеризующие изгиб; C₃ – модуль жесткости, характеризующий деформацию кручения.

Далее рассмотрим задачу, в которой используются только модули A_3 , C_2 и неизвестный B_{32} . Для этого пусть рассматриваемый стержень представляет из себя три четверти окружности, один его конец жестко заделан, а ко второму приложен момент, как изображено на рисунке 2.1.1. Допустим, что сечение стержня прямоугольное.

Рис. 2.1.1 – Граничные условия

Так как стержень лежит в плоскости и имеет постоянный радиус, удобно ввести цилиндрическую систему координат. При этом единичные вектора, образующие базис, связаны с векторами естественного трехгранника {n = $-e_r$, t = e_{θ} , b = k}.

Далее записываются уравнения равновесия, соотношения упругости, ставятся граничные условия для данной задачи. После решения уравнений и с учетом структуры тензоров жесткости получаются выражения для компонент векторов перемещений и поворота [10].

$$u_{n} = M_{0}R^{2} \left(C_{2} - \frac{B_{32}^{2}}{R^{2}A_{3}}\right)^{-1} \left(1 - \frac{B_{32}}{R^{2}A_{3}}\right) \left(1 - \cos\frac{s}{R}\right), \qquad (2.1.5)$$

$$u_{t} = M_{0}R^{2} \left(C_{2} - \frac{B_{32}^{2}}{R^{2}A_{3}}\right)^{-1} \left(\frac{s}{R} - \left(1 - \frac{B_{32}}{R^{2}A_{3}}\right)\sin\frac{s}{R}\right),$$
(2.1.6)

$$\psi_{\rm b} = M_0 s \left(C_2 - \frac{B_{32}^2}{R^2 A_3} \right)^{-1}, \qquad (2.1.7)$$

где M_0 – внешний момент, s – координата вдоль длины стержня (дуги кривой). Индексы компонент соответствуют векторам естественного трехгранника {n, t, b = $t \times n$ }, где n – вектор главной нормали, t – вектор касательной, b – вектор бинормали.

Затем осуществляется связь с трехмерной теорией [9] через геометрические выражения для трехмерной задачи и равенство количества движения и кинетического момента. Таким образом получается возможно найти компоненты векторов перемещений и поворотов из решения пространственной задачи теории упругости. Выражения для искомых компонент с учетом уравнений (2.1.5)-(2.1.7):

$$u_{n} = -\frac{1}{ab} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} u_{r}^{(3)} \left(1 - \frac{x}{R}\right) dx dy, \qquad (2.1.8)$$

$$u_{t} = \frac{1}{ab} \left(1 - \frac{a^{2}}{12R^{2}} \right)^{-1} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} u_{\theta}^{(3)} \left(1 - \frac{x^{2}}{R^{2}} \right) dxdy,$$
(2.1.9)

$$\psi_{\rm b} = -\frac{1}{abR} \left(1 - \frac{a^2}{12R^2} \right)^{-1} \int_{-\frac{a}{2}}^{\frac{a}{2}} \int_{-\frac{b}{2}}^{\frac{b}{2}} u_{\theta}^{(3)} \left(1 + \frac{12Rx}{a^2} \right) \left(1 - \frac{x}{R} \right) dxdy, \qquad (2.1.10)$$

где а и b – ширина и длина прямоугольного сечения, а x и y – соответствующие координаты с началом в центре сечения; $u_{\theta}^{(3)}$, $u_{r}^{(3)}$ – компоненты вектора перемещений для задачи теории упругости в тангенциальном и радиальном направлениях.

2.2. Численный эксперимент в ANSYS

Чтобы получить перемещения для пространственной задачи теории упругости, проведем численный эксперимент, применив конечноэлементный анализ. Расчеты будут проводиться в программном пакете ANSYS 2021R1. Для первого расчета возьмем стержень радиусом R = 50 мм, квадратного сечения со стороной 20 мм. В стержне сделаны три сечения, в цилиндрической системе координат соответствующие углам $\theta = {}^{3}/_{4}\pi$, $\theta = {}^{4}/_{4}\pi$, $\theta = {}^{5}/_{4}\pi$. В этих сечениях будут найдены перемещения. Материал стержня – сталь с модулем Юнга $E = 2 \cdot 10^{11}$ Па и коэффициентом Пуассона v = 0,3. К концу стержня приложен момент $M_0 = 100$ H·м.

На этом этапе работы размер конечного элемента выбран 1 мм аналогично одной из предыдущих работ [10] (рис. 2.2.1).

Рис. 2.2.1 – Конечно-элементная сетка

Нагрузка приложена при помощи момента к площадке на конце стержня. Граничные условия в ANSYS показаны на рисунке 2.2.2.

Рис. 2.2.2 – Граничные условия в Ansys (жесткая заделка, момент)

Дополнительно были рассмотрены вариант нагружения линейно меняющимся давлением, а также вариант с жесткой площадкой на конце стержня. Они не показали значимой разницы, поэтому используем наиболее очевидную постановку. Конечно-элементная сетка сделана квадратичными элементами [13]. На рисунках 2.2.3 и 2.2.4 приведены результаты расчета в Ansys – общая деформация и эквивалентные напряжения.

Рис. 2.2.3 – Напряженно-деформированное состояние (эквивалентные напряжения)

Рис. 2.2.4 – Напряженно-деформированное состояние (общая деформация)

На рисунках 2.2.5 и 2.2.6 приведены распределения деформаций в сечении $\theta = \frac{3}{4\pi}$ по направлениям цилиндрических координат.

Рис. 2.2.5 – Перемещения u_R в сечении $\theta = 3/4 \pi$

Для вычисления интегралов на следующем этапе будут использоваться именно перемещения вдоль координаты Оу (тангенциальная координата в цилиндрической системе). Перемещения вдоль этой координаты приведены на рисунке 2.2.6. Эти же перемещения будут пересчитаны в компоненту вектора поворота ψ_b .

Рис. 2.2.6 – Перемещения ut в сечении $\theta = 3/4 \pi$

2.3. Обработка результатов эксперимента в Scilab

Следующим этапом является обработка результатов расчета в Scilab и вычисление интегралов (2.1.8)-(2.1.10). Полученные в каждом сечении узловые перемещения экспортируются в Scilab, при этом необходимо перевести координаты узлов из декартовой системы координат в цилиндрическую. На рисунках 2.3.1 и 2.3.2 представлены графики перемещений $u_R = -u_n$ и $u_\theta = u_t$ в сечении $\theta = \frac{3}{4\pi}$.

Рис. 2.3.2 – Перемещения u_{θ} в сечении $\theta = \frac{3}{4}\pi$

Далее сделаем интерполяцию импортированных из ANSYS перемещений. Это нужно не только для повышения точности и экономии вычислительного ресурса на этапе КЭ анализа, но и для того, чтобы создать средствами Scilab регулярную сетку, для которой использовать встроенную функцию вычисления интеграла методом трапеций. Используется кубическая интерполяция методом Шепарда [14] плотностью 200 узлов на сторону, интерполированная поверхность для сечения $\theta = {}^{3}/_{4}\pi$ показана на рисунках 2.3.3-2.3.4.

Рис. 2.3.3 – График перемещений u_R после интерполяции в сечении $\theta = 3/4 \pi$

Рис. 2.3.4 – График перемещений u_{θ} после интерполяции в сечении $\theta = \frac{3}{4}\pi$

Однако, необходимость каждый раз осуществлять интерполяцию и использовать регулярную сетку для вычисления интегралов сильно ограничивает возможности исследования стержней не прямоугольного сечения. В связи с этим кроме вычисления интеграла методом трапеций вдоль каждой координаты поочередно, была написана простейшая функция, вычисляющая объемы виртуальных скошенных призм с основанием в нуле. Для того чтобы применить её к данным, получаемым из ANSYS, была использована библиотека CGLAB и входящая в неё функция для триангуляции Делоне [15]. То, как триангулируется «поверхность», заданная узловыми перемещениями ANSYS, приведено на рисунках 2.3.5-2.3.6.

Рис. 2.3.5 – Триангуляция Делоне для интегрирования перемещений в сечении $\theta = \frac{3}{4}\pi$.

Рис. 2.3.6 – Триангуляция Делоне для интегрирования перемещений в сечении $\theta = \frac{3}{4}\pi$.

Имея достаточную густоту сетки, можем приступить к вычислению интегралов (2.1.8)-(2.1.10) и нахождению компонент. В качестве ориентира получаемые значения сравнивались со среднеарифметическим перемещений, полученных в ANSYS. Результаты для трёх сечений и трёх компонент вектора поворота и перемещений приведены в таблицах 2.3.1 и 2.3.2.

Таблица 2.3.1 – Компоненты векторов перемещений и поворота для стержня квадратного сечения 20х20 мм (интерполяция)

Сечение	$\theta = \frac{3}{4}\pi$	$\theta = \frac{4}{4}\pi$	$\theta = \frac{5}{4}\pi$	
u _n (интерполяция), мм	0.000157335	0.00015499	0.004419231	
u _t (интерполяция), мм	0.000185091	0.000294141	0.005901444	
ψ _b (интерполяция), рад	0.000158658	0.000433829	0.007375522	

Таблица 2.3.2 – Компоненты векторов перемещений и поворота для стержня квадратного сечения 20х20 мм (триангуляция)

Сечение	$\theta = \frac{3}{4}\pi$	$\theta = \frac{4}{4}\pi$	$\theta = \frac{5}{4}\pi$	
u _n (триангуляция), мм	0.000157335	0.000154985	0.00442210	
u _t (триангуляция), мм	0.000185090	0.000294135	0.00590132	
ψь (триангуляция), рад	0.000158658	0.000433815	0.00737207	

Как видно, результаты, полученные двумя способами близки между собой на первый взгляд, но сильнее различаются ближе к концу стержня. Далее же увидим, что вроде бы небольшое различие оказывает сильный эффект на конечный результат.

2.4. Вычисление коэффициентов для выражения искомого Вз2

В прошлых работах всегда рассматривалось три коэффициента, с помощью который мог быть выражен искомый модуль B₃₂. В этой работе будем сразу использовать именно тот, при выражении через который получались вещественные корни, однако для наглядности приведем все три.

Условно нумеруемый первый коэффициент:

$$\left(C_2 - \frac{B_{32}^2}{R^2 A_3}\right)^{-1} \left(1 - \frac{B_{32}}{R^2 A_3}\right)$$

Его сможем определить, используя либо значения u_n, либо значения u_t и ψ_b. В первом случае выражение выглядит следующим образом:

$$\left(C_{2} - \frac{B_{32}^{2}}{R^{2}A_{3}}\right)^{-1} \left(1 - \frac{B_{32}}{R^{2}A_{3}}\right) = \frac{u_{n}}{M_{0}R^{2}\left(1 - \cos\frac{s}{R}\right)}$$

Во втором случае получится выражение:

$$\left(C_{2} - \frac{B_{32}^{2}}{R^{2}A_{3}}\right)^{-1} \left(1 - \frac{B_{32}}{R^{2}A_{3}}\right) = \frac{-u_{t} + R\psi_{b}}{M_{0}R^{2}\sin\frac{S}{R}}$$

Второй коэффициент, который как раз показывал наиболее приемлемый результаты:

$$\left(C_2 - \frac{B_{32}^2}{R^2 A_3}\right)^{-1}$$

Для него так же имеем два способа, возможно выразить через u_t или ψ_b . Согласно прошлым работам при использовании ψ_b погрешности получались значительно меньше:

$$\left(C_2 - \frac{B_{32}^2}{R^2 A_3}\right)^{-1} = \frac{u_t}{M_0 R^2 \pi}$$
$$\left(C_2 - \frac{B_{32}^2}{R^2 A_3}\right)^{-1} = \frac{\psi_b}{M_0 s}$$

Также приведем и третий коэффициент:

$$\left(1 - \frac{B_{32}}{R^2 A_3}\right)$$

В этом случае необходимо использовать соотношения $u_n/u_t,\ u_n/\psi_b$ и $u_t\!/\psi_b$:

$$\left(1 - \frac{B_{32}}{R^2 A_3}\right) = \frac{u_n s}{R(u_t \left(1 - \cos\frac{s}{R}\right) + u_n \sin\frac{s}{R})}$$
$$\left(1 - \frac{B_{32}}{R^2 A_3}\right) = \frac{u_n s}{\psi_b R^2 \left(1 - \cos\frac{s}{R}\right)}$$

$$\left(1 - \frac{B_{32}}{R^2 A_3}\right) = \frac{\psi_b Rs - u_t s}{\psi_b R^2 \sin \frac{s}{R}}$$

2.5. Вычисление модуля В₃₂

Как уже было упомянуто, наилучший способ определения модуля B₃₂ – через второй коэффициент и ψ_b [10,11]. При этом модули жесткости C₂ и A₃ вычисляются следующим образом:

$$A_{3} = EF = E \int_{F} dF$$
$$C_{2} = EI = E \int_{F} x^{2} dF$$

где *E* – модуль упругости материала стержня, *F* – площадь поперечного сечения стержня, *I* – момент инерции сечения.

Для прямоугольного сечения со сторонами а и b, F и I принимают следующий вид:

$$F = ab$$
$$I = \frac{a^3b}{12}$$

В отличие от прошлых работ, для конкретного сечения все значения получились вещественными [10,11]:

Таблица 2.5.1 – Значения В₃₂ при аналитическом значении С2

Сечение	$\theta = \frac{3}{4}\pi$	$\theta = \frac{4}{4}\pi$	$\theta = \frac{5}{4}\pi$	Среднее
B ₃₂ (триа.)	714.922902	989.518727	805.198545	836.546724
B ₃₂ (четыр.)	406.020580	995.118286	947.456257	782.865041

Однако, погрешность достигает 46%, что абсолютно неприемлемо.

Попробуем определить C₂ экспериментально, используя аналогичный метод. Для этого решим задачу с нагружением прямого стержня той же длины и сечения изгибающим моментом (рис. 2.5.1).

Рис. 2.5.1 – Нагружение «распрямленного» стержня

При этом выражения для определения перемещений значительно упрощаются:

$$u_{n} = \frac{M_{0}s^{2}}{2C_{2}}$$
$$\psi_{b} = \frac{M_{0}s}{C_{2}}$$

Для нахождения C₂ сперва поступим аналогично, как и в случае с B₃₂ – получим перемещения из трехмерной задачи теории упругости:

$$\begin{split} u_{n} &= -\frac{1}{ab} \int\limits_{-\frac{a}{2}}^{\frac{a}{2}} \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} u_{x}^{(3)} \, x dx dy \\ \psi_{b} &= -\frac{12}{a^{3}b} \int\limits_{-\frac{a}{2}}^{\frac{a}{2}} \int\limits_{-\frac{b}{2}}^{\frac{b}{2}} u_{y}^{(3)} \, dx dy \end{split}$$

Постановка численного эксперимента в ANSYS показана на рисунке 2.5.2. Результаты (напряженно-деформированное состояние) показаны на рисунках 2.5.3 и 2.5.4.

Рис. 2.5.3 – Напряженно-деформированное состояние (общая деформация)

X: Copy of Static Structural Equivalent Stress Type: Equivalent (von-Mises) Stress Unit: Pa Time: 1 s 07/06/2023 16:26 1.3251e8 Max 1.1779e8 1.0306e8 8.834e7 7.3617e7 5.8893e7 4.417e7 2.9447e7 1.4723e7 0.041094 Min 0.000 0.050 0.100 (m) 0.025 0.075

Рис. 2.5.4 – Напряженно-деформированное состояние (эквивалентные напряжения)

Также аналогично криволинейному стержню приведем распределения деформаций в сечении (рисунок 2.5.5). Для вычисления С₂ можем использовать перемещения вдоль любой из двух осей, будем использовать перемещения нормальные к несущей линии.

Рис. 2.5.5 – Перемещения u_R в сечении $\theta = 3/4 \pi$

Перемещения, полученные в Ansys, обрабатываются в Scilab аналогично, как и для криволинейного стержня. Используется интерполяция плотностью 300 узлов на одну сторону, а интегралы вычисляются при помощи метода трапеций. Получив компоненты векторов перемещений/поворота, легко можно выразить модуль C₂. После обработки результатов в Scilab аналогично криволинейному стержню видим, что значения модуля жесткости C₂, определенные экспериментально, близки к значению, полученному с помощью интеграла, но не совпадают с ним. Данные приведены в таблице 2.5.2.

Таблица 2.5.2 – Значения модуля С2, определенные экспериментально и аналитически

Сечение	$s = \frac{3\pi}{4} \cdot R$	$s = \pi \cdot R$	$s = \frac{5\pi}{4} \cdot R$	Аналитически
C_2	2.6865e9	2.6817e9	2.6787e9	2.6667e9

Теперь вновь попробуем определить искомый модуль B₃₂ на основе экспериментально определенных C₂. Видим, что погрешность значительно снизилась, все корни вещественные.

Таблица 2.5.3 – Значения модуля В₃₂ на основе экспериментального С2

Сечение	$\theta = \frac{3}{4}\pi$	$\theta = 4/4 \pi$	$\theta = \frac{5}{4}\pi$	Среднее
B ₃₂ (триа. эксп.)	20519263.53	20016275.99	18107717.71	19547752.41
В ₃₂ (четыр. эксп.)	20369187.03	20040280.97	18223494.62	19544320.87

Видим, что теперь значения гораздо ближе между собой и погрешность не превышает 7,4%. Проведем аналогичные вычисления для ещё нескольких сечений и посмотрим на результаты. Стоит оговорить, что для стержня большего сечения (200х200 мм) момент был равен 150 кНм для более удобного сопоставления с прошлыми работами и во избежание слишком малых деформаций. Ниже на рисунке 2.5.6 изображены сечения, которые будут рассмотрены.

Рис. 2.5.6 – Сечения исследуемых стержней

Ниже представлена таблица 2.5.4 со всеми рассчитанными характеристиками для стержня радиусом 50 мм и сечением 20х20 мм. Видим, что результаты значительно различаются в зависимости от использования экспериментально определенного или теоретического значения C_2 . В первом случае соотношение B_{32}/C_2 составляет в среднем примерно 0,3, в то время как для экспериментально определенных значение, соотношение имеет гораздо меньшую погрешность и составляет в среднем 0,73. Также можно отметить, что при использовании теоретического значения C_2 использование триангуляции показывает лучшую погрешность, чем метод трапеций. Для экспериментальных же значений C_2 использование метода трапеций наоборот дает несколько меньшую погрешность относительно среднеарифметического.

Можно отдельно отметить, что для теоретического значения C_2 упомянутый выше коэффициент пропорциональности возрастает ближе к концу стержня, в то время как для экспериментально определенных C_2 ситуация обратная. Также по сравнению с другими работами для рассмотренных сечений комплексные значения B_{32} получились только в одном случае: при использовании теоретического значения C_2 для стержня с высокой жесткостью

в направлении изгиба моментом (стержень R = 50 мм, b = 27 мм, a = 20 мм, $M_0 = 100$ Hм).

Полные таблицы с результатами для других сечений приведены в приложении Б.

$R = 50$ мм, $b = 20$ мм, $a = 20$ мм, $M_0 = 100$ Нм							
Модули упругости							
Сечение	C_2	С ₂ (эксп.)	B ₃₂ (три.)	B ₃₂ (четыр.)	B ₃₂ (три. эксп.)	В ₃₂ (четыр. эксп.)	
$^{3}/_{4}\pi$	2666.666667	2686.755503	714.922902	406.0205796	2128.117003	2045.145455	
$4/_{4}\pi$	2666.666667	2681.838518	989.518727	995.1182859	2003.376559	2006.148232	
$5/4\pi$	2666.666667	2678.811015	805.198545	947.4562568	1754.19904	1823.881283	
Среднее	2666.666667	2682.468345	836.546724	782.8650408	1961.897534	1958.391657	
		Погрешност	ь относителы	но среднеарифм	1етического		
		С ₂ (эксп.)	В ₃₂ (три.)	В ₃₂ (четыр.)	В ₃₂ (три. эксп.)	В ₃₂ (четыр. эксп.)	
$^{3}/_{4}\pi$		0.16%	14.54%	48.14%	8.47%	4.43%	
$4/_{4}\pi$		0.02%	18.29%	27.11%	2.11%	2.44%	
$5/4\pi$		0.14%	3.75%	21.02%	10.59%	6.87%	
			Соотноше	ние В32 к С2			
			В ₃₂ (три.)/ С ₂	В ₃₂ (четыр.)/ С2	В ₃₂ (три. эксп.)/ С ₂ (эксп.)	В ₃₂ (четыр. эксп.)/ С ₂ (эксп.)	
$^{3}/_{4}\pi$			0.18	0.16	0.76	0.76	
$4/4 \pi$			0.38	0.38	0.75	0.75	
$\frac{5}{4}\pi$			0.35	0.36	0.68	0.68	
Среднее			0.30	0.30	0.73	0.73	
Значения компонент векторов перемещений/поворота							
	u _n (три.), мм	u _t (три.), мм	ψ _b (три.), рад.	u _n (четыр.), мм	u _t (четыр.), мм	ψ _b (четыр.), рад.	
$^{3}/_{4}\pi$	0.000157335	0.000154985	0.0044221	0.000157335	0.00015499	0.004419231	
$\frac{4}{4\pi}$	0.000185090	0.000294135	0.00590132	0.000185091	0.000294141	0.005901444	
$5/_{4}\pi$	0.000158658	0.000433815	0.00737207	0.000158658	0.000433829	0.007375522	

аблица 2.5.4 – Расчетные величины для стержня сечением 20x20 мм

Особое внимание стоит обратить на соотношение полученных значений В₃₂ и С₂ и для других сечений, так как зависимость ожидается именно между этими двумя величинами. В таблице 2.5.5 сделано такое сравнение для всех сечений.

Характеристики стержня	В ₃₂ (три.)/ С ₂	В ₃₂ (четыр.)/ С ₂	В ₃₂ (три. эксп.)/ С ₂ (эксп.)	В ₃₂ (четыр. эксп.)/ С ₂ (эксп.)
R=50 мм, b=20 мм, a=20 мм	0.30	0.30	0.73	0.73
R=50 мм, b=27 мм, a=20 мм	0.18	0.18	0.74	0.74
R=50 мм, b=20 мм, a=27 мм	0.47	0.47	0.69	0.69
R=70 мм, b=32 мм, a=32 мм	0.40	0.39	0.73	0.73
R=500 мм, b=200 мм, a=200 мм	0.30	0.30	0.73	0.73

Таблица 2.5.5 – Соотношения усредненных B₃₂ / C₂

Важно отметить, что для стержня с сечением b=27 мм, a=20 мм некоторые значения B_{32} , полученные на основе аналитического C_2 оказались комплексными. Комплексные корни получались и в прошлых работах [11], и это одна из весомых мотиваций использовать именно экспериментально определенные C_2 . В целом, видно, что при использовании экспериментального C_2 соотношение получается близким к 0,7, но выборка сечений невелика и включает только прямоугольные сечения, поэтому обобщающий вывод необходимо делать достаточно осторожно. В предыдущих работах на основе серии аналогичных экспериментов было высказано предположение о соотношении 0,6, и в этом смысле результат кажется близким. Основное беспокойство вызывает общая нестабильность результатов и достаточно ощутимые погрешности, которые даже для экспериментально определенных C_2 в некоторых случаях превышают 7%.

В пособии П. А. Жилина по теории стержней предлагается находить модуль B_{32} аналитически. Для этого решается задача Ламе с полым цилиндром малой высоты, нагруженного внутренним давлением [9]. В результате делается заключение о соотношении $B_{32} = C_2$. Можно осторожно задуматься, не эту ли зависимость мы и видим, просто с достаточно большим численным отклонением. В любом случае, на основе полученных результатов возможно сделать осторожное предположение о коэффициенте пропорциональности 0,7 между В₃₂ и С₂. Это в целом согласуется с результатами прошлых работ.

ЗАКЛЮЧЕНИЕ

В работе был определен модуль упругости В₃₂ для стержней различного прямоугольного сечения и различного радиуса с использованием методики сопоставления трехмерной теории и теории стержней. Для этого был проведен численный эксперимент в ANSYS с криволинейным стержнем без естественной крутки, позволяющий найти перемещения в трех выбранных сечениях. Полученные узловые перемещения были импортированы в Scilab и затем через них вычислены значения искомого модуля и сопутствующих характеристик, таких, как модуль жесткости на изгиб С₂. При этом было применено два метода интегрирования поверхности, заданной набором точек: методом трапеций поочередно в каждом направлении и с помощью подсчета суммы «объемов призм» после триангуляции. Несмотря на потенциально большую гибкость метода, использующего триангуляцию, в рамках этой работы более надежные результаты показывает метод, использующий интерполяцию и интегрирование трапециями. Всё-таки пользовательская функция, рассчитывающая интеграл по «объемам призм», слишком примитивна. Однако, в будущем кажется перспективным переходить к интегрированию триангулированной поверхности, что позволит избавиться от необходимости использования регулярной сетки.

Принимая во внимание большую погрешность получаемых значений, а также комплексные значения модуля B_{32} для как минимум одного из рассматриваемых сечений, были проведены дополнительные численные эксперименты с прямолинейными стержнями, в которых были аналогичным методом определены значения C_2 для каждого сечения. Несмотря на близость значений C_2 к теоретическому, экспериментально определенные модули позволили получать вещественные значения B_{32} с умеренной погрешностью. Анализируя же получаемые значения B_{32} , видим, что для всех рассмотренных сечений соотношение B_{32}/C_2 близко к 0,7. Это несколько отличается от результатов предыдущих работ, в которых применялся аналогичный метод – в одной из них значения различались почти на один порядок, в то время как в другой было сделано предположение о коэффициенте 0,6 [10,11]. На первый взгляд, такой коэффициент близок к полученным в последней из упомянутых работе результатам, тем более что набор сечений в упомянутой работе был гораздо шире [10]. Однако, учитывая общую нестабильность результатов и большие погрешности, кажется недостаточно надежным делать обобщающие выводы по усредненным значениям. П. А. Жилин в учебном пособии пишет о соотношении В₃₂ = С₂ [6]. Получаемые результаты действительно показывают стабильную зависимость от С₂, но сделать вывод о конкретном коэффициенте сложно. В результате этой работы такой коэффициент получился равен 0,7. В дальнейшем, для того, чтобы проверить совокупную степень влияния всех численных эффектов, необходимо провести аналогичные изыскания, верифицируя корректность вычислений на каждом этапе не только с теоретической точки зрения, но и с технической (сугубо численной), но это уже выходит за рамки данной работы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Вильчевская Е. Н. Тензорная алгебра и тезорный анализ: учеб. пособие / Е.Н. Вильчевская. — СПб. : Изд-во Политехн. ун-та, 2012. 46 с.

2. Елисеев В. В. Механика деформируемого твёрдого тела, 2006 г., 231 с.

3. Елисеев В. В., Зиновьева Т. В. Механика тонкостенных конструкций. Теория стержней: Учеб. пособие. — СПб.: Изд-во Политехн. ун-та, 2008. — 95 с.

4. Елисеев В. В. Механика упругих тел. СПб.: Изд-во СПбГТУ, 1999. 341 с.

5. Жилин П.А. Векторы и тензоры второго ранга в трехмерном пространстве. С.-Петербург: изд-во СПбГТУ, 1992. 86с.

Жилин П. А. Прикладная механика. Теория тонких упругих стержней:
 Учеб. пособие. – СПб. : Изд-во Политехн. ун-та, 2007. – 101 с.

7. Лойцянский Л.Г., Лурье А.И. Курс теоретической механики, т.1. М.: Наука, 1982. 352с.

8. Лойцянский Л.Г., Лурье А.И. Курс теоретической механики, т.2. М.: Наука, 1983. 540с.

9. Лурье А.И. Теория упругости. М.: Наука, 1970. 939 с.

10. Сударь А. Ю. Определение зависимости дополнительного модуля упругости криволинейного стержня от параметров сечения: выпускная квалификационная работа магистра [Электронный ресурс] // Electronic Library of St. Petersburg Polytechnic University. URL:

https://elib.spbstu.ru/dl/3/2020/vr/vr20-2852.pdf/en/info (дата обращения 26.05.2023).

11. Ivanova E. A., Timoshenko V. A.. Development of a Method for Determining One of the Additional Elastic Moduli of Curvilinear Rods [Электронный pecypc] // Springer International Publishing. Analysis of Shells, Plates, and Beams. June 2020, pp. 171-184. URL: https://www.researchgate.net/publication/341890250_Development_of_a_Method _for_Determining_One_of_the_Additional_Elastic_Moduli_of_Curvilinear_Rods (дата обращения 26.05.2023).

Zhilin P. A. Nonlinear theory of thin rods. In: Indeitsev D. A., Ivanova E.
 A., Krivtsov A. M. (eds) // Advanced Problems in Mechanics, Instit. Problems
 Mech. Eng. R.A.S. Publ, St. Petersburg, vol 2, 2007: pp. 227-249

13. Ansys Learning Forum [Электронный ресурс]. URL: https://forum.ansys.com/ (дата обращения 26.05.2023)

14. ScilabOnlineHelp[Электронный ресурс].URL:https://help.scilab.org/docs/6.1.0/en_US/index.html (дата обращения 26.05.2023)

15. The Computational Geometry Algorithms Library [Электронный pecypc]. URL: https://www.cgal.org/ (дата обращения 26.05.2023)

ПРИЛОЖЕНИЕ А

Код программы Scilab, с помощью которой проводилась обработка результатов. На ввод требуются экспортированные из ANSYS Workbench файлы результатов со значениями перемещений в узлах. Не приведены некоторые временные фрагменты для построения графиков.

```
//x,y - coordinates column vectors, f - corresponding 2D integrand matrix
function I=inttrap2d(x, y, f)
   II = zeros(size(f, 1));
   for i = 1:size(f, 1)
      II(i) = inttrap(\mathbf{x}', \mathbf{f}(i, :));
   end
   I = inttrap(y,II);
endfunction
//x,y - coordinates column vectors, f - corresponding 2D integrand matrix
function I=intsplin2d(x, y, f)
   II = zeros(size(f, 1));
   for i = 1:size(f, 1)
      II(i) = intsplin(\mathbf{x}', \mathbf{f}(i, :));
   end
   I = intsplin(y,II);
endfunction
//calculating sum of prism volumes as a 2D integral
function I=inttria(index, x, y, f)
   = 0;
   for i = 1:size(index,"r")
      \mathbf{a} = [\mathbf{x}(\mathbf{index}(\mathbf{i},3)) \cdot \mathbf{x}(\mathbf{index}(\mathbf{i},1)) \mathbf{y}(\mathbf{index}(\mathbf{i},3)) \cdot \mathbf{y}(\mathbf{index}(\mathbf{i},1)) \mathbf{0}];
      b = [x(index(i,3))-x(index(i,2)) y(index(i,3))-y(index(i,2)) 0];
      A = 0.5*norm(cross(a,b));
      V = A^{*}(f(index(i,1)) + f(index(i,2)) + f(index(i,3)))/3;
      I = I + V;
   end
endfunction
function C2=C2 experimental(a, b, M0)
   interp n = 300;
   C2 = zeros(3);
   s = zeros(3);
   cd "<User folder for Ansys results>";
   experiment_dir = "./"+string(R*1e3)+"_"+string(b*1e3)+"_"+string(a*1e3)+"_straight";
   ur_ansys = []; sec_x = []; sec_y = [];
   sec x interp = zeros(interp n,3);
   sec y interp = zeros(interp n.3);
// mean un quad = zeros(3);
   for i=1:3
      ur path = fullfile(experiment dir, string(24+10*i)+"pi ut.txt");
```

```
s(i) = ur ansys(1,(i-1)*5+2);
     //stacked vectors of section coordinates sec x,y: [3/4pi 4/4pi 5/4pi]
     sec_x = cat(2, sec_x, ur_ansys(:, 3+5^*(i-1)));
     sec_y = cat(2, sec_y, ur_ansys(:, 4+5^*(i-1)));
     sec_x_interp(:,i) = linspace(min(sec_x(:,i)),max(sec_x(:,i)),interp_n);
     sec_y_interp(:,i) = linspace(min(sec_y(:,i)),max(sec_y(:,i)),interp_n);
     //indexing over sections via 3rd dimension
     [xq(:,:,i),yq(:,:,i)] = \underline{ndgrid}(\sec_x\_interp(:,i),sec\_y\_interp(:,i));
     //interpolate
     tl_coef_ur = cshep2d([sec_x(:,i) sec_y(:,i) ur_ansys(:,i*5)]);
     vq_ur(:,:,i) = eval_cshep2d(xq(:,:,i),yq(:,:,i),tl_coef_ur);
     III_un_quad(:,:,i) = vq_ur(:,:,i);
     I_un_quad(i) = inttrap2d(sec_x_interp(:,i),sec_y_interp(:,i),III_un_quad(:,:,i));
     un quad(i) = -I un quad(i)/(a^*b):
     C2(i) = M0^{*}s(i)^{2/2}un guad(i);
  end
  experiment dir = "";
endfunction
clf();
//rod dimensions, [m]
//loading by moment, [N*m]
a = 0.032;
b = 0.032;
R = 0.07;
M0 = 100;
F = a^*b;
I = a^{3*}b/12;
E = 2e11; //%N/m^2
A3 = E^*F;
C2 = E^*I:
C2 exp = C2 experimental(a,b,M0);
interp_n = 200;
//csv from Ansys format: [nodenum x y z def]
cd "<User folder for Ansys results>";
format("v", 10);
experiment_dir = "./"+string(R*1e3)+"_"+string(b*1e3)+"_"+string(a*1e3)+"_quadratic"; //+"_quadratic"
ur_ansys = []; uth_ansys=[]; sec_x = []; sec_y = []; /*sec_x_y_ur = []; sec_x_y_ut = [];*/
sec_x_interp = zeros(interp_n,3);
sec_y_interp = zeros(interp_n,3);
xq = zeros(interp_n,interp_n,3);
yq = zeros(interp_n,interp_n,3);
vq_ur = zeros(interp_n,interp_n,3);
vq_uth = zeros(interp_n,interp_n,3);
```

```
III_un_quad = zeros(interp_n,interp_n,3); II_un_quad = zeros(interp_n,3); I_un_quad = zeros(3);
III_ut_quad = zeros(interp_n,interp_n,3); II_ut_quad = zeros(interp_n,3); I_ut_quad = zeros(3);
III_psyb_quad = zeros(interp_n,interp_n,3); II_psyb_quad = zeros(interp_n,3); I_psyb_quad = zeros(3);
```

III un quad = []; III ut quad = []; III psyb quad = []; III un tria = []; III ut tria = []; III psyb tria = []; un = zeros(3); ut = zeros(3); psyb = zeros(3);mean ur = zeros(3); mean uth = zeros(3); s = zeros(3);COEFF2 = zeros(3);B32 = zeros(3);for i=1:3 ur_path = fullfile(experiment_dir,string(24+10*i)+"pi_ur.txt"); uth_path = <u>fullfile(experiment_dir,string(24+10*i)+"pi_ut.txt");</u> ur_ansys = <u>cat(2,ur_ansys,csvRead(ur_path," ",".","double",[],[],[],1));</u> uth_ansys = <u>cat(2,uth_ansys,csvRead(uth_path,"",",","double",[],[],[],1));</u> //stacked vectors of section coordinates sec x,y: [3/4pi 4/4pi 5/4pi] sec $x = cat(2, sec x, sqrt(uth ansys(:,2+5*(i-1)).^2 + uth ansys(:,3+5*(i-1)).^2)-R);$ sec $y = cat(2, sec y, uth ansys(:, 4+5^{*}(i-1)));$ sec_x_interp(:,i) = linspace(min(sec_x(:,i)),max(sec_x(:,i)),interp_n); sec_y_interp(:,i) = linspace(min(sec_y(:,i)),max(sec_y(:,i)),interp_n);

//indexing over sections via 3rd dimension
[xq(:,:,i),yq(:,:,i)] = ndgrid(sec_x_interp(:,i),sec_y_interp(:,i));

//interpolate
tl_coef_ur = cshep2d([sec_x(:,i) sec_y(:,i) ur_ansys(:,i*5)]);
tl_coef_uth = cshep2d([sec_x(:,i) sec_y(:,i) uth_ansys(:,i*5)]);

vq_ur(:,:,i) = eval_cshep2d(xq(:,:,i),yq(:,:,i),tl_coef_ur); vq_uth(:,:,i) = eval_cshep2d(xq(:,:,i),yq(:,:,i),tl_coef_uth);

$$\begin{split} &III_un_quad(:,:,i) = vq_ur(:,:,i) - vq_ur(:,:,i).*xq(:,:,i)/R; \\ &III_ut_quad(:,:,i) = vq_uth(:,:,i) - vq_uth(:,:,i).*(xq(:,:,i).^2/R^2); \\ &III_psyb_quad(:,:,i) = vq_uth(:,:,i) + (12*R/a^2)*vq_uth(:,:,i).*xq(:,:,i) - ... \\ & (vq_uth(:,:,i).*xq(:,:,i))/R - (12/a^2)*vq_uth(:,:,i).*(xq(:,:,i).^2); \end{split}$$

//integrate over interpolated sections

$$\begin{split} I_un_quad(i) &= \underline{inttrap2d}(sec_x_interp(:,i),sec_y_interp(:,i),III_un_quad(:,:,i));\\ I_ut_quad(i) &= \underline{inttrap2d}(sec_x_interp(:,i),sec_y_interp(:,i),III_ut_quad(:,:,i));\\ I_psyb_quad(i) &= \underline{inttrap2d}(sec_x_interp(:,i),sec_y_interp(:,i),III_psyb_quad(:,:,i)); \end{split}$$

$$\label{eq:un_quad} \begin{split} &un_quad(i) = -l_un_quad(i)/(a^*b); \\ &ut_quad(i) = l_ut_quad(i)/(a^*b)/(1-a^2/12/R^2); \\ &psyb_quad(i) = l_psyb_quad(i)/(R^*a^*b)/(1-a^2/12/R^2); \end{split}$$

index_tria = delaunay_2(sec_x(:,i)',sec_y(:,i)');

$$\begin{split} I_un_tria(i) &= \underline{inttria}(index_tria,sec_x(:,i),sec_y(:,i),III_un_tria(:,i));\\ I_ut_tria(i) &= \underline{inttria}(index_tria,sec_x(:,i),sec_y(:,i),III_ut_tria(:,i));\\ I_psyb_tria(i) &= \underline{inttria}(index_tria,sec_x(:,i),sec_y(:,i),III_psyb_tria(:,i)); \end{split}$$

 $un_{tria(i)} = -I_{un_{tria(i)/(a*b)}};$

```
ut_tria(i) = I_ut_tria(i)/(a^b)/(1-a^2/12/R^2);

psyb_tria(i) = I_psyb_tria(i)/(R^a^b)/(1-a^2/12/R^2);
```

```
\begin{array}{l} mean\_ur(i) = \underline{mean}(ur\_ansys(:,i^{*}5));\\ mean\_uth(i) = \underline{mean}(uth\_ansys(:,i^{*}5)); \end{array}
```

 $s(i) = (i+2)/4*%pi^R;$ COEFF2(i) = psyb_tria(i)/(M0*R*s(i));

```
 \begin{array}{l} B32\_tria(i) = sqrt((C2-M0^*s(i)/psyb\_tria(i))^*(R^{2})^*A3);\\ B32\_tria\_exp(i) = sqrt((C2\_exp(i)-M0^*s(i)/psyb\_tria(i))^*(R^{2})^*A3);\\ \end{array}
```

```
\begin{array}{l} B32\_quad(i) = sqrt((C2-M0^*s(i)/psyb\_quad(i))^*(R^{A2})^*A3);\\ B32\_quad\_exp(i) = sqrt((C2\_exp(i)-M0^*s(i)/psyb\_quad(i))^*(R^{A2})^*A3);\\ \end{array}
```

end

ПРИЛОЖЕНИЕ Б

Под сокращениями подразумевается: «эксп.» – определенный на основе эксперимента; «три.» – вычисленный на триангулированной в Scilab сетке узлов; «четыр.» – вычисленный на сетке узлов, интерполированной четырехугольными «элементами».

D = 500 m/s = 200 m/s = 200 m/s = 150 m/s								
	$K = 500 \text{ MM}, D = 200 \text{ MM}, a = 200 \text{ MM}, M_0 = 150 \text{ KHM}$							
Модули упругости								
Сечение	C_2	С2 (эксп.)	B ₃₂ (три.)	B ₃₂ (четыр.)	B ₃₂ (три. эксп.)	В32 (четыр. эксп.)		
$^{3}/_{4}\pi$	26666666.67	26865039.76	4928892.9	4261172.313	20519263.53	20369187.03		
$\frac{4}{4}\pi$	26666666.67	26816657.81	10033395.2	10081199.12	20016275.99	20040280.97		
$\frac{5}{4}\pi$	26666666.67	26787266.81	9310701.08	9533911.597	18107717.71	18223494.62		
Среднее	26666666.67	26822988.13	8090996.39	7958761.009	19547752.41	19544320.87		
		Погрешность	относительн	о среднеарифме	стического			
		С ₂ (эксп.)	B ₃₂ (три.)	В ₃₂ (четыр.)	В ₃₂ (три. эксп.)	В ₃₂ (четыр. эксп.)		
$^{3}/_{4}\pi$		0.16%	39.08%	46.46%	4.97%	4.22%		
$4/4\pi$		0.02%	24.01%	26.67%	2.40%	2.54%		
$\frac{5}{4}\pi$		0.13%	15.07%	19.79%	7.37%	6.76%		
			Соотношен	ие В32 к С2				
			В ₃₂ (три.)/ С ₂	В ₃₂ (четыр.)/ С2	В ₃₂ (три. эксп.)/ С ₂ (эксп.)	В ₃₂ (четыр. эксп.)/ С ₂ (эксп.)		
$^{3}/_{4}\pi$			0.18	0.16	0.76	0.76		
$4/4\pi$			0.38	0.38	0.75	0.75		
$\frac{5}{4}\pi$			0.35	0.36	0.68	0.68		
Среднее			0.30	0.30	0.73	0.73		
Значения компонент векторов перемещений/поворота								
	u _n (три.), мм	u _t (три.), мм	ψ _b (три.), рад.	u _n (четыр.), мм	u _t (четыр.), мм	<i>ψ</i> _b (четыр.), рад.		
$^{3}/_{4}\pi$	0.002360119	0.002325101	0.00662982	0.00236012	0.002325113	0.006629054		
$4/4\pi$	0.002776348	0.004412386	0.00885244	0.002776349	0.004412408	0.008852599		
$5/_{A}\pi$	0.002379763	0.00650764	0.01106264	0.002379763	0.006507675	0.011063517		

$R = 50$ мм, $b = 20$ мм, $a = 20$ мм, $M_0 = 100$ Нм									
Модули упругости									
Сечение С ₂ С		С2 (эксп.)	B ₃₂ (три.)	В ₃₂ (четыр.) В ₃₂ (три. эксп.)		В ₃₂ (четыр. эксп.)			
$^{3}/_{4}\pi$	2666.666667	2686.755503	714.922902	406.0205796	406.0205796 2128.117003				
$\frac{4}{4\pi}$	2666.666667	2681.838518	989.518727	995.1182859	2003.376559	2006.148232			
$\frac{5}{4}\pi$	2666.666667	2678.811015	805.198545	947.4562568	1754.19904	1823.881283			
Среднее	2666.666667	2682.468345	836.546724	4 782.8650408 1961.897534		1958.391657			
	Погрешность относительно среднеарифметического								
		С2 (эксп.)	B ₃₂ (три.)	B ₃₂ (четыр.)	B ₃₂ (три. эксп.)	В ₃₂ (четыр. эксп.)			
$^{3}/_{4}\pi$		0.16%	14.54%	48.14%	8.47%	4.43%			
$4/_{4}\pi$		0.02%	18.29%	27.11%	2.11%	2.44%			
$\frac{5}{4}\pi$	0.14% 3.75%		21.02%	10.59%	6.87%				
			Соотноше	ение В32 к С2					
			В ₃₂ (три.)/ С ₂	В ₃₂ (четыр.)/ С2	В ₃₂ (три. эксп.)/ С ₂ (эксп.)	В ₃₂ (четыр. эксп.)/ С ₂ (эксп.)			
$^{3}/_{4}\pi$			0.18	0.16	0.76	0.76			
$\frac{4}{4\pi}$			0.38	0.38	0.75	0.75			
$\frac{5}{4}\pi$			0.35	0.36	0.68	0.68			
Среднее			0.30	0.30	0.73	0.73			
Значения компонент векторов перемещений/поворота									
	u _n (три.), мм	u _t (три.), мм	ψ _b (три.), рад.	u _n (четыр.), мм	ut (четыр.), мм	ψ _b (четыр.), рад.			
$3/4 \pi$	0.000157335	0.000154985	0.0044221	0.000157335	0.00015499	0.004419231			
$\frac{4}{4}\pi$	0.000185090	0.000294135	0.00590132	0.000185091	0.000294141	0.005901444			
$\frac{5}{4}\pi$	0.000158658	0.000433815	0.00737207	0.000158658	0.000433829	0.007375522			

Таблица Б.2 – Расчетные величины для стержня сечением 20х20 мм

$R = 50$ мм, $b = 20$ мм, $a = 27$ мм, $M_0 = 100$ Нм								
Модули упругости								
Сечение С2		С2 (эксп.)	B ₃₂ (три.)	B ₃₂ (четыр.)	В ₃₂ (три. эксп.)	В ₃₂ (четыр. эксп.)		
$^{3}/_{4}\pi$	6561	6613.65577	2857.356564	2753.290756	4730.913708	4668.797271		
$\frac{4}{4}\pi$	6561	6600.93088	3210.625144	3215.100262	4592.325265	4595.455061		
$\frac{5}{4}\pi$	6561	6593.152166	3243.197617	3314.437211	4381.713772	4434.701661		
Среднее	6561	6602.579605	3103.726442	3094.276076	4568.317581	4566.317998		
Погрешность относительно среднеарифметического								
		С2 (эксп.)	B ₃₂ (три.)	В ₃₂ (четыр.) В ₃₂ (три. эксп.) В ₃₂ (ч		B ₃₂ (четыр. эксп.)		
$^{3}/_{4}\pi$		0.17%	7.94%	11.02%	3.56%	2.24%		
$4/4\pi$		0.02%	3.44%	3.90%	0.53%	0.64%		
$\frac{5}{4}\pi$		0.14% 4.49%		7.12%	4.08%	2.88%		
			Соотнош	ение В32 к С2	·			
			В ₃₂ (три.)/ С ₂	В ₃₂ (четыр.)/ В ₃₂ (три. эксп.)/ В ₃₂ (четы С ₂ С ₂ (эксп.) С ₂ (э		В ₃₂ (четыр. эксп.)/ С ₂ (эксп.)		
$^{3}/_{4}\pi$			0.44	0.42	0.72	0.71		
$\frac{4}{4}\pi$			0.49	0.49	0.70	0.70		
$\frac{5}{4}\pi$			0.49	0.51	0.66	0.67		
Среднее			0.47	0.47	0.69	0.69		
Значения компонент векторов перемещений/поворота								
u _n (три.), мм u _t (три.), мм ψ _b (три.), рад. u _n (четыр.), мм u _t (четыр.), мм						ψ _b (четыр.), рад.		
$3/4 \pi$	6.32328E-05	6.35615E-05	0.00180392	6.32328E-05	6.35635E-05	0.001803323		
$4/4\pi$	7.44465E-05	0.000119956	0.00240815	7.44466E-05	0.000119959	0.002408194		
$\frac{5}{4}\pi$	6.38716E-05	0.000176612	0.00301055	6.38716E-05	0.000176617	0.003011351		

Таблица Б.3 –	Расчетные	величины	для	стержня	сечением	20x27	MM
				-			

$R = 50$ мм, $b = 27$ мм, $a = 20$ мм, $M_0 = 100$ Нм									
Модули упругости									
Сечение	C_2	С2 (эксп.)	B ₃₂ (три.)	B ₃₂ (четыр.)	В ₃₂ (три. эксп.)	В ₃₂ (четыр. эксп.)			
$^{3}/_{4}\pi$	3600	3634.883238	875.9694948i	1185.710179i	2941.284011	2830.647551			
$4/4 \pi$	3600	3626.422511	641.185518	648.1307152	2746.852179	2748.481663			
$\frac{5}{4}\pi$	3600	3621.259279	226.6574649i	635.5203341	5203341 2385.085285 2478.6				
Среднее	3600	3627.521676	213.728506	427.8836831	2691.073825	2685.938891			
Погрешность относительно среднеарифметического									
С2 (эксп.) В32 (три.) В32 (че		B ₃₂ (четыр.)	В ₃₂ (три. эксп.) В ₃₂ (четыр. эксп.)						
$^{3}/_{4}\pi$		-	-	-	9.30%	5.39%			
$4/4 \pi$		-	-	-	2.07%	2.33%			
$\frac{5}{4}\pi$		-	-	-	11.37%	7.72%			
			Соотношени	е В32 к С2					
	В ₃₂ (три.)/ В ₃₂ (четыр.)/ В ₃₂ (три. эксп.)/ В ₃₂ (четыр. э С ₂ С ₂ С ₂ С ₂ (эксп.) С ₂ (эксп.)								
$^{3}/_{4}\pi$			-	-	0.81	0.78			
$\frac{4}{4}\pi$			0.18	0.18	0.76	0.76			
$\frac{5}{4}\pi$			-	0.18	0.66	0.68			
Среднее			0.18	0.18	0.74	0.74			
Значения компонент векторов перемещений/поворота									
	u _n (три.), мм	u _t (три.), мм	ψ _b (три.), рад.	u _n (четыр.), мм	u _t (четыр.), мм	ψ _b (четыр.), рад.			
$^{3}/_{4}\pi$	0.000116321	0.000114448	0.00326991	0.000116321	0.000114452	0.003267766			
$4/4\pi$	0.000136987	0.000217384	0.00436517	0.000136987	0.000217388	0.00436521			
$5/_{4}\pi$	0.000117559	0.000320817	0.00545387	0.000117559	0.000320827	0.005456421			

Таблица Б.4 – Расчетные величины для стержня сечением 27х20 мм

$R = 70$ мм, $b = 32$ мм, $a = 32$ мм, $M_0 = 100$ Нм								
Модули упругости								
Сечение С2		С2 (эксп.)	B ₃₂ (три.)	B ₃₂ (четыр.)	В ₃₂ (три. эксп.)	В ₃₂ (четыр. эксп.)		
$^{3}/_{4}\pi$	17476.26667	17623.72505	5762.89104	5363.22976	13460.62206	13294.42239		
$4/4 \pi$	17476.26667	17588.22118	7147.02956	7159.846607	12783.92056	12791.09053		
$\frac{5}{4}\pi$	17476.26667	17566.59192	7824.20763	8011.490036 12323.20653		12442.95651		
Среднее	17476.26667	17592.84605	6911.37608	6844.855468	12855.91638	12842.82314		
Погрешность относительно среднеарифметического								
		С2 (эксп.)	B ₃₂ (три.)	B ₃₂ (четыр.)	B ₃₂ (три. эксп.)	В ₃₂ (четыр. эксп.)		
$^{3}/_{4}\pi$		0.18%	16.62%	21.65%	4.70%	3.52%		
$4/4 \pi$		0.03%	3.41%	4.60%	0.56%	0.40%		
$\frac{5}{4}\pi$	0.15% 13.21% 17.0		17.04%	4.14%	3.11%			
Соотношение В32 к С2								
			В ₃₂ (три.)/ В ₃₂ (четыр.)/ С ₂ С ₂		В ₃₂ (три. эксп.)/ С ₂ (эксп.)	В ₃₂ (четыр. эксп.)/ С ₂ (эксп.)		
$^{3}/_{4}\pi$			0.33	0.31	0.76	0.75		
$\frac{4}{4\pi}$			0.41	0.41	0.73	0.73		
$\frac{5}{4\pi}$			0.45	0.46	0.70	0.71		
Среднее			0.40	0.39	0.73	0.73		
Значения компонент векторов перемещений/поворота								
un (три.), мм ut (три.), мм ψь(три.), рад. un (четыр.), мм ut (четыр.), мм ψь						ψ _b (четыр.), рад.		
$^{3}/_{4}\pi$	4.68306E-05	4.64594E-05	0.00094555	4.68306E-05	4.64601E-05	0.000945308		
$\frac{4}{4}\pi$	5.51306E-05	8.80152E-05	0.00126202	5.51307E-05	8.8016E-05	0.001262033		
$\frac{5}{4}\pi$	4.72911E-05	0.000129757	0.00157844	4.72911E-05	0.000129759	0.001578707		

Таблица Б.5 – Расчетные величины для стержня сечением 32х32 мм