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Abstract The problem of description of large inelastic deformations of solids is
considered. On a simple discrete model it is shown that the classical concept of
deformations used in continuum mechanics can exhibit serious difficulties due to
reorganizations of the internal structure of materials. The way of construction of
constitutive equations in continuum mechanics aimed to avoid these problems is
proposed. A method of introduction of material strain tensor for the inelastic contin-
uum is suggested. The paper is based on the report: P. A. Zhilin, A. Krivtsov: Point
mass simulation of inelastic extension process. It was prepared for the ICIAM 95
(Third International Congress on Industrial and Applied Mathematics, Hamburg,
Germany, July 3–7, 1995), but not accepted for publication.

1 Introductory Remarks

The conventional continuum mechanics contains [1–3]:

a) the theory of stresses and balance equations,
b) the geometrical theory of deformations and the introduction of strain tensors, and
c) the establishment of constitutive equations (sometimes added by evolution equa-

tions).

P. A. Zhilin–deceased. The original text by P. A. Zhilin (1942–2005) is presented in Sects. 1,
3 and 4 with some explanatory addenda.
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Fig. 1 Tension of the system of three interacting particles

Such approach was found by L. Euler (for one-dimensional continua) and by
A. Cauchy (for three-dimensional continuum) in order to describe mechanics of
elastic materials. It is often assumed that the Euler-Cauchy approach can be used for
inelastic materials too. There are many theories of such kind. However, none of them
is able to describe a lot of well established experimental results. By this reason many
experimenters suppose that the Euler-Cauchy approach cannot be used in mechanics
of inelastic materials.1

In this chapter a simple discrete model is used to illustrate these problems arising
for the large inelastic deformations. Then a method of introduction of a material
strain tensor suitable for solution of these problems is presented.

2 Simple Discrete Model of Inelastic Deformation

One of the main problems for the usage of the traditional stress tensors is that for
an inelastic deformation an essential structure reorganization occurs in materials. In
particular the idea of material line can loose its sense because a material particle
can locate itself between the nearest neighboring particles. For illustration2 let us
consider the deformation of the simplest discrete system containing three interacting
particles—see Fig. 1.

Let us describe the interaction between particles using the Morse potential [4]

Π(r) = D
(
e−2α(r−a) − 2e−α(r−a)

)
, (1)

where r is the distance between particles, D is the bond energy, a is the bond length,
α is the interaction parameter. The Morse potential is one of the simplest interaction

1 Among such theories probably the best results in explanation of experimental phenomena are
given by the so-called “deformation theory” of H. Hencky, sometimes much better than the rate
theory can do [13]. As it can be seen from below, there are serious reasons for that.
2 This model was proposed by P. A. Zhilin and analyzed by A. Krivtsov.
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potentials used for the qualitative description of the interaction between atoms. The
corresponding interaction force f(r) can be calculated as

f(r) = −Π ′(r) = 2αD
(
e−2α(r−a) − e−α(r−a)

)
. (2)

For r < a the value of f(r) is positive, which corresponds to repulsion, for r > a

the value of f(r) is negative, which corresponds to attraction, for r = a the force
became zero. Let us introduce the bond strength

f∗ = αD/2, (3)

which is the maximum of the absolute value of the attraction force.
For the system of three particles without external loading there exists the unique

stable equilibrium configuration, that is an equilateral triangle with side length a.
Let us set the loading of the system by quasistatic extension of the triangle along
one of its sides—see Fig. 1a. The corresponding tension forces are shown in the
picture, the absolute value of the forces is denoted by P. While the length r of the
side being extended is less than 2a, the system forms an isosceles triangle, where
the length of the equal sides is a permanently. In fact in this case particle 3 is not
interacting with other two particles—the forces between it and others is equal to zero,
while the force P is determined by interaction between particles 1 and 2 only. The
situation changes drastically, when r exceeds 2a—see Fig. 1b. In this case particle 3
“put itself” between particles 1 and 2. In this case the interaction became more
complex, since the distance between particle 3 and other two particles exceeds an
equilibrium one, therefore an attraction between them appears, increasing the force P.
The corresponding equations of equilibrium are given in Fig. 1a, b. The stress-strain
diagram, obtained from these equations for αa = 3 is shown in Fig. 2.

The obtained relation P(r) has three extrema. For the soft loading (when the
loading force is set, but not the deformation) the decreasing parts of the diagram
are unstable (the dashed line). In the extrema the dynamic transitions with structure
reorganization are possible (the arrows). Thus, even for such simple model with
purely potential interaction it is quite possible to observe the main features inherent
to stress-strain relation of real materials: yielding, residual deformation, hardening,
loop of hysteresis and so on. The analysis of more complex discrete systems in [5],
which was performed analytically and numerically, shows similar results. The more
degrees of freedom are taken into account the closer these results are to the results
of the nature experiments with real materials.

The main conclusion that follows from this consideration is that due to the inter-
nal structure reorganization such concept as the material line can loose its sense,
and consequently the geometrical definition of deformation looses the sense for the
significant inelastic deformations.
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Fig. 2 Loading diagram for the system of three interacting particles

3 Continuum Description

From the previous section it follows that generally for significant inelastic defor-
mations of materials the strain tensors defined from pure geometrical reasons are
not suitable to be used in the theory of constitutive relations. It is necessary to look
for another approach. Let us describe an idea of possible method of introduction of
a strain tensor for inelastic continua. The starting point is the equation of energy
balance

ρU̇ = τ ·· D + ρs − ∇ ·h, D ≡ (∇v + ∇vT )/2, (4)

where ρ is the material density; U is the specific internal energy (in terms of mass);
τ is the Cauchy stress tensor; D is the stretching tensor; s is the heat supply; h is the
heating-flux vector; v is the velocity vector; ∇ is the vector differential operator in
the actual configuration. The first term in the right side of Eq. (4) is called the power
of stress. Note that here the direct tensor notation in the sense of [7, 8] is used. In
addition, the gradient of a vector (for example, velocity) is introduced as in [7] that
means as the transpose of the quantity defined in most other textbooks.

Let us accept the following definition:

Definition 19.1. The quantity E , on the variation of which the Cauchy stress tensor τ

is producing the work, is called material strain tensor.

From the definition it follows

τ ·· D = τ ·· Ė ⇒ τ ·· (Ė − D) = 0, ∀τ : τ = τT . (5)
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The symmetric tensor E must be an objective one, i. e. under superposition of rigid
motions we have to get

E∗ = Q · E · QT , (6)

where E∗ is the tensor E being transformed by the rigid rotation Q (Q · QT = E
with E as the unit tensor), applied to the whole system. The tensors τ and D are also
objective ones:

τ∗ = Q·τ·QT , D∗ = Q·D·QT
⇒ τ∗ ·· D∗ = τ ·· D. (7)

Let us accept that relation (5) remains after addition of the rigid motions

τ∗ ·· D∗ = τ∗ ·· Ė∗. (8)

Then according to Eqs. (7) and (8) we obtain the identity

τ∗ ·· Ė∗ = τ ·· Ė (9)

The substitution of relations (6) and (7) for tensors τ and E in the identity (9) after
some transformations3 gives

τ·E = E ·τ, τ∗ ·E∗ = E∗ ·τ∗. (10)

From Eq. (10) it is seen that the eigenvectors of tensors τ and E are the same. Thus for
any material the tensor τ is an isotropic function of E . It means that the tensor E must
depend on properties of the material and it cannot be found from pure geometrical
considerations. This is clear at least from the fact that the equalities (10) should be
valid also for an anisotropic material.4

Using Eq. (5) let us introduce the symmetric tensor L such as

Ė + L = D (τ ·· L = 0, ∀τ : τ = τT ), (11)

where the symmetric tensor L is not a priori known. L depends on properties of the
material. Let us point out only one possible form of the tensor L

L = ω·E − E ·ω, ωT = −ω. (12)

3 Here it is used: Q̇ · QT —antisymmetric tensor, identity A ·· B·C = A·B ·· C and statement:
A ·· B = 0, ∀A : AT = −A ⇒ BT = B.
4 This statement becomes more evident if we consider the linear theory. Indeed, in the linear theory
the elasticity relations have the form τ = C ·· ε, where C is the stiffness tensor and ε is the
linear strain tensor, which has pure geometrical definition. In the case of an anisotropic material the
principal axis of the tensors ε and C ··ε have different orientations. In our case we have to introduce
an alternative strain tensor E in such way, that it should be coaxial to the tensor C ·· E. It is clear,
that such a strain tensor should by some means take into account the anisotropy of the material.



326 P. A. Zhilin et al.

Using the objectivity of tensors E and D and equality (11), e.g. taking into account
that

Ė∗ + L∗ = D∗, L∗ = ω∗ ·E∗ − E∗ ·ω∗. (13)

It can be shown that the tensor ω under the superposition of rigid motions must
satisfy the equation

ω∗ = Q·ω·QT − Q̇·QT . (14)

The substitution of the representation (12) for the tensor L in equality (11) gives the
differential equation for the material strain tensor E

Ė + ω·E − E ·ω = D. (15)

Tensors E and ω in (15) are unknown. To find them we have to use additional
(constitutive) equations.

4 Determination of the Material Strain Tensor in some
Particular Cases

Let us find the trace of tensor E by calculating the trace of Eq. (15). Using the identity
ω ·· E = 0 we can obtain

(tr E). = trD = ∇ ·v = −ρ̇/ρ. (16)

Here the continuity equation is applied. The integration of relation (16) gives

tr E = ln(ρ0/ρ) = ln(1 + Δ), (17)

where ρ0 is the density of the undeformed material, Δ is the cubic dilatation. Equality
(16) is correct for all materials. However, the deviator of E essentially depends on
the material properties.

Let us neglect thermal effects. Then the energy balance (4) takes the form

ρU̇ = τ ·· Ė . (18)

Assuming elastic material behavior the internal energy and the stress tensor depend
on strains only, and they are not dependent on the strain rate. According to Eq. (18)
the internal energy of an elastic material has the form U = U(E). The calculation of
the time derivative from the internal energy gives

ρ
∂U

∂E ·· Ė = τ ·· Ė ⇒ τ = ρ
∂U

∂E . (19)
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To fulfil this relation tensor E should be Hencky’s tensor (logarithmic strain
measure—the logarithm of the right kernel of the distortion tensor).

Proof. 5 Indeed, according to [6]

τ = 2
ρ

ρ0
F· ∂W

∂F
, F = (∇r·r∇)−1, (20)

where r is the reference position vector; F is Finger’s strain tensor and W = ρ0U

is the internal energy volume density in the reference configuration. For Hencky’s
tensor H we have [6]

H = ln V, F = V2. (21)

Here V is the right kernel of the distortion tensor. The substitution of relation (21)
in Eq. (20) for the Cauchy stress tensor one can obtain finally

τ = ρ
∂U

∂H
⇒ H = E . (22)

So, for elastic isotropic material the Cauchy stress tensor performs the work on
Hencky’s logarithmic strain measure.6 �
Therefore, according to the definition, which was introduced before, Hencky’s mea-
sure and only it is the material strain tensor for the elastic isotropic material. It is
known that Hencky’s measure is frequently accepted by experimenters as the most
convenient way for description of large deformations.

It can be shown,7 that tensor ω is uniquely determined for elastic isotropic mate-
rials and tensors E and ω also can be determined for materials with infinite short
memory, which is good for the description of large plastic deformations.

5 Discussion and Concluding Remarks

Here the original text by P. A. Zhilin, which is used as a basis for this chapter, comes
to an end. In private communications P. A. Zhilin has stated that this approach can
form a basis for an essentially new theory of constitutive equations. In particular, he
has noted that this approach allows to obtain the strain tensor, which for a periodical

5 This proof is suggested by A. Krivtsov, the original proof by P.A. Zhilin unfortunately is lost.
6 This result was obtained by P. A. Zhilin and it was explained in private communications to his
pupils before 1995, however it was not officially published. In 1995 a short paper with this result
was submitted to ICIAM 95 proceedings, however it was rejected. In 1997 a paper by other authors
was published in Acta Mechanica [9], where the same result is presented as obtained for the first
time.
7 Proof of these statements by P. A. Zhilin unfortunately is not preserved.
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twisting (with variable sign) of a rod gives an increase of deformation at each period,
and this is convenient for describing such phenomena as fatigue.

Later the chapter [9] was published, which significantly correlates with the results,
obtained by P. A. Zhilin. In this chapter the use of Hencky’s logarithmic strain is
analyzed and it is proved that this strain measure is the work-conjugate of the Cauchy
stress tensor (the unpublished result by P. A. Zhilin, obtained earlier). Besides, in [9]
it is proved, that H is the only strain measure, the objective corotational rate of which
gives the stretching tensor D. Let us remind that the corotational rate of a tensor A
is defined as8

A ′ = Ȧ + Ω·A − A·Ω, (23)

where Ω is the spin tensor, characterizing some rotations connected with the defor-
mation process. The geometrical sense of the corotational rate is that it neglects
changes of the tensor A, connected with the rotation Ω. A variety of corotational
rates is used in the literature. The rates differ by the choice of the tensor Ω. In partic-
ular, if Ω = (∇v)A (the vorticity tensor) then (20) gives the Jaumann rate [9, 10].
For many years there was no answer to the question: is the stretching tensor D an
objective corotational rate of any strain tensor. In [9] for the first time it is shown
that such tensor can be only the Hencky logarithmic strain. Moreover, in [9] the
corresponding spin tensor is found Ωlog, called by the authors logarithmic spin, for
which it fulfils that9

H ′ log = Ḣ + Ωlog ·H − H·Ωlog = D, (24)

where (. . .) ′ log is logarithmic rate of H, also introduced in [9]. If now one considers
the equation obtained by P. A. Zhilin (15) for the material strain tensor, then the
application of it to the Hencky logarithmic strain E = H will lead to the conclusion
that the antisymmetric tensor used in (15) is the logarithmic spin: ω = Ωlog.

Let us consider again Eq. (15)

Ė + ω·E − E ·ω = D. (25)

The problem of its solution can be now reformulated as the following: it is necessary
to find such an objective tensor E , corotational rate of which is equal to the stretching
tensor D. In fact, this problem is solved in [9]—there it is proved that such tensor E
is Hencky’s logarithmic strain H, and tensor ω = Ωlog is found as some complex
function10 of tensors E and D [9, 11].

8 Frequently an alternative form of the corotational rate is used, where the difference is in the sign
of Ω. This is because the definition of the gradient of a vector can be as in this chapter and [7] or
in the transposed form. As a consequence the sign of the spin tensor can differ.
9 This formula for logarithmic rate differs from the one in [9] by the sign of Ωlog (see the previous
footnote).
10 For some particular strain fields (e.g. when all the tensors H are coaxial) the tensor Ωlog is
reduced to the vorticity tensor (∇v)A and logarithmic rate became Jaumann’s rate. However in
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Thus in [9] pure geometrical expressions are obtained for tensors E and ω being
determined from Eq. (15). These results became very fruitful, as in the nonlinear
theory of elasticity, as in the theory of elasto-plastic bodies [12–14]. In particular,
later on it is shown [12] that the use of the logarithmic strain and logarithmic spin
(connected by Eq. (15)) allows the correct formulation of the incremental elastic
relations for hypoelastic materials. These incremental relations are widely used in
numerical algorithms. Namely usage of these tensors makes these equations inte-
grable, allowing transition from the incremental of the constitutive equations to the
explicit one. This permits unique notions of hypoelastic and hyperelastic materials.
Beyond the elasticity limit this approach allows to build the theory of elasto-plastic
materials, where the decomposition of the strain tensor in elastic and plastic parts
is not needed [13]. However, together with these successes there remained a lot of
problems in description of inelastic behavior of materials.

The ideas of [9] partially coincides with the ideas of P. A. Zhilin. But this is only
partial coincidence. The essence of P. A. Zhilin’s idea is to introduce such a strain
tensor that

1. the Cauchy stress tensor performs work on this strain tensor;
2. it should be materially objective;
3. this tensor is not necessary a deformation in a classical sense.

The latter means that this tensor is not necessary an isotropic function of the distortion
(deformation gradient) tensor, in particular this strain tensor can depend on the space
symmetry of the material. In the case of elastic isotropic material, according to [9],
the problem of finding this tensor can be solved from purely geometrical means. In
[9] it is stated that the unique solution of Eq. (15) is found. However, this solution is
sought only on the set of classical strain tensors. For strain tensors in Zhilin’s sense
Eq. (15) probably has also another solutions. Let us show it on the example of an
elastic anisotropic material. Tensors E , ω = Ωlog satisfy Eq. (15) for both isotropic
and anisotropic materials. However, in the case of anisotropic material this solution
contradict the condition of coaxiality of strain and stress tensors (10), which is the
consequence from the material objectivity. In order to fulfill condition (10) tensor E
should have a structure, which depends on the material properties. Thus the idea of
P. A. Zhilin of introduction of the material strain tensor, which should be determined
using the energy balance equation and properties of the considered material, still is
waiting for its development.

Remark 19.1. In his latest works in the area of inelastic media P. A. Zhilin was
using the spatial representation instead of the material one. The results obtained
for the material representation can not be transferred directly to the case of the
spatial representation. From the mathematical point of view the problem became
more complicated since in Eq. (15) the full time derivative is replaced by the material
one. However, the statement of the problem of finding the strain tensor possessing
the specified above properties is possible for the spatial representation as well. We

general case the representation for Ωlog is much more complex, which is connected with existence
of two independent rotations—rotation of media and rotation of the main axis of the strain tensor.
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believe that the application of the ideas of this work for the spatial representation
could be the way for construction of inelastic constitutive equations.

Remark 19.2. In the current work an original approach, suggested by P. A. Zhilin, is
presented. The approach is intended for obtaining constitutive equations for the solids
subjected to large inelastic deformations in the case of the material representation,
where the classical strain measures results in serious problems in description of
the material subjected to reorganization of its to internal structure. Alternatively a
space representation can be used, in principle allowing to obtain the constitutive
equations in the considered case using classical strain measures. However, the strain
representation can be used only in the case of 3D bodies. In the theories of shells and
rods, where the differential operators are defined on a surface or on a curve in the
3D space only the material representation can be used. Therefore for the description
of large inelastic deformations of rods and shells the approach by P. A. Zhilin is of
particular interest.

Remark 19.3. 11 It is interesting to note that almost at the same time several groups
had the same idea. The results of Bruhns and co-authors were first presented at the
“International Symposium on Plasticity and Impact Mechanics” IMPLAST 96, held
at New Delhi, India, 11–14 December 1996. The corresponding presentation was
published in the conference book [15]. On this same symposium there was also a
presentation by R.N. Dubey and W.D. Reinhardt, Waterloo, Canada, ([15], pp 79–99)
who treated the same problem.

Remark 19.4. 12 With reference to the last paragraph of the contribution it should
be mentioned that in a different paper [16] also non-corotational rates were taken
into consideration by replacing the general spin tensor Ω by a general asymmetric
second order tensor Ψ. This has led to more general solutions of the problem under
consideration.

Acknowledgments Authors are deeply grateful to O.T. Bruhns for helpful discussions of the final
version of the paper.

References

1. Truesdell, C.: First Course in Rational Continuum Mechanics: General Concepts (2nd edn.),
vol. 1. Academic Press, San Diego (1991)

2. Palmov, V.A.: Vibrations of Elasto-Plastic Bodies. Springer, Berlin (1998)
3. Altenbach, H.: Kontinuumsmechanik - Eine elementare Einführung in die materialunabhängi-

gen und materialabhängigen Gleichungen. Springer-Vieweg, Heidelberg (2012)
4. Morse, P.M.: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys.

Rev. 34(1), 57–64 (1929)

11 Personal communication by O.T. Bruhns
12 Personal communication by O.T. Bruhns



Material Strain Tensor 331

5. Krivtsov, A.: Deformation and Fracture of Solids with Microstructure (in Russ.). Fizmatlit,
Moscow (2007)

6. Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Amsterdam (1990)
7. Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2005)
8. Lebedev, L.P., Cloud, M.J., Eremeyev, V.A.: Tensor Analysis with Applications to Mechanics.

World Scientific, Singapore (2010)
9. Xiao, H., Bruhns, O.T., Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate.

Acta. Mech. 124, 89–105 (1997)
10. Palmov, V.A.: Fundamental Laws of Nature in Nonlinear Thermomechanics of Deformoble

Bodies (in Russ.). SPbSTU Publishing, St. Petersburg (2008)
11. Golovanov, A.I.: Kinematics of finite deformations 3D isoparametrical finite elements for shells

(in Russ.). Probl. Strength. Plast. 70, 109–122 (2008)
12. Xiao, H., Bruhns, O.T., Meyers, A.: Existence and uniqueness of the integrable-exactly hypoe-

lastic equation τ◦∗ = λ(trD)I+2µD and its significance to finite inelasticity. Acta. Mech. 138,
31–50 (1999)

13. Xiao, H., Bruhns, O.T., Meyers, A.: Elastoplasticity beyond small deformations. Acta.Mech.
182, 31–111 (2006)

14. Korobeynikov, S.N.: Families of continuous spin tensors and applications in continuum
mechanics. Acta. Mech. 216, 301–332 (2011)

15. Xiao, H., Bruhns, O.T., Meyers, A.: A new aspect in the kinematics of large deformations. In:
Gupta, N.K. (ed.) Plasticity and Impact Mechanics, pp. 100–109. New Age International Ltd
Publishing, New Delhi (1997)

16. Bruhns, O.T., Meyers, A., Xiao, H.: On non-corotational rates of Oldroyd’s type and relevant
issues in rate constitutive formulations. Proc. Royal Soc. Lond. A. 460, 909–928 (2004)


	19 Material Strain Tensor
	1 Introductory Remarks
	2 Simple Discrete Model of Inelastic Deformation
	3 Continuum Description
	4 Determination of the Material Strain Tensor in some Particular Cases
	5 Discussion and Concluding Remarks
	References


