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PE®EPAT
41 crpanuupl, 15 pucynkos, 0 Tabnuibl, 0 NpUIOKEHUN

KJIFOYEBBIE CJIOBA: AKYCTUUYECKNIH METAMATEPHAIJI, N3TUBHBIE
BOJIHBI, JUCITIEPCUS, BO3BYXIAEHUE HA T'PAHULE 'TAPMOHUYECKUX
N3I'MBHBIX BOJIH, BO3BYXIEHUE JIOKAJIM30OBAHHBIX W3I'MBHBIX
BOJIH

N3rubnast BoaHa, Kak 0co6ast popma BOITHBI, IUPOKO PACHIpPOCTpaHEHA B PUPOIE
U WHXCHEPHBIX NPWIOKEHHUAX, TAKUX KAaK PpaclpOCTPAaHEHHE 3BYKOBBIX BOJIH B
TpyOax, pacmpoCTpaHEHHE CEHCMHUYECKHMX BOJIH B CJOAX 3€MHOW KOpPHI U T.1.
[TosTromy rnyOOKOe TMOHMMaHHE €€ CBOWMCTB BaXXHO KaK [JISI TEOPETUYECKUX
UCCIIEJOBaHMM, TaK U AJI MPAaKTUYECKUX MPHWIOKEeHUH. B nanHoil paboTe moapo6HO
paccMaTpuBarOTCA CBOMCTBA M3THOHBIX BOJIH. C MOMOIIBIO JUCTIEPCHOHHOTO aHAIN3a
U YHCICHHOIO  MOJEIHMPOBAaHHA  BCECTOPOHHE  M3YYEHBl  XapaKTEPUCTUKH
pacnpocTpaHeHus! U3rHOHBIX BOJIH B ME€TaMaTepualie.

B wactu nucnepcrmoHHOrO aHanmM3a B JaHHOW paboTe MOAPOOHO MpeAcTaBlieH
OpoLecC  BbIBOAA  JUCKPETHBIX UG (depeHIaTbHO-PA3HOCTHBIX — YpaBHEHUH
JBIKEHUS W3 BapHALMOHHOIO MPUHIMIA NOTCHIHAIBHON »HEpruu AedopMaiuu u
KMHETUYECKOM 3HEPTUH JJI1 OCHOBHOM MOJIENU LIEMTOYKU Macca -B -Macce IpHu U3ruoe.
C noMomipio TUCIIEPCUOHHOTO aHalIM3a CBS3aHHBIX AU(PEepeHInaNnbHbIX YpaBHEHUN
YCTAHOBJICHO HAJIMYWE 3allpelieHHON 30HBI KaK  JJIS 4acTOThl, Tak U (pa3oBoi
ckopocTd. KoHTHHyallbHOE TPUOIMIKEHUE BBICIIETO IMOpPsAKa MOXKET 00eCHeduTh
Oosiee TOYHOE MpeiCcKa3aHUE AUCIIEPCUOHHBIX XapaKTEPUCTUK, YEM KOHTHHYaJIbHOE
PUOIMKEHNE OCHOBHOTO TTOPSAKA.

B 4YactT 4YHMCIEHHOrO MOJEIUPOBAHUS HCCIEAYIOTCS CBA3aHHBIE YaCTHBIC
muddepeHanbHble  ypaBHEHUST KOHTHHYQJIBHOTO TMPUOMIDKEHUS  OCHOBHOTO
nopsifiKa, a GU3NYECKUe MOCTOSHHBIE MapaMeTphl 3a/1at0TCsl TAKUM 00pa3oM, YTOOBI
pe3ynbTaTel ObUIO JIeTKO HabmogaTh Ha Tpadukax. s ymydmieHuss Monenu
HAKJIAJbIBAIOTCA  HAyaJbHblE W  TPAaHUYHBIE  YCIOBUSA, COOTBETCTBYIOIIME
BO30YXACHUIO MEPUOJUUECKUX U JIOKAIM30BaHHBIX BOJIH. [IpoBeneHbl 4HCIIEHHBIE

OKCIIEPUMEHTHI 110 TPAHUIHOMY BO30YKICHHIO TapMOHHYECKOW W3THOHOM BOJIHBI.



UuciieHHbIE  pe3yibTaThl MOKA3bIBAOT, YTO CYILUECTBYET 3alpellCHHAas 30Ha IS
ITPaHUYHBIX YacTOT, MPEMSATCTBYIOMIAs PACIPOCTPAHEHHUIO BOJIHBI, YTO IMOJHOCTBHIO
COIrJIacyeTcsl C pe3ysbTaTaMH JUCIIEPCUOHHOIO aHain3a. lccnenoBanue  3BOJIOLMH
JOKAM30BaHHBIX M3THOHBIX BOJH TMOKA3bIBAIOT, YTO CHJIbHAS JIHUCIEPCHS
IPENATCTBYET UX YCTOMYHMBOMY pPAacHpOCTPAaHEHUIO B paMKax JIMHEHHOM 3aJayu..
Pe3ynprarhl YMCIEHHOTO MOJECIUPOBAHUS HE TOIBKO MOATBEPKAAIOT TEOPETUUECKUE
IpeACKa3aHusl JUCIIEPCUOHHOTO aHallM3a, HO M MPEJOCTABISIIOT WHTYUTHBHO
MOHSATHBIA METOJI BU3yalu3alUMUd [UJIs JAJbHEWIIEro pacKpbITUS MEXaHU3Ma

pacupoCTpaHEHUS CIBUTOBBIX BOJIH.



THE ABSTRACT

41 pages, 15 figures, 0 tables, 0 appendences

KEYWORDS: ACOUSTIC METAMATERIAL, BENDING WAVES,
DISPERSION, BOUNDARY EXCITATION OF HARMONIC BENDING
WAVES, EXCITATION OF LOCALIZED BENDING WAVES

Bending wave, as a special wave form, widely exists in nature and engineering
applications, such as sound wave propagation in pipes, seismic wave propagation in
layers of the earth's crust, etc. Therefore, a deep understanding of its properties is
important for both theoretical research and practical applications. In this work, the
properties of bending waves are deeply discussed. By means of dispersion analysis
and numerical simulation, the propagation characteristics of bending waves in media

are comprehensively studied.

The theoretical part introduces the concepts, mathematical principles, and
applications of the continuum long-wavelength approximation, the Lagrange equation,
and the dispersion equation, providing theoretical guidance for subsequent dispersion
analysis. In terms of dispersion analysis, this work presents in detail the process of
deriving discrete differential-difference equations of motion from the variational
principle for potential strain energy and kinetic energy for the basic model of a
mass-in-mass chain during bending. Using dispersion analysis of coupled differential
equations, the presence of a band gap for both frequency and phase velocity was
established. The higher order continuum approximation can provide a more accurate
prediction of dispersion characteristics than the basic order continuum

approximation.

In the numerical simulation part, coupled partial differential equations of the
basic order continuum approximation are studied, and physical constant parameters
are specified in such a way that the results can be easily observed in graphs. Initial
and boundary conditions corresponding to the excitation of periodic and localized

waves are imposed. Numerical experiments on the boundary excitation of a harmonic



bending wave are carried out. Numerical results show that there is a band gap for the
values of the boundary frequencies when no wave propagation happens. This is
completely consistent with the results of dispersion analysis. Studies of the evolution
of localized flexural waves show that strong dispersion prevents their stable
propagation within a linear problem. The results of numerical simulations not only
confirm the theoretical predictions of dispersion analysis, but also provide an
intuitive visualization method for further  understanding  the mechanism of

bending wave propagation.
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11
Introduction

Background and significance

Acoustic metamaterial

The term “ metamaterial” can be traced back to 1968. The Soviet theoretical
physicist Veselago first proposed the concept of metamaterial (metamaterial). The
permeability and dielectric constant of the material are both negative. When
electromagnetic waves propagate in it, it has abnormal Doppler effect, negative
refraction, etc.[?’!

Based on the mathematical analogy between sound waves and electromagnetic
waves, acoustic metamaterials are required to make the material have a negative mass
and Young's modulus.!"”! Unfortunately, in the nature there is no material with such
negative properties. To obtain the negative mass the artificial material, usually
composite, must be designed. Namely, masses in the system are positive but their
combination gives mathematically the negative value of the effective mass.

In 2000, Liu et al. achieved the first acoustic metamaterials by studying locally
resonant phonon crystals.[*! The local resonance theory achieves an artificial band
gap two orders of magnitude lower than the Bragg scattering mechanism frequency
of phonon crystals, and the acoustic equivalent parameter of the band gap, the
equivalent mass density, is negative.*4!

Acoustic metamaterials (AMs), one of the most significant embranchments of
metamaterials, usually composed of a novel type of sub-wavelength structural units
with a periodic spatial distribution, the core of which is the use of well-designed
artificial structure of composite acoustic materials to achieve precise and effective
manipulation of wavel®l, so that it has extraordinary physical properties, that are
difficult for traditional natural materials to possess, such as negative mass density,
negative refraction, negative modulus, etc.”’”! These characteristics make acoustic
metamaterials have wide application prospects in the fields of acoustic wave

regulation, sound insulation and noise reduction, and acoustic imaging.[*!]
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Mass-in-mass model

The subunit of the metamaterial is modeled as a mass-in-mass system, a locally
resonant structure which is also one of the classification results based on the
characteristics of AMs’ structures and the properties of their responses to acoustic
waves, and is the basic structural element for achieving the bandgaps. Huang et al.[!4]
composed a one-dimensional lattice which contains mass-in-mass lattices(Fig.

1.1).The model is based on those with negative mass as explained in [24] and [10].

"

Fig. 1.1 Model of subunits connected in latticel'!!
Because of its local resonance mechanism, metamaterials have a novel
characteristic that natural materials do not have. In the case of acoustic metamaterials,
this new property arises directly from the frequency-limiting behavior of two relevant

parameters, mass density and bulk modulus.

Bending wave
Bending wave is a kind of elastic wave with wide application background and

high attention. When the beam/plate structure undergoes bending deformation under
lateral load, the energy transfer process is the propagation of bending wave. In the
past decade, a series of methods have been developed to control the vibration of
beam/plate structures by taking bending waves as the control object B 13- 17.2% 331 "guch
as phononic crystals, acoustic black holes, acoustic metamorphic materials, elastic
wave metamorphic surfaces, etc., which have been widely used in energy capture,

vibration suppression, structural health monitoring and other fields.
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Dispersion and band gap

Firstly, dispersion in acoustics refers to the phenomenon that components of
different frequencies have different propagation velocities or phase velocities as
acoustic waves propagate through a medium. This is similar to dispersion in optics,
where light of different colors travels at different speeds in a medium. In acoustics,
the presence of dispersion means that the propagation characteristics of sound waves
in the medium are frequency dependent, which is important for understanding and
controlling the propagation behavior of sound waves.

On the other hand, band gap refers to the interval in which acoustic waves cannot
propagate within certain frequency ranges. In phonon crystals or periodic structures,
due to mechanisms such as Bragg scattering or local resonance, sound waves in
certain frequency ranges will be prohibited from propagating, forming a band gap.
The existence of band gaps has important applications for the control and filtering of
sound waves, such as in the fields of acoustic isolation, damping and noise reduction.

The relationship between dispersion and band gap can be understood from the

following aspects:

1. Dispersion can affect the formation and characteristics of band gaps. In
phononic crystals, sound waves of different frequencies have different
propagation characteristics, which may lead to the formation of band gaps in
certain frequency ranges. Therefore, the dispersion characteristics are one of
the important factors in determining the position and width of the band gap.

2. The existence of a band gap will also have an impact on the dispersion
characteristics of acoustic waves. In the bandgap range, acoustic waves cannot
propagate, which will lead to a significant change in the dispersion
relationship within that frequency range. Thus, the band gap and dispersion are
interrelated, and together they determine the propagation behavior of sound
waves in the medium.

In general, dispersion and band gap are important concepts in acoustics to

describe the propagation characteristics of sound waves. There is a close relationship

between them, which affects each other and jointly determines the propagation
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behavior of sound waves in the medium. By studying the relationship between

dispersion and band gap, we can better understand the propagation mechanism of
sound waves and provide new ideas and methods for the control and utilization of

sound waves.[!]

Literature review

"Lattice Dynamical foundations of continuum theories"?!! provides an overview
of lattice dynamical Foundations of continuum theories and explores how
macroscopic continuum equations can be derived from microscopic lattice structures.
It introduces the basic concepts of lattice dynamics, mathematical tools, numerical
methods, and shows the application of lattice dynamics in continuum theory through
examples. This book provides an important perspective for understanding the
microscopic foundations of continuum theory.

The paper "Dispersive propagation of localized waves in a mass-in-mass
metamaterial lattice"['8! focuses on the Dispersive propagation of localized waves in a
mass-in-mass metamaterial lattice. Specifically, the paper explores the evolution of
linear local waves in a discrete particle-particle lattice. The presence of additional
mass in the model contributes to the dispersion, resulting in the appearance of
acoustic and optical wave modes. These findings have important theoretical and
practical implications for understanding the fluctuation behavior in metamaterial and
for designing metamaterial with specific properties, such as dispersion control.

The paper "On control of harmonic waves in an acoustic metamaterial"!'"]
provides an in-depth look at the ability of acoustic metamaterial to control harmonic
propagation. With carefully designed acoustic metamaterial structures, researchers
can achieve precise control of harmonic propagation properties such as wave speed,
decay rate, and directionality. The paper may have included theoretical analysis and
numerical simulations of the metamaterial structural parameters to predict their
effects on harmonic propagation and to verify these predictions experimentally. This
harmonic control technique is important for applications such as more efficient noise
control, acoustic stealth and focusing, demonstrating the great potential of acoustic

metamaterials in the field of acoustic engineering.
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AV Porubov's 2023 paper, "Bending Waves in Mass-in-Mass Metamaterial,"

furthers his ongoing metamaterial research. With his collaborators, he probes the
characteristics of bending waves in mass-in-mass metamaterials, particularly
examining how non-uniformity and disorder impact them. Their exploration reveals
that non-uniform structures can notably decrease bending wave frequency while
amplifying wave magnitude, indicating a tuning potential. Moreover, disorder
introduces a significant broadening to the bending wave frequency spectrum, which
could enhance sound absorption or vibration isolation capabilities. Additionally, they
delve into the nonlinear effects of these waves, unveiling chaotic patterns and
complex wave dynamics. Backing up their theoretical findings, the team also presents
experimental data, offering a realistic perspective on bending wave behaviors. This
study not only sheds light on the intricacies of bending waves in these materials but
also underscores the advantages of embracing non-uniformity and disorder in such
systems, paving the way for advancements in sound absorption, vibration isolation,
and mechanical energy harvesting. And this paper is the main reference for this thesis,
the process and conclusions of which will be described in detail in Chapter 4. The
process of the follow-up work of this article "Generation of bending wave in a

mass-in-mass metamaterial" will be described in detail in Chapter 5.

Content arrangement

The paper is structured into six chapters, with each chapter organized as follows:

The first chapter introduces the relevant theoretical basis, including the concept of
the long wavelength limit approximation, the mathematical principle and its
application in acoustic metamaterials, and then summarizes the mathematical
expression and visual interpretation of the Lagrange equation, as well as the
application and significance of the equation. Finally, the definition, principle,
mathematical expression and application of dispersion equation are briefly explained.

In the second chapter, the research problem is explained, the model of the
metamaterial chain in a curved mass is established, and the motion governing
equation of the model is derived from the energy equation by using the Lagrange

equation. By using the long wavelength limit approximation method, the motion
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equations are continuous to different degrees to obtain discrete, basic-order,

higher-order partial differential form of coupling equations.

In the third chapter, the dispersion curves and propagation velocity curves of the
wave are obtained by the dispersion analysis of the three kinds of partial differential
equations obtained in the second part, and the bandgap condition is observed.

The fourth chapter mainly takes the basic-order partial differential equations in
the second chapter as the main mathematical model, respectively carries out the
numerical simulation of boundary harmonic excitation and localized excitation, and
compares the experimental results with the theoretical analysis in the third chapter.

The fifth chapter summarizes the core idea and the final conclusion.

The sixth chapter reflects on the shortcomings of the experiment and discusses

the corresponding further exploration.
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Chapter 1 Related theoretical basis

1.1 long wavelength approximation
The study of wave phenomena is very important in many fields such as physics,

engineering and material science. Wave phenomena usually involve parameters such
as wavelength, frequency and amplitude, where wavelength is a key physical quantity.
In some cases, when the wavelength becomes very large with respect to the system
size or other relevant length scales, the behavior of the system may become relatively
simple or easy to describe. This is the so-called "long wavelength limit", and the
"long wavelength limit approximation" is the study method for the system behavior

in this limit condition.

1.1.1 Concepts and mathematical principles
Long wavelength limit approximation refers to the method of approximating or

simplifying the system behavior by a series of mathematical and physical means,
such as wave equation simplification, scale separation, etc.[*], when the wavelength
becomes very long. This approximation method is usually based on the following two
assumptions. First, the wavelength is much larger than the characteristic size of the
system, so the fluctuation effect becomes less significant. The second is that the
system can be regarded as "quasi-static", that is, the dynamic variation of the system
1s negligible with respect to the wavelength.

In mathematics, the long wavelength limit approximation often utilizes the
principle of Taylor series approximation.[?s! A Taylor series is a way to represent a
function as a polynomial sum of an infinite number of terms, each of which is a
function of the derivative of the original function at some point. In the long
wavelength limit, the Taylor series expansion of the function can be constructed by
calculating the derivatives of the function at a given point (usually the limit point of
infinite wavelength) and using the Taylor series formula, substituting the values of
these derivatives into the formula. This expansion can be viewed as a polynomial
function that approximates the behavior of the original function at a given point.

Taylor series allows us to approximate a complex function (such as the wave equation)
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by a sequence of simpler polynomials around a certain point. In the long wavelength

limit, since the fluctuations vary gently, we can ignore the higher order terms in the
Taylor series and keep only the first few terms, resulting in a simplified model.

To give a visual explanation: imagine a very long string or waveguide, and when
you apply a perturbation to it, the perturbation propagates relatively smoothly
because of the long wavelength, instead of creating sharp fluctuations. This gentle
fluctuation behavior can be approximately described by Taylor series approximation,

ignoring those details that have little effect on the overall.!*!

1.1.2 Applications to acoustic metamaterials

As a kind of specially designed artificial acoustic microstructural materials,
acoustic metamaterial has attracted much attention due to its unique physical
properties. Long wavelength limit approximation plays an important role in the
research of acoustic metamaters, which is mainly reflected in the following aspects:

1. Study of bandgap properties!!®: An important property of acoustic
metamaterial is the existence of bandgaps in a specific frequency range, that is, the
frequency range where sound waves cannot propagate. In the long wavelength limit,
the microstructure size of an acoustic metamaterial is much smaller than its
corresponding operating wavelength, making it impossible to resolve the structure of
an acoustic wave as it propagates through the material. The position and width of the
bandgap can be analyzed and predicted more accurately by the long wavelength limit
approximation method, which provides theoretical support for the design of acoustic
metamaterial with specific frequency response.

2. Research on acoustic modulation®: One of the main applications of acoustic
metamaterial is acoustic modulation, such as acoustic stealth, directional sound
source, acoustic focusing, etc. In the long wavelength limit, the long wavelength limit
approximation method can be used to analyze the regulation mechanism of acoustic
metamaterial on acoustic waves. By constructing the Taylor series expansion of

acoustic metamaterial, the effect of different structural parameters on acoustic wave
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propagation can be studied, and the performance of acoustic metamaterial can be

optimized.

3. Optimization of material design’l: In the design process of acoustic
metamaters, multiple factors such as material structure, size, and material distribution
should be taken into account. The method of long wavelength limit approximation
can help researchers predict the properties of materials more accurately and optimize
them by tuning the design parameters. For example, by constructing the Taylor series
expansion of acoustic metamaterial, the influence of different structural parameters

on the bandgap characteristics can be analyzed to find the optimal design scheme.

1.2 Lagrange equation

Lagrange equation, named by French mathematician Joseph Louis Lagrange!'®, is
the main equation of Lagrangian mechanics, widely used to describe the motion of
objects, especially in the study of theoretical physics occupies an important position.
The function of this equation is equivalent to Newton's second law in Newtonian
mechanics, but it provides a mechanical description method from the perspective of

the whole system, with energy as the basic concept.

1.2.1 Mathematical expression and its interpretation

Lagrange equations usually refer to the Lagrange equation of the second type. For
dynamical equations expressed in generalized coordinates of the complete system, the

mathematical expression can be written as follows

d| oT or ouU oD :
_{ ]_ +—+—=0,, (j=0123,...m) (1.1)

dt\ 04, ) 0q; dq; 04,
where ¢, and ¢; are the generalized coordinates and generalized velocities of the
system, respectively, T 1is the kinetic energy expression of the system, which is a
function of each generalized coordinate and generalized velocity, U is the potential
energy expression of the system and is a function of the generalized coordinates, D
is the energy dissipation expression of the system, which is also related to generalized

coordinates and generalized velocities, ©,force, is a generalized force in addition to
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potential energy gradient, dissidence force and binding force, and m is the number of

degrees of freedom of the system.

This equation describes how each generalized coordinate in the system changes
over time and is similar to Newton's second law, but more general and abstract.

The Lagrangian equation is a specific representation of the universal equation of
dynamics in generalized coordinates. Through the combination of virtual
displacement principle and static-dynamic method (D 'Alembert principle), the
dynamic equation of the particle system without binding force can be derived.
BYLagrangian equations can not only be used to establish dynamic equations without
binding forces, but also to solve the active forces acting on the system given the law
of motion of the system. If you need to solve for the binding force, you can use the
Lagrange equation in conjunction with the stator or momentum theorem (or the

center of mass motion theorem).[!]

1.2.2 Application and Significance
Lagrangian equations are widely used in mechanics, physics and other scientific

fields. It is applicable to a variety of complex mechanical systems, including
multi-body systems, continuum media, field theory, etc. By means of Lagrangian
equations, it is convenient to deal with constraints, non-inertial reference frame,
dissipative forces, etc.’?! In addition, Lagrangian equation is also closely related to
modern physics theories such as quantum mechanics and relativity theory, which

provides an important mathematical tool for the development of these theories.

1.3 Dispersion equation

Dispersion equation is an important concept in mathematics and physics, which is
mainly used to solve the problem of wave propagation. It describes the relationship
between the frequency of a wave and its corresponding wave number or wave speed
as it propagates through a medium. Through the dispersion equation, we can obtain
the speed of wave propagation at the macroscopic level, for example, the speed of

wave crest movement.
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1.3.1 Definition and Principle

The dispersion equation is an equation used to describe the relationship between
the frequency of a wave and its corresponding wave number or wave speed during
wave propagation. Specifically, when a wave propagates through a medium, waves of
different frequencies will propagate at different speeds due to the interaction of atoms
or molecules in the medium, a phenomenon called dispersion. The dispersion
equation is exactly the mathematical tool used to describe this relationship between

frequency and wave number or wave speed.

1.3.2 Mathematical expression and its explanation
The specific form of the dispersion equation may vary for different physical

systems and media. The general form of the dispersion equation can be expressed as
c=f(b), where c represents the frequency and b represents the wavenumber or the

inverse of the wavelength. This equation actually describes a functional relationship,
that is, how the frequency varies with the wavenumber. This relationship can be
derived through Maxwell's equations and the relationship between the propagation
speed and wavelength of electromagnetic waves in a medium. For example, the Tao
Zhexuan dispersion equation is derived based on these principles to describe the
dispersion phenomenon of light propagation in a medium.

To explain this equation more visually, we can consider a concrete example.
Suppose we have a simple harmonic whose mathematical expression is
z=ax*sin(bx+ct) . In this expression, a is the amplitude, 5 is the wavenumber, ¢ is
the coefficient associated with the frequency, X is the position, and ¢ is the time.

When the wave peak moves, the position x0 of the wave peak changes with time t,
but the relationship &x,+ct=0bx; should always be maintained, where X is the
position of the wave peak at time ¢=0. Solving this equation, we get x, is equal to
¢ over b times ¢ plus x . Here, c/b 1is the macroscopic velocity of the wave
crest. This velocity is not the velocity of each particle during the fluctuation, but the
macroscopic velocity of the entire waveform propagation in the medium. This is the

physical phenomenon described by the dispersion equation.?®!
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1.3.3 Application

The dispersion equation has a wide range of applications in physics, optics, and
materials science. For example, in optical fiber communication, the signal is distorted
due to the different propagation speed of light waves with different frequencies in the
fiber (that is, the dispersion phenomenon). Through the dispersion equation, we can
analyze this dispersion phenomenon and design the corresponding compensation
scheme to reduce its effect.

In addition, the dispersion equation can be used to study the properties of the
solutions of the wave equation, such as local and global well-posed theory of
solutions, global existence of low regular solutions, and scattering phenomena. These
studies not only help us to understand the fluctuation phenomenon more deeply, but

also provide a theoretical basis for practical applications.!!]

1.4 Summary

This chapter is the theoretical foundation of the whole paper. Firstly, an
approximation method often used in the wave field is introduced: the long
wavelength limit approximation (including concept, mathematical principle and
applications in acoustic metamaterials). Secondly, a Lagrange equation describing the
motion of an object from the perspective of energy is discussed, including the
mathematical expression and its interpretation, the application and significance of the
equation. Finally, the dispersion equation (including definition, principle and

application) used to solve the problem of wave propagation is summarized.
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Chapter 2 Bending mass-in-mass metamaterial chain

2.1 Statement of Problem

Consider a lattice model as shown in Fig. 2.1. The basic components of this
model are the main masses M , the attached masses ™ and the springs with
different stiffness. Among them, the attached masses 7 is located inside the main
masses M and connected by springs with the stiffness & . Meanwhile, the main
masses M are connected each other by springs with the stiffness C to form the

main chain.

Fig. 2.1 Bending mass-in-mass metamaterial chain(?*!
The main chain's mass displacements are represented as Yn , and the attached
masses' displacements are denoted as »,. We introduce ¢, in Fig. 2.1 to describe the
angles relative to the horizontal direction in order to describe the motion with the

angular variations.Then

@, = arcsin (%) (2.1)

where % 1is the linear distance in the horizontal direction between M masses.Then
6, can be used to describe the angular variation of a mass with the number » as
follows

0}1 = q)n - ¢n—l (22)
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We only consider the interaction between mass with number 7 and adjacent

masses with numbers n-1 and #+1to have an impact, so equation (2.2) can be
rewritten as

01 =01 =Ps, 0,0 =000, (2.3)

Consider that in the case of linearized problem corresponding to infinitesimal

displacements, the ¢ function becomes

Y -Y
¢n — n+l n (2.4)
h
and the functions s are
Y -2Y +Y Y -2Y +Y Y -2Y +Y
9,, — n+l hn n—1 , Hn+1 — n+2 hn+1 n , - —_n nhl n=2 (25)

2.2 Government equation

According to Hooke’s law, the elastic potential energy II, containing the terms
responsible for interactions between the masses M in the main chain and those of
between the masses M and the attached masses m could be expressed as
.

m ==
2

9112—1+9n2+9n2+1)+§(Yn _yn )2 (2.6)

Based on the kinetic energy theorem, the kinetic energy K, of the mass-in-mass

system can be expressed as

M_., m J .
K =—Y'+—3y’+=6
n 2 n 2yll 2 n (2.7)

where J is the inertia.

Next, we substitute equations (2.6) and (2.7) into the Lagrange equation or follow
the variational Hamilton-Ostrogradsky principle!!?! to obtain the equations of the
following form

do(K, -I1) 8(K —II do(K, -I1) 8(K —II
d0(K,-1,) o(K, n)=0’ d 9 3 ) 0K, ML) _, (2.8)
dt oY oy, a o, v,

In turn, we are allowed to obtain the coupled differential-difference equation of

motion

)J+C (¥, ,—4Y, , +6Y,—4Y,  +Y,, + u(¥,-y,)=0

n+l

MY, -2J (¥, -2Y,+7,
(2.9)

my +x(¥ -y )=0
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2.3 Continuous of the motion equation
In order to more easily study the properties of curved waves, we use the long
wavelength continuous limit method to carry out the research, so that the equation of
motion (2.9) will be continuous, rather than directly solving the discrete equation.
Introducing the continuum functions V(x,f) and v(x,f) to describe the
displacement Y» and », of masses M and ™, it can be seen that the continuum
displacement of adjacent masses approximated by long wavelengths based on the
Taylor series is as follows

2 3 4
Ynﬂ=Vith+h—VwJ_rh—Vm+h—me+...
- 2 6 - 24 -

At this time, it is necessary to substitute the series into equation (2.9) and keep
only the first non-zero term to obtain the limit of the basic order continuum, which

appears in the form of a coupled partial differential equation

xxtt XXXX (2 . 1 O)

MV, =2Jh*V_, +Ch*V__ +Kk(V —v)=0
mv, +x(v-V)=0

In addition, the bending wave equations corresponding to the special case k=0 ,
m=0, v=0 have been obtained previously in [26, 25].

Of course, if we keep more non-zero terms in the continuum equation, a
higher-order continuum model can also be obtained in place of equation (2.10), as
follows, where the higher-order dispersion of the main chain is taken into account.

4 6
Msz —=2Jh szxtt + Ch4V‘cxvx - &mem + %Vxﬁmx + K(V —V) =0
= @.11)

mv, +k(v-V)=0

2.4 Summary

This chapter first describes the main problem discussed in this paper and shows
the model diagram of the curved metamaterial chain. Then, according to Hooke's
theorem and kinetic energy theorem, the elastic potential energy and kinetic energy
expressions of the system are obtained, and then these two expressions are substituted

into the Lagrange equation, and the coupled differential-difference equations
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(discrete form) of the system motion are derived. Finally, based on the long

wavelength limit approximation method, the coupled partial differential equations of
the basic order and higher order are obtained by substituting the Taylor series with

the first nonzero term and more nonzero terms.
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Chapter 3 Analysis of dispersion and band gap

3.1 Basic-order equation

For the one-dimensional undamped wave equation, based on the periodicity of the
wave phenomenon and the convenience of the complex representation, the solution of
the complex form of equation system (2.10) can be expressed as follows

V= Aexp[z(kx—a)t—xo)], V= Bexp[z(kx—wt—xo)] (3.1)

Where ¥, represents the initial phase of the wave, 4 and B are the amplitudes
of the wave, k is the wave number, the relationship with wavelength is k=27/T,
@ is the wave frequency, and the relationship with period 7 is @o=2x/T, tis the
imaginary unit, satisfying *=-1. In fact, a complex solution contains two waves
traveling in opposite directions:

By taking the derivative of solution (3.1) with respect to displacement X or time
t as needed and substituting it into the second equation of the (2.11) system, the
relationship between the amplitudes 4 and B can be obtained as follows

_ B(x- @’m)

K

y (3.2)

Then, the derivative of displacement X ortime ¢ of (3.1) and equation (3.2) are
substituted into the first equation of coupled equations (2.11), from which the
dispersion relation can be derived

m(M +2J1°K ) o' = k(M +m)+2Jh°k* +mCh*k* |0 + kCh'k* =0 (3.3)
whose solutions are @ =0, ,® =0, where

o k(M +m)+2Jh’k* +mCh'k*

K 2m (M +2J1°k* )
> 3.4)
\/[K‘(M +m)+ 26 Jh°k’ +mChk* | = 4emCh'k* (M +2Jh°K )
B 2m(M +2J1°K*)
W k(M +m)+2xJW k> + mCh* k*
- 2m(M +2J0° )
(3.5)

\/[K(M+m)+2Kthk2 +mChK | ~4xmCh k(M +2J1 k)
" 2m(M +2JKK)
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The information we can get from (3.4) and (3.5) is that the acoustic branch of the

frequency varies from 0 to +x/m , while the optical branch varies from

Jx(m+M)/mM to = and these are approximated by k-0 and k — oo . Therefore,

the band gap without harmonic wave propagation is located at

(\/K/ m,\/K(nHM )/ mM ) . With the help of Wolfram mathematica, a classical

computational mathematical software, a typical dispersion curve for frequencies is
visualized, as shown in Fig. 3.1, where the band gap is observed in the semi-infinite

interval of £, although the long wavelength limit is taken into account.

w
2.0¢

1.5}
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Fig. 3.1 Dispersion curves for the frequencies for the basic-order model.

1. Optic branch @,(3.5). 2. Horizontal dashed line corresponding to @, at k=0. 3.
Horizontal dashed line corresponding to acoustic branch @, at k& — . 4. Acoustic
branch @,(3.4).

Due to the dispersion phenomenon, the components of different frequencies are
separated in time and space, which will gradually distort the wave in the propagation
process, affecting the quality and transmission efficiency of the wave. The difference
in phase velocity is a direct reflection of the dispersion phenomenon, because the
phase velocity of different frequency components is different, their phase changes in
the propagation process will be different, and eventually lead to changes in the
waveform. In short, the difference in phase velocity can reflect the degree of
dispersion, and the greater the difference in phase velocity, the more severe the

dispersion, which explains why we should consider the phase velocity ¥, further.
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0 2 4 6 8 10"
Fig. 3.2 Dispersion curves for the phase velocities for the basic-order model.
1. Optic branch @,/k(3.5). 2. Horizontal dashed line corresponding to @,/k at

k=0. 3. Horizontal dashed line corresponding to acoustic branch ®,/kat k— . 4,

Acoustic branch @, /k (3.4).

Fig. 3.2 shows the dispersion curves for the phase velocities,
where V,=@/k | V,=a/k . In the analysis presented Fig. 3.2, we observe a
non-monotonic trend towards asymptotic values for both velocities represented by
curves 1 and 5 as k approaches infinity. Consequently, the band gap is situated
between the maximum and minimum points of these curves, specifically the lines
marked as 3 and 4. This scenario contrasts with the phenomenon observed in
longitudinal waves, where the phase velocity's dependence exhibits a band gap

between the asymptotes analogous to the behavior with frequency, as discussed in

[8].
3.2 Higher-order equation

The derivation process similar to the previous section can still be used to
substitute the solution (3.1) into the higher order system of partial differential

equations (2.11), and the dispersion relation obtained is as follows

m (6M + Rk (12 - bk ))a)4 +kCh*k* (6 - k)
_[6K(M +m)+xJh’k* (12=h°k* )+ mCh'k* (6 - hzkz)] w* =0 (3-6)
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whose solutions are

, 6(M+m)+ kK (12= 1K )+ Cmh' k(6 - FK)
@ 2m[6M+JKh2k2(12—h2k2)]
|
_2m[6M+JKh2k2(12—h2k2

)]{[6K(M +m) +JxhK (12 =2 k*) +Cmh' k(6 —hzkz)]Z (3.7)

~4Ckh' k' m(6- hzkz)[6M + Kk (12 - 1K) ]};
61 (M +m)+ Ik’ K (12= K ) + Cmli* K 6- 1K)
2m[6M+ JKh2k2(12—h2k2)]
N 1
2m[6M+JKh2k2(12—h2k2

)]{[6K(M +m) +Jkl’ K (12 -1 K ) +Cmli* k(6 -1 k) j (3.8)
1
~4Ckh' K m(6= ) 6M + i (12- 1K) |
As the wave number increases, we observe that the denominator of the solutions
approaches zero, resulting in unbounded solutions. Therefore, we can only visualize
the solutions for the frequency and phase velocity at smaller values of %, as depicted
in Fig. 3.3 and 3.4.The utilization of the long wavelength continuum limit in deriving
continuum equations from the initial discrete formulations (2.9) does not present any
contradiction.

2.0

L 1 1 1 1 1
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 3.3 Dispersion curves for the frequencies for the higher-order model.
1. Optic branch @,(3.5). 2. Horizontal dashed line corresponding to @, at k=0, 3.
Horizontal dashed line corresponding to acoustic branch @, at k — . 4. Acoustic

branch @,(3.4).
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Fig. 3.4 Dispersion curves for the phase velocities for the higher-order model.

1. Optic branch @, 2. Acoustic branch @,

Observing Fig. 3.3, we note the presence of a band gap between lines 3 and 4 in
the range of small k values. This band gap exhibits similar characteristics in terms of
width and position compared to the fundamental model depicted in Fig. 3.1, with
minor deviations in the curve 3 around the upper band 2. However, as the value of k
increases, significant variations occur in omega, ultimately disrupting the trend
towards the asymptotes.

The phase velocities presented in Fig. 3.4 exhibit variations in the extent of the
region between the acoustic (curve 2) and optic (curve 1) velocities. As the value of k
rises, this region narrows. It appears that this interval between the velocities does not

constitute a typical band gap.

3.3 Discrete equation

The examination of the dispersion patterns across continuum models of varying
orders unveils disparities in their portrayal of the band gap region. Given that
continuum models essentially serve as approximations of the discrete model at longer
wavelengths, as stated in model (2.9), we now delve into the dispersion relation of the

original equations. Our quest for the solution of Egs (2.9) commences in the format

of
Y, = Aexp [z(khn — a)t)] , Vo= Bexp[z(khn —a)t):l (3.9)

Substitution of Egs. (3.9) into Egs. (2.9) gives rise to the dispersion relation,
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(k) 4 [ o ( kh J(knY] o kh
m(M+8Jsm (7)}0 —||_K(m+M) —8Jk sin (—2j+16mCsm (_ZLW +16Csin (—2 j:( (3.10)

The solution to Eq. (3.10) consists of two branches, acoustic and optic,

2

k(M +m)—8kJ sin’ (kzhj+l6mCsin4 (kzhj
o =

" 2m {M +8J sin’ (kzhﬂ
! - ﬂ {K(z\ﬂ m)— 8K sin’ (%} 16mC sin® (%}T (3.11)

2m {M +8Jsin’ (2

1
2
—64mCsin* (%) [M +8Jsin’ (%ﬂ}

k(M +m)—8kJ sin’ kh +16mCsin* kn
2 2

2_

(0

2m {M +8.J sin? (kzhﬂ
. ! {K(m m)-sesin’ (2 fromcsn (2] 612
2m {M +8J sin? (kzhﬂ

1
2
—64mCsin® (%) [M +8Jsin’? (%ﬂ}

The visualizations of the obtained solutions are presented in Fig. 3.5, clearly
revealing the presence of the band gap, which aligns precisely with the continuum
limit. Close inspection near the upper perimeter of this gap reveals slight fluctuations.
Turning to the phase velocity, Fig. 3.6 highlights a narrowing in the spacing between
the velocity curves, a phenomenon akin to the patterns exhibited by the higher-order

continuum model.
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Fig. 3.5 Dispersion curves for the frequencies for the discrete model.
1. Optic frequency @,. 2. Line corresponding to the upper boundary of the
basic-order continuum model. 4. Line corresponding to the lower boundary of the
basic-order continuum model. 5. Acoustic frequency @,.
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Fig. 3.6 Dispersion curves for the phase velocities for the discrete model
1. Optic frequency @,. 2. Acoustic frequency @,.
In light of the observations, it becomes evident that the higher-order continuum
approximation offers a more precise prediction of dispersion characteristics compared

to its basic-order counterpart.

3.4 Summary

This chapter is part of the theoretical analysis of the model. The dispersion
equations corresponding to coupled partial differential motion equations of basic
order, higher order and discrete form are discussed respectively. With the help of

Wolfram mathematica software, the dispersion curves of frequency and phase
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velocity in three cases are shown respectively, and then the bandgap situation is

observed and compared.
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Chapter 4 Numerical simulation

Although dispersion curves are derived from periodic solutions, a deeper
numerical investigation is imperative to understand the manifestation of band gaps in
non-steady processes. Among the potential scenarios, periodic boundary excitation
stands out as a likely candidate. Localized bending waves are particularly intriguing,
given that recent research into localized longitudinal wave dynamics within the
mass-in-mass model has failed to uncover any band gaps!?.. Consequently, a similar
examination should be conducted for bending waves. It is imperative to conduct both
analytical and numerical studies that account for the nonlinearities of the bending

wave mass-in-mass model, as was done previously for longitudinal waves.

4.1 Boundary excitation of harmonic bending waves
4.1.1 Mathematical model and definition conditions
In our analysis, we take into account the following boundary and initial
conditions for Equations (1.3) and (1.4):
V(0,¢)=Bsin(w,t), V(x,0)=0, V(x,0) =0 4.1)

4.1.2 Result analysis
Numerically, we derive the solution to this initial boundary problem. As depicted

in Fig. 4.1, we observe the evolution of a harmonic wave ¥ over various timeframes,
particularly when the excitation frequency @ falls beneath the band gap, specifically
when @ <+/x/m . Initially, the undisturbed state a) transitions into a non-harmonic
wave state b). As time progresses, the wave continues to propagate, exhibiting a
harmonic character in stage c). By the final stage d), the harmonic wave gradually
occupies the entire calculation area, exhibiting propagation of a wave with a
frequency belonging to the acoustic branch, as described by the dispersion relation

solution.
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Fig. 4.1 Evolution of displacement ¥ below the band gap, o<+vx/m.
a)t=0,b)t=50,c)t=300,d)z=1000.

Within the defined band gap, spanning from x/m to +x(m+M)/mM _the
evolution of a harmonic traveling wave is not observed, as evident in Fig. 4.2. Here, a
notable reduction in the amplitude of the boundary excitation B is apparent, along

with the chaotic nature of the displacement 7 's variations.
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Fig. 4.2 Evolution of displacement » inside the band gap,
VK /m <a)<\//c(m+M)/mM .
a)t=0,b) =50, c) =300, d) = 1000.

The numerical simulation of the boundary excitation of harmonic waves validates

the theoretical prediction of the band gap. Notably, Fig. 4.3 illustrates the presence of
the band gap, despite the non-monotonic variation in 7, (4) and V,(4), which
contrasts with the behavior observed in longitudinal waves, as referenced in 2%,

Vo
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0.4/
0.3;

Fig. 4.3 Dependence of the phase velocity on the wavelength.
1. optical branch 7,(4) 2. Asymptote corresponding to the value of 7,(0) 3.
Asymptote corresponding to the minimum of ¥, (2) 4. Asymptote corresponding to

the maximum of the acoustic curve ¥,(4) 5. Acoustic branch 7, (4)
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4.2 Excitation of localized bending waves

4.2.1 Mathematical model and definition conditions
In considering the development of a localized pulse, we define the initial state
along with its temporal derivative represented in equations (4.2) and (4.3).

V(x,0)=Bsech[k(x-x,)], V(x,0) =-Bk&sech’[k(x—x,)] (4.2)

v(x,O)zo,v(x,O)t =0 4.3)
Here, the parameter ¢ is introduced to capture the initial velocity of the
localized excitation.
The current boundary conditions stand as follows:
V(0,6)=0, v(0,£)=0 (4.4)
The parameters' values for the forthcoming calculations are set as:
h=05,C=02 ,M=1,m=03,xk=0.08,J=0.15,¢, =4500  x, =1000 B=0.5 x,=x,/2,

k=05,

4.2.2 Result analysis

In the initial analysis, we examine the scenario where the initial velocity is zero,
specifically 6 =0. The temporal progression of the initial perturbation is depicted in

Fig. 4.4, specifically in a).
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Fig. 4.4 Evolution of localized initial disturbance at 6 =0.
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a)t=0,b)t=tx/4,c)t=tn/2,d)t=tn

Observing Fig. 4.4 when 6 =0, it becomes evident that a localized wave fails to
propagate along the x-axis. Instead, short, non-strictly periodic waves with
diminishing amplitude symmetrically emanate from the location of the initial pulse,
as seen in Fig. 4.4 b) through d). Notably, the maximum value of 7 decreases from
0.5 in Fig. 4.4 a) to approximately 0.065 in Fig. 4.4 d).

When 6 assumes a non-zero value, it introduces asymmetry in the radiation pattern
of the short waves as well as in their amplitude levels, as depicted in Fig. 4.5. This
asymmetry is also observed in the standing profile that emerges in the vicinity of the
initial perturbation. The relative decrease in amplitude compared to the initial

perturbation is less pronounced than in the scenario where 6=0.
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Fig. 4.5 Evolution of localized initial disturbance at §=0.02.
aA)t=0,b)t=tn/4,c)t=tn/2,d) t=1tn

By adjusting the coefficient &, we can investigate the impact of metamaterial
coupling. In Fig. 4.6, we present the scenario with a small value of x=0.05. Upon
comparing this with Fig. 4.5, we do not observe significant differences in the wave's

dynamic behavior. However, a slight variation in the wave's amplitude is noteworthy.
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Fig. 4.6 Evolution of localized initial disturbance at 6 =0 and x=0.05.
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By altering the values of the coefficients C and J, we can delve into the effects
of dispersion. Specifically, smaller coefficients, namely C=0.02 and J=0.015
induce a slower radiation pattern, as illustrated in Fig. 4.7. Nevertheless, this slower

radiation does not lead to the formation of localized waves.
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4.3 Summary
This chapter mainly takes the basic order coupled partial differential equations
derived in Chapter 2 as the experimental object, sets physical constant parameters,
initial and boundary conditions to improve the model, carries out numerical
simulation of harmonic bending wave boundary excitation and localized bending

wave excitation, and analyzes the experimental results.
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Chapter 5 Conclusion

Based on the theoretical guidance of the long wavelength continuity limit in
Chapter 1, the following mathematical model is established: This paper considers a
one dimensional curved wave mass-in-mass chain connected by the main masses and
with additional masses inside. Based on the variational Hamilton-Ostrogradsky
principle and the long wavelength continuum limit method, the discrete motion
governing equations are continuously transformed into coupled partial differential
equations by Taylor series, and the dispersion analysis of the basic order, higher order
and discrete equations is carried out. Furthermore, the harmonic boundary excitation
and localized bending wave input are used as the form of numerical simulation to
extend the study of bending wave formation.

In the realm of wave dynamics, periodic bending waves emerge as a result of
boundary excitation, exhibiting characteristics that are analogous to longitudinal
waves, as reported in prior research [*!1. Notably, there exists a definitive evidence of
a band gap, which aligns precisely with the dispersion relation analysis presented in
Fig. 4.3. This band gap signifies a frequency range within which the propagation of
certain waves is prohibited, owing to the specific dispersive properties of the medium.
The analysis depicted in the figure provides a quantitative understanding of this
phenomenon, highlighting the importance of considering wave behavior in the design
and analysis of systems involving wave propagation.

Contrary to the behavior observed in longitudinal waves, localized waves do not
originate from a localized input source, as reported in [2!l. Notably, variations in the
dispersion term coefficient, the stiffness of the springs with attached masses x and
the initial velocity do not trigger the emergence of traveling localized bending waves.
The localization of these waves, however, holds significant importance for the
development of novel heat conduction models that rely on the intricate consideration
of crystalline lattice structures, as discussed in [7]. This aspect underscores the need
to further explore and understand the dynamics of localized waves in order to

advance the field of heat conduction modeling.
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A potential explanation for the inability to generate localized waves could be

attributed to the lack of the V.. term in Equation (2.10). This term plays a crucial
role in the governing equations for longitudinal waves, as demonstrated in [21].
However, it is conspicuously absent in our current formulation. Moreover, the mere
existence of precise traveling wave solutions, as reported in [8, 36], does not
inherently assure the emergence of even the most basic, linear localized waves.

In seeking solutions to this challenge, we hypothesize that the incorporation of
nonlinear stiffness into our original model may offer a path forward. Specifically, the
introduction of these nonlinear terms could potentially establish a balancing act with
the dispersive terms, creating a dynamic equilibrium that could sustain the
propagation of localized waves. This is an area of significant interest and potential for
future research.

In the meantime, the generation of bending waves continues to be a perplexing
and open problem in our field. The complexities involved in their generation, coupled
with the potential implications for various applications, make this an area worthy of

further investigation and experimentation.



44
References

1. Anjum I., Imran N. Exact solutions of a quintic dispersive equation // Chaos,
Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and
Nonequilibrium and Complex Phenomena — 2022. — 165 — P. 1.

2. Askar, Attila. Lattice Dynamical Foundations of Continuum Theories:
Elasticity, Piezoelectricity, Viscoelasticity, Plasticity. — Series in theoretical and
applied mechanics, 1986.

3. Chen A-Li, Wang Yuesheng, Wang Yanfeng, et al. Design of acoustic/elastic
phase gradient metasurfaces: Principles, functional elements, tunability, and coding //
Advances in Mechanics. — 2022. — 52. N4 —P. 948 -1011.

4. Courant, R., John, F. Introduction to Calculus and Analysis. —
Springer-Verlag, 1998. — Vol. 1.

5. Cyveticanin L, Cveticanin D. Acoustic metamaterials: Theory and application.
In: Herisanu N, Marinca V (eds) Acoustics and Vibration of Mechanical Structures
— AVMS-2017, Springer International Publishing, Cham, 2018 — p 21 - 32.

6. Ding, C., Zhao, X., Chen, J., Li, J., Yang, C., Cheng, J. The anomalous
manipulation of acoustic waves based on planar metasurface with split hollow sphere
structures // Journal of Applied Physics. — 2017. — 121. N 15. — P. 154502.

7. Dmitriev S.V., Kuzkin V.A. Krivtsov AM. Nonequilibrium thermal
rectification at the junction of harmonic chains // Physical Review. — 2023. — 108.
— P. 054221.

8. Erofeev V.I., Leontieva A.V. Dispersion and Spatial Localization of Bending
Waves Propagating in a Timoshenko Beam Laying on a Nonlinear Elastic Base //
Mechanics of Solids. — 2021. — 56. N 4. — P. 443 - 454.

9. Erofeev VI. Three-dimensional vibrations of a fexible rod. // Soviet Applied
Mechanics. — 1991. — 27. — P. 911 - 916.

10. G. W. Milton, J. R.Willis. On modifications of Newton’s second law and
linear continuum elastodynamics // Proceedings of the Royal Society — 2007. — A.

463. — P. 855 — 880.



45
11. G. W. Milton. New metamaterials with macroscopic behavior outside that of

continuum elastodynamics // New Journal of Physics. — 2007. — 9. N 359. — P. 1 —
13.

12. Goldstein, H. Classical Mechanics. — World Publishing Corporation, 2004.

13. Griffiths, D. J. Introduction to Mechanics. — Cambridge University Press,
2012.

14. Huang H.H., Sun C.T., Huang G.I. On the negative effective mass density in
acoustic metamaterials // International Journal of Engineering Science. — 2009. —
47.—P.610-617.

15. Ji H., Huang W., Qiu J., et al., Mechanics problems in application of acoustic
black hole structures // Advances in Mechanics. — 2017. — 47. N 1. — P. 333 — 384.

16. Li F., Hu C., Huang W. Wave and vibration localization in disordered
periodic structure // Mechanics in Engineering. — 2003 — 25. N 3. — P. 35— 37.

17. Lagrange J.L. Mécanique analytique. (Tock J., Trans.). — Cambridge
University Press, 1788.

18. Ma, G., Sheng, P. Acoustic metamaterials: From local resonances to broad
horizons. // Science Advances. — 2016 — 2. N 2. — P. e1501595.

19. Page J.H., Sheng P.,Schriemer H.P., et al. Group velocity in strongly
scattering media. // Science. — 1996. — 271. — P. 634.

20. Porubov A.V., Antonov I.D. On control of harmonic waves in an acoustic
metamaterial // Mechanics Research Communications— 2021. —Vol. 116.

21. Porubov A.V., Krivtsov A.M., Dispersive propagation of localized waves in a
mass-in-mass metamaterial lattice. / Continuum Mechanics and Thermodynamics —
2022.—34. N 6. — P. 1475 — 1483.

22. Porubov A.V., Zhao Y. Bending Waves in Mass-in-Mass Metamaterial, //
Progress in Continuum Mechanics, Advanced Structured Materials Cham,
Switzerland: Springer. — 2023. — 196. — P. 401 — 410.

23. Shen H., Wen J., Yu D., Cai L., Wen X. Research on a cylindrical cloak with
active acoustic metamaterial layers. // Acta Physica Sinica. — 2012. — 61. N 13. —

P. 134303 — 134303.



46
24. Sheng P., Zhang X.X., Liu Z., Chan C.T. Locally resonant sonic materials, //

Physica B. — 2003. — 338 — P. 201 — 205.

25. Stewart, J. Calculus: Early Transcendentals (8th ed.). — Cengage Learning,
2015.

26. Taylor, J. Methodus Incrementorum: A Direct Method for the Extraction of
Roots of Equations. — Assistance of Continued Fractions, 1715.

27. Tian Y., Ge H., Lu M., Chen Y. Research advances in acoustic metamaterials.
// Acta Physica Sinica. — 2019. — 68. N 19. — P. 194301-1 — 194301-12.

28. Wang H. Exact traveling wave solutions of the generalized fifth-order
dispersive equation by the improved Fan subequation method. // Mathematical
Methods in the Applied Sciences. — 2023. —47. N 3. —P. 1701 — 1710.

29. Wen X., Wen J., Yu D., et al. Phononic Crystals. — Beijing: National
Defense Industry Press, 2009.

30. Wong, J. "Lagrange's equations" in Encyclopedia of China (1st ed.). —
Encyclopedia of China Publishing House, 1987 — Vol. 74 .

31. Wu Z., Xu S., etal. Prospects for application of acoustic metamaterials and
structure engineering. // Audio engineering. — 2017. — 41. N 9. —P. 16 — 27.

32. Xiao C. Application of the Lagrange Equation for Intelligent Sensor
Vibration Control for Power Network Monitoring. // International Transactions on
Electrical Energy Systems. — 2022.

33. Yin J., Cai L., Fang X., et al. Review on research progress of mechanical
metamaterials and their applications in vibration and noise control. / Advances in
Mechanics. — 2022. — 52. N 3. — P. 508 — 586.

34. Z.Y. Liu, C. T. Chan and P. Sheng. Analytic model of phononic crystals with
local resonances. // Physical Review B. — 2005. — 71. — P. 014103.

35. Z. Y. Liu, X. X. Zhang, Y. W. Mao, et al. Locally resonant sonic materials. //
Science. — 2000. — 289. — P. 1734.

36. Zhang S., Liu Z., Lu G. Nonlinear flexural waves in large-deflection beams.

// Acta Mechanica Solida Sinica. — 2009. — 22. — P. 287 — 292.



47
37. Zigoneanu L., Popa B.I., Cummer S.A. Design and measurements of a

broadband two-dimensional acoustic lens. // Physical Review B. — 2013. — 88. N 2.
— P. 020301.



	Introduction
	Background and significance
	Acoustic metamaterial
	Mass-in-mass model
	Bending wave
	Dispersion and band gap 

	Literature review
	Content arrangement

	Chapter 1 Related theoretical basis
	1.1long wavelength approximation
	1.1.1 Concepts and mathematical principles
	1.1.2 Applications to acoustic metamaterials

	1.2Lagrange equation
	1.2.1 Mathematical expression and its interpretati
	1.2.2 Application and Significance

	1.3Dispersion equation
	1.3.1 Definition and Principle
	1.3.2 Mathematical expression and its explanation
	1.3.3 Application

	1.4 Summary

	Chapter 2 Bending mass-in-mass metamaterial chain
	2.1 Statement of Problem 
	2.2 Government equation
	2.3 Continuous of the motion equation
	2.4 Summary

	Chapter 3 Analysis of dispersion and band gap
	3.1 Basic-order equation
	3.2 Higher-order equation
	3.3 Discrete equation
	3.4 Summary

	Chapter 4 Numerical simulation
	4.1 Boundary excitation of harmonic bending waves
	4.1.1 Mathematical model and definition conditions
	4.1.2 Result analysis

	4.2 Excitation of localized bending waves
	4.2.1 Mathematical model and definition conditions
	4.2.2 Result analysis

	4.3 Summary

	Chapter 5 Conclusion
	References

