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A B S T R A C T

We investigate the dynamics of the kinetic temperature of a finite one-dimensional harmonic
chain, the evolution of which is initiated by a thermal shock. We demonstrate that the kinetic
temperature returns arbitrarily close to its initial state (the one immediately following the
thermal shock) infinitely many times, and we give an estimate for the time elapsed until the
recurrence. This assertion is closely related to the Poincare recurrence theorem and we discuss
their relation. To estimate the recurrence time we use its averaging along system’s trajectory
and provide a rigorous mathematical definition of the mean recurrence time. It turns out that
the mean recurrence time exponentially increases with the number of particles in the chain.
A connection is established between this problem and the local theorems of large deviations
theory.

Previous studies have shown that in such a one-dimensional harmonic chain, at times of
order 𝑁 , a thermal echo phenomenon is observed — a sharp increase in the amplitude of kinetic
temperature fluctuations. In the present work, we give a rigorous mathematical formulation to
this phenomenon and estimate the amplitude of the fluctuations.

The research is funded by the Ministry of Science and Higher Education of the Russian
Federation within the framework of the Research Center of World-Class Program: Advanced
Digital Technologies (agreement №075-15-2020-311 dated 04.20.2022).

1. Introduction

The study of certain properties of low-dimensional systems with simple interaction potentials can sometimes yield unexpected
results. For instance, it is well known that heat propagates on a macro scale in accordance with Fourier’s law. However,
experimental research on nanowires and nanotubes shows a dependency of the thermal conductivity coefficient on the length of
the sample [1–4], which contradicts Fourier’s law. Theoretical research on ultra-pure materials demonstrates a ballistic character
of heat propagation [5–7].

In addition to the violation of Fourier’s law in ultra-pure materials, the existence of thermal waves [8], anisotropy of the thermal
profile [9], non-monotonic damping of the sinusoidal temperature profile [10], and the phenomenon of ballistic resonance [11] can
be observed.

For analytical research, the model of a one-dimensional harmonic crystal is often used as the simplest model of a solid body.
In the works of A.M. Krivtsov [12,13], thermal processes in one-dimensional crystals were studied by analyzing the equations
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of dynamics of velocity covariances. The covariance approach generalizes classical concepts of kinetic and potential energy by
introducing generalized energies, proportional to particle velocity covariances and deformation covariances of interparticle bonds.
According to this approach, instead of one specific system, one must consider an ensemble of crystalline systems with identical
statistical characteristics at the initial moment in time. The kinetic temperature of the crystal is the average over an ensemble of
such systems.

The dynamics of kinetic temperature in a crystal are described by equations analogous to those describing the oscillations of a
article displaced from equilibrium at the initial moment in time in the same crystal. Due to this mechanical analogy and Poincaré’s
ecurrence theorem, it can be claimed that there are infinitely many moments of kinetic temperature returning to a value arbitrarily
lose to its initial value in the system. The main result of the present paper is the rigorous derivation of lower and upper bounds
or the average time of such a return. A consequence of our estimates is that the average time of the kinetic temperature return
rows exponentially fast with the increase in the number of particles. In proving our statements, we use results from ergodic theory
nd large deviation theory. The problem of the mean recurrence time of a harmonic crystal close to its initial position was first
onsidered in the work by Kac [14]. We use some of his ideas in the present work.

W. Hoover in his work [15] notes that although there are quite a few alternative definitions of temperature (kinetic,
onfigurational, Langevin, etc.), in a state of equilibrium all these definitions of temperature are equivalent, and there is no ambiguity
n the concept of temperature. Far from equilibrium, each of these temperatures differs from the others. However, besides the fact
hat the expression for kinetic temperature is simpler than the aforementioned definitions of temperature, it is proportional to one of
he conserved quantities: energy. This partly explains the choice of kinetic temperature as the energetic characteristic of the system
e study.

In the present work, we also study the effect of thermal echo specific to a one-dimensional harmonic crystal [16]. A thermal
cho represents a quasi-periodic increase in the amplitude of kinetic temperature oscillations during a thermal transition process.
uch a thermal process can be initiated by a thermal shock at the initial moment in time, where all the velocities of the particles in
one-dimensional crystal have random values, and the displacements of the particles are zero. Each new iteration of the thermal

cho is realized through equal intervals of time, but the amplitude profile of the kinetic temperature oscillations around the thermal
cho differs from the amplitude profiles of the kinetic temperature of neighboring temporal implementations of the thermal echo.
et us denote the number of particles in the system as 𝑁 . In mathematical language, the thermal echo effect is expressed by the fact

that the asymptotics for large 𝑁 of the kinetic temperature fluctuations from the equilibrium state at times of order 𝑁 has jumps
of size 𝑁−1∕6 at moments multiple to the quasi-period. The latter statement will be rigorously proven in this work.

An alternative approach to studying the thermal properties of a harmonic crystal is based on a model of the crystal’s interaction
with an external reservoir. It first appeared in the 1940s in the works of Bogoliubov [17] and subsequently was actively studied
by many authors. We note the classic works on studying Fourier’s law and the propagation of heat in a crystal [5,18], and papers
dedicated to convergence to thermal equilibrium [19–21].

Thus, the results of our study consist of the formulation and proof of two main theorems and numerical analyses of the dynamics
of the kinetic temperature in one-dimensional crystal systems. The first theorem gives an asymptotic estimate of the amplitude of
the kinetic temperature (see (8)). Theorem 2 specifies the upper and lower limits in which the mean return time lies (see (14)).
Numerical results (see Table 1 and see graph in Fig. 3) extend the analytical study. We demonstrate that our theoretical conclusions
that the return time grows exponentially with increasing particle number are qualitatively correct.

The paper is organized as follows. In Section 2 (‘‘Thermal Echo’’), we introduce the mathematical model and describe the
phenomenon of thermal echo. In Section 3 (‘‘Mean Recurrence Time’’), we precisely define the mean recurrence time of the kinetic
temperature and formulate theorems concerning its upper and lower bounds. Section 4 (‘‘Numerical Simulation’’) presents the results
of computer modeling. In Section 5 (‘‘Conclusion’’), we provide final conclusions and share thoughts about further investigation. In
Appendix A, we present the proof of Theorem 1 (on thermal echo), while Appendix B contains the proof of Theorem 2 (on mean
recurrence time). In the final section, ‘‘Auxiliary Lemmas’’, we prove technical lemmas.

2. Thermal echo

We consider a model of a one-dimensional harmonic crystal consisting of 𝑁 particles, described by a system of ordinary
differential equations:

�̇�𝑛 = 𝜔2(𝑢𝑛−1 − 2𝑢𝑛 + 𝑢𝑛+1) , 𝑣𝑛 = �̇�𝑛 (1)

where 𝑢𝑛, 𝑣𝑛 represent the displacement and velocity of the 𝑛th particle, respectively. The elementary frequency 𝜔 =
√

𝐶∕𝑚, where
represents the stiffness of interparticle bonds, and 𝑚 is the mass of the particle. The dot above the symbol denotes a derivative

ith respect to time, and 𝑛 = 1,… , 𝑁 . The system follows periodic boundary conditions:

𝑢𝑛 = 𝑢𝑛+𝑁 . (2)

The initial conditions correspond to a thermal shock:

𝑢𝑛(0) = 0, 𝑣𝑛(0) = 𝜎𝜉𝑛, (3)

where 𝜉 are independent random variables with zero mean and unit variance, and 𝜎2 represents the variance of the initial velocities.
𝑛
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We introduce the kinetic temperature 𝑇 as a measure of the kinetic energy of the system:

𝑇 = 𝑚
𝑘𝐵

1
𝑁

𝑁
∑

𝑘=1
⟨�̃�2𝑘⟩, (4)

where 𝑘𝐵 denotes the Boltzmann constant, ⟨⋅⟩ represents the mathematical expectation, and �̃�𝑛 = 𝑣𝑛 − �̄�, where �̄� is the average
velocity defined as �̄� = 1

𝑁
∑𝑁

𝑛=1 𝑣𝑛.
The kinetic temperature is related to the kinetic energy by the equation:

𝑇 = 2
𝑁𝑘𝐵

(

⟨𝐸𝐾 ⟩ −
𝑚𝜎2

2

)

,

where 𝐸𝐾 is the kinetic energy defined as 𝐸𝐾 =
∑𝑁

𝑗=1
𝑚𝑣2𝑗
2 .

This model is introduced and studied in works [8,12,13,22]. In particular, the temperature is given by the following expression:

𝑇 (𝑡) = 𝑇𝐸

(

1 − 1
𝑁

+ 1
𝑁

𝑁−1
∑

𝑘=1
cos

(

4𝜔𝑡 sin 𝜋𝑘
𝑁

)

)

, (5)

𝑇𝐸 = 1
2

𝑚
𝑘𝐵

𝜎2,

where 𝑇𝐸 represents the equilibrium temperature.
The phenomenon of thermal echo is introduced and studied in the work [16]. Thermal echo is observed on time scales of the

order of 𝑁 for sufficiently large 𝑁 and mathematically follows from Theorem 1. To formulate it, we consider the relative fluctuation
f temperature from the equilibrium state as:

𝛿(𝑡) =
𝑇 (𝑡) − 𝑇𝐸

𝑇𝐸
,

and define the quasiperiod as:

𝑡𝑁
def
= 𝑁

2𝜔
.

heorem 1 (Thermal Echo Theorem). In the limit 𝑁 → ∞, for any integer number 𝑘 ⩾ 0 and all 𝑥 ∈ (0, 1), the following asymptotic
relations hold:

𝛿((𝑘 + 𝑥)𝑡𝑁 ) ∼
𝑏(𝑁)
𝑘 (𝑥)
√

𝑁
, (6)

𝛿((𝑘 + 1)𝑡𝑁 ) ∼
𝑎(𝑘)
3
√

𝑁
, (7)

where the bounded functions are introduced:

𝑎(𝑘) = 1
3
√

𝑘 + 1

𝛤
(

1
3

)

2𝜋 ⋅ 6
√

3
∼ 0.355

3
√

𝑘
, 𝑘 > 0,

𝑏(𝑁)
𝑘 (𝑥) =

√

2
𝜋

⎡

⎢

⎢

⎢

⎣

1
√

𝑘 + 𝑥
cos

(

2(𝑘 + 𝑥)𝑁 − 𝜋
4

)

+ 2
𝑘
∑

𝑝=1

1
4
√

𝑥2𝑝 − 1
cos

(

2𝑝𝑁𝑔(𝑥𝑝) +
𝜋
4

)

⎤

⎥

⎥

⎥

⎦

,

𝑔(𝑥) = arccos 1
𝑥
−
√

𝑥2 − 1, 𝑥𝑝 =
𝑘 + 𝑥
𝑝

> 1.

f 𝑘 = 0, then the sum in the expression for 𝑏(𝑁)
𝑘 (𝑥) is absent. Furthermore, the following inequality holds:

|𝑏(𝑁)
𝑘 (𝑥)| ⩽ 𝑐1 + 𝑐2𝑘 + 𝑐3

4

√

𝑘
𝑥
, (8)

𝑐1 = 3.6 , 𝑐2 = 2.8 , 𝑐3 = 1.4,
or all 𝑁, 𝑥, and 𝑘 ⩾ 1. The symbol ∼ denotes the asymptotic equivalence of two functions according to the definitions in the book [23].

Referring to the book [23] we can express the asymptotic equalities (6)–(7) using o-notations as follows:

𝛿((𝑘 + 𝑥)𝑡𝑁 ) =
𝑏(𝑁)
𝑘 (𝑥)
√

𝑁
+ ̄̄𝑜

(

1
√

𝑁

)

, (9)

𝛿((𝑘 + 1)𝑡𝑁 ) =
𝑎(𝑘)
3
√

𝑁
+ ̄̄𝑜

(

1
3
√

𝑁

)

, (10)
as 𝑁 → ∞.
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Fig. 1. Fluctuations of the kinetic temperature 𝑇 in a finite crystal. Numerical (top) and analytical (bottom) solutions. Averaging is performed using 100
numerical experiments. The number of particles is 𝑁 = 103, 𝑡 is time, and 𝜔 is the elementary frequency.

From this theorem, it follows that at times that are multiples of the quasiperiod, fluctuations exhibit jumps of the order of
𝑁−1∕6. This is the thermal echo effect. Fig. 1 shows a comparison of the analytical solution (bottom) and computer simulation of
the dynamics of crystal particles (top). The considered crystal contains 103 particles. The analytical solution is described by the
formula (5). The computer simulation performs the central difference method to numerically solve a system of 103 differential
equations of crystal chain dynamics (1) with an integration step of 0.02∕𝜔. The final result is obtained by averaging over 100
realizations and all particles of identical crystal chains.

It can be seen that the fluctuations of the kinetic temperature decrease with increasing 𝑁 [16], meaning that on time scales
of the order of 𝑁 , the fluctuations tend to zero. Studying the harmonic crystal on time scales of the order of 𝑁 is equivalent to
studying the hydrodynamic limit of the corresponding particle system. The hydrodynamic limit in the purely deterministic case
for a one-dimensional harmonic crystal has been investigated in works [24,25]. More precisely, the mentioned works derive the
hydrodynamic Euler equations under suitable scaling of initial conditions and the frequency 𝜔, but it can be easily shown that this
is equivalent to the transition to the hydrodynamic limit.

Due to Poincaré’s recurrence theorem and the invertibility of the system, at some point in time, the fluctuations of the kinetic
temperature must return sufficiently close to their initial value 𝛿(0) = 1 − 2

𝑁 . However, it is not necessary that this return occurs
at the moment of realization of the next thermal echo. Furthermore, we will estimate the time of return and show that it is of
exponentially large order in 𝑁 . The return to the initial position can be easily established without referring to Poincaré’s theorem,
simply by using the explicit formula (5).

3. Mean recurrence time

Let us consider the function

ℎ(𝑡) = 1
𝑁 − 1

𝑁−1
∑

𝑘=1
cos

(

4𝜔𝑡 sin 𝜋𝑘
𝑁

)

(11)

The function ℎ is related to the relative fluctuation of the kinetic temperature 𝛿(𝑡) as follows:

𝛿(𝑡) = − 1
𝑁

+ 𝑁 − 1
𝑁

ℎ(𝑡)

At the initial time ℎ(0) = 1. We define the time when the function ℎ returns to values close to its initial value. Let us fix some
𝑥 > 0 and divide the entire time axis into two sets:

𝐴 = 𝐴(𝑥) = {𝑝 ⩾ 0 ∶ ℎ(𝑝) > 𝑥} , 𝐴′ = {𝑝 ⩾ 0 ∶ ℎ(𝑝) ⩽ 𝑥}.

Next, we consider the consecutive moments of transition from one set to the other:

0 < 𝑡1 < 𝑠1 < 𝑡2 < 𝑠2 < ⋯ , (12)

where 𝑡𝑘 represents the moment of transition from 𝐴 to 𝐴′, and 𝑆𝑘 represents the moment of transition from 𝐴′ to 𝐴 (see Fig. 2).
We define the mean recurrence time to set 𝐴 by the formula:

𝜏(𝑥)
def
= lim

𝐿→∞
1
𝐿

𝐿
∑

𝑘=1
(𝑠𝑘 − 𝑡𝑘) (13)

Theorem 2 (Mean Recurrence Time). For all 𝑥 ∈ (0, 1), the limit in (13) exists, and for 𝑁 ⩾ 7, the following estimate holds:

𝑟 (𝑥)
𝑏𝑁1 (𝑥)

< 𝜏(𝑥) <
𝑏𝑁2 (𝑥)

(14)
𝑁 𝜔 𝜔

4 
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Fig. 2. Schematic representation of the evolution of kinetic temperature at long times. 𝑡𝑘 represents the moment of transition of the kinetic temperature from
𝐴 to 𝐴′, and 𝑆𝑘 represents the moment of transition from 𝐴′ to 𝐴.

where the following functions are introduced:

𝑏1(𝑥)
def
=

𝛼1
4
√

1 − 𝑥
, 𝛼1

def
=

√

2
√

𝜋𝑒
≈ 0.83

𝑏2(𝑥)
def
=

𝛼2
4
√

1 − 𝑥
, 𝛼2

def
=

√

𝜋
√

2
≈ 1.49

𝑟𝑁 (𝑥)
def
=

(1 − 𝑥)
7
2 𝑥2

𝑁
3
2

⋅ 10−9.

The theorem shows that the mean recurrence time of the kinetic temperature exponentially increases with the number of particles
in the system 𝑁 . Indeed, for 𝑥 close to 1, the values of functions 𝑏1 and 𝑏2 are greater than 1, and the remainder term 𝑟𝑁 is of the
order of 𝑁−3∕2, significantly smaller in comparison to 𝑏𝑁1 (𝑥).

Note that the lower estimate for 𝜏(𝑥) is nontrivial (i.e., the value on the left is greater than 1) for sufficiently large 𝑁 and
𝑥 > 1 − 4

𝜋𝑒 ≈ 0.53. For example, for 𝜔 = 3 ⋅ 1014 s−1 (we assume time unit is second) [16], for 𝑥 = 0.9999 and 𝑁 = 50, the lower
estimate gives a mean recurrence time 𝜏(𝑥) of about 107 seconds.

In the work by Kac [14], the mean recurrence time of the entire harmonic crystal system to the vicinity of the initial position is
studied. Using his ideas and results, we obtain the upper estimate in Theorem 2 for the recurrence time.

From Theorem 2, it follows that

ln 𝑏1(𝑥) ⩽ lim inf
𝑁→∞

ln(𝜏(𝑥))
𝑁

⩽ lim sup
𝑁→∞

ln(𝜏(𝑥))
𝑁

⩽ ln 𝑏2(𝑥)

Using more sophisticated methods in the proof, it can be shown that for all 𝑥 > 0.5, the following limit exists:

lim
𝑁→∞

ln(𝜏(𝑥))
𝑁

= 𝐼(𝑥),

where 𝐼(𝑥) is a smooth function called the action functional. More details on how to improve the results see the end of Appendix B.
From Theorem 2, it follows that

𝐼(𝑥) ∼ −1
4
ln(1 − 𝑥)

as 𝑥 → 1.
If we define the mean recurrence time differently, for example, as:

𝜏(𝑥) = lim
𝑘→∞

𝑆𝑘
𝑘
,

it can be similarly proved that 𝜏(𝑥) exponentially increases with increasing 𝑁 .

4. Numerical simulation

In this section, we present the results of numerical simulation of the dynamics of kinetic temperature in finite harmonic crystals.
Three experiments were conducted for crystals containing 7, 10, and 13 particles. In the computer simulation, the analytical solution
of the relative temperature fluctuation (11) was computed with a time discretization step of 1

500𝜔 . The number of numerical steps
was 242. In each experiment, the number of system returns ℎ(𝑡) ≥ 𝑥 was calculated for three different levels: 𝑥 = 0.99, 𝑥 = 0.999,
and 𝑥 = 0.9999. From the table, it can be seen that as the number of particles increases, the number of returns within a fixed time
interval exponentially decreases, while the mean recurrence time and the standard deviation exponentially increase.
5 
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Table 1
Results of numerical experiments. Table displays numerical results for the dynamics of kinetic temperature in
harmonic crystals with 7, 10, and 13 particles. It shows the number of returns, mean recurrence time, and
standard deviation for three levels of 𝑥.
Level 𝑥 Number of returns Mean recurrence time 𝜔𝑡 Standard deviation

Number of particles in the crystal: 7

0.99 98,339 335.13 485.12
0.999 12,737 2,523.00 2,792.96
0.9999 722 41,921.45 27,085.77

Number of particles in the crystal: 10

0.99 4,124 7,187.19 11,153.59
0.999 189 155,981.86 103,893.16
0.9999 3 10,386,721.06 8,189,677.18

Number of particles in the crystal: 13

0.99 57 455,021.73 446,265.25
0.999 1
0.9999 1

It can be observed that the standard deviation and the mean recurrence time are of the same order of magnitude, indicating that
he recurrence time values deviate significantly from the mean value.

Fig. 3 contains graphs constructed based on calculations performed with data that is more extensive compared to what is
resented in the table. The graphs allow for a more vivid demonstration of the dependence of the number of returns, the mean
eturn time, and the standard deviation of the mean return time on levels of 𝑥.

According to Theorem 2, applied to the parameters from Table 1, we obtain an estimate of the recurrence time that approaches
ero from below and significantly exceeds this value from above compared to the data obtained in the numerical experiments. Such
discrepancy may be caused by the roughness of the upper estimate, which was calculated based on the assumption of the entire

ystem returning to a state close to the initial state, rather than just the return of the kinetic temperature.
In the course of the simulations, it has been found that the computation of the recurrence time in systems encompassing

more substantial quantity of particles necessitates an exponential augmentation in computational duration. This observation
etrospectively justifies the selection of the particle count employed in the modeling. In the current computational analyses, we
xamine the period requisite for the system’s return to a state where the kinetic temperature deviates by less than 1% from its
nitial value. Such a threshold is sufficiently substantial to observe a notable quantity of returns, particularly in systems comprising
lesser number of particles. Concurrently, it is relatively small to ensure that the observable differences in the system’s dynamics

ost-return are negligibly insignificant.
At the same time, the analytical results for the lower estimate of the recurrence time are of particular value. For a small number

f particles in the system, this value is close to zero, but it exponentially increases as the number of particles increases. For 𝑥 = 0.99,
the expression for the lower estimate of the dimensionless recurrence time 𝑟𝑁 (𝑥)𝑏𝑁1 (𝑥) only becomes greater than one for 𝑁 > 44.

. Conclusion

The present paper investigates the dynamics of kinetic temperature in a one-dimensional harmonic crystal. It builds upon previous
tudies dedicated to exploring the phenomenon of thermal echo. The main focus of this paper is on the investigation of the average
nterval between the recurrence times of the kinetic temperature to its initial value, known as the mean recurrence time.

Analytical and numerical methods have been employed to study the recurrence time and its relation to the size of the crystal.
heorems describing the properties of the recurrence time have been presented, and numerical simulations have been conducted to
onfirm the theoretical findings.

The main result of this research lies is the rigorous proof that the mean recurrence time exponentially increases with the number
f particles in the crystal. This observation holds fundamental significance for a deeper understanding of the dynamics of crystalline
ystems and can find broad applications in various fields related to heat transfer and thermal processes.

Further investigations can be directed towards extending the model and considering various factors that influence the dynamics
f kinetic temperature, such as nonlinearities or quantum–mechanical aspects. The studies referenced in [11] and [26] indicate
hat in the regime of weak nonlinearity, the harmonic theory remains effectively applicable over short time scales. The impact of
ronounced nonlinearity remains unexplored; however, it can be conjectured that the findings regarding the average return time are
ikely to retain their validity. It is anticipated that the average return time will continue to increase exponentially with the number
f particles, with the primary variation being in the exponent of this growth. The analytical results for the upper bound estimation
f the mean recurrence time have been found to be overestimated compared to the results of numerical simulations. Therefore,
he search for more accurate analytical estimations is also of interest for future research. Particularly, finding the function 𝐼(𝑥),
ntroduced above. Additional research could focus on estimating the standard deviation of the recurrence time.

This study contributes to the understanding of the thermal echo phenomenon in harmonic crystals and the dynamics of kinetic
emperature. The research findings can be valuable for various applications related to heat transfer and crystalline systems and can
timulate further research in this field.
6 
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Appendix A. Proof of Theorem 1 on thermal echo

For all real 𝑧, the equality is valid [27]:

1
𝑁

𝑁−1
∑

𝑘=0
cos(𝑧 sin 𝜋𝑘

𝑁
) = 𝐽0(𝑧) + 2

∞
∑

𝑝=1
𝐽2𝑝𝑁 (𝑧),

where 𝐽𝑛(𝑧) is the Bessel function of the first kind.
Due to this equality and the formula (5) we can write

𝛿(𝑡) = − 1
𝑁

+
∞
∑

𝑝=0
𝛼𝑝𝐽2𝑝𝑁 (4𝜔𝑡),

where we introduced the notation:

𝛼𝑝 =

{

1, 𝑝 = 0,
2, 𝑝 > 0.

First, Let us prove formula (6). Let us split the sum for 𝛿((𝑘 + 𝑥)𝑡𝑁 ) into two terms

𝛿((𝑘 + 𝑥)𝑡𝑁 ) =
𝑘
∑

𝑝=0
𝛼𝑝𝐽2𝑝𝑁 (2(𝑘 + 𝑥)𝑁) +

+∞
∑

𝑝=𝑘+1
𝛼𝑝𝐽2𝑝𝑁 (2(𝑘 + 𝑥)𝑁) − 1

𝑁
= 𝑆1 + 𝑆2 −

1
𝑁

. (A.1)

Let us estimate the first sum, using the first two statements of Lemma 1:

𝑆1 =
𝑘
∑

𝑝=0
𝛼𝑝𝐽2𝑝𝑁 (2(𝑘 + 𝑥)𝑁) = 𝐽0(2(𝑘 + 𝑥)𝑁) + 2

𝑘
∑

𝑝=1
𝐽2𝑝𝑁 (2𝑝𝑁𝑥𝑝), where 𝑥𝑝 =

𝑘 + 𝑥
𝑝

.

For 𝑁 → ∞ we have the following approximation:

𝑆1 =
1

√

𝑁

[

√

2
𝜋(𝑘 + 𝑥)

cos
(

2(𝑘 + 𝑥)𝑁 − 𝜋
4

)

+ 2
𝑘
∑

𝑝=1

√

√

√

√

2

𝜋
√

𝑥2𝑝 − 1
cos

(

2𝑝𝑁𝑔(𝑥𝑝) +
𝜋
4

) ]

+𝑂
( 1
𝑁

)

Let us estimate the second sum in (A.1), relying on the fourth inequality of Lemma 1:

|𝑆2| =
|

|

|

|

|

|

+∞
∑

𝑝=𝑘+1
𝛼𝑝𝐽2𝑝𝑁 (2(𝑘 + 𝑥)𝑁)

|

|

|

|

|

|

=
|

|

|

|

|

|

+∞
∑

𝑝=𝑘+1
𝛼𝑝𝐽2𝑝𝑁 (2𝑝𝑁𝑥𝑝)

|

|

|

|

|

|

⩽ 2
∞
∑

𝑝=𝑘+1

𝑒−2𝑝𝑁𝑓 (𝑥𝑝)

(1 − 𝑥2𝑝)
1
4
√

2𝜋2𝑝𝑁
⩽ 1

(1 − 𝑥2𝑘+1)
1
4
√

𝑘𝑁

∞
∑

𝑝=𝑘+1
𝑒−2𝑝𝑁𝑓 (𝑥𝑘+1)

= 1

(1 − 𝑥2𝑘+1)
1
4
√

𝑘𝑁

𝑒−2(𝑘+1)𝑁𝑓 (𝑥𝑘+1)

1 − 𝑒−2𝑁𝑓 (𝑥𝑘+1)
= 𝑂

(

𝑞−𝑁
)

, where 𝑥𝑝 =
𝑘 + 𝑥
𝑝

.

for some 𝑞 > 1. Thus, the second statement is proven. The formula (7) is checked similarly using the third item of Lemma 1.
Next, Let us prove inequality (8) for 𝑏(𝑁)

𝑘 (𝑥). We have estimates:

|𝑏(𝑁)
𝑘 (𝑥)| ⩽

√

2
𝜋

⎛

⎜

⎜

⎜

1
√

𝑘 + 𝑥
+ 2

𝑘
∑

𝑝=1

1
4
√

( 𝑘+𝑥 )2 − 1

⎞

⎟

⎟

⎟

⩽
√

2
𝜋
(1 + 2𝐴) ,
⎝
𝑝

⎠

7 
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where we denoted the sum by 𝐴. Let us continue estimating 𝐴:

𝐴
def
=

𝑘
∑

𝑝=1

1
4
√

( 𝑘+𝑥𝑝 )2 − 1
=

𝑘
∑

𝑝=1

4

√

𝑝2

(𝑘 + 𝑥)2 − 𝑝2
=

𝑘−1
∑

𝑝=1

4

√

𝑝2

(𝑘 + 𝑥)2 − 𝑝2
+ 4

√

𝑘2

(𝑘 + 𝑥)2 − 𝑘2
= 𝐴1 + 𝐴2.

For 𝐴1 from previous equation we have inequalities:

𝐴1 =
𝑘−1
∑

𝑝=1

4

√

𝑝2

(𝑘 + 𝑥)2 − 𝑝2
⩽ ∫

𝑘

1

4

√

𝑢2

(𝑘 + 𝑥)2 − 𝑢2
𝑑𝑢 ⩽ ∫

𝑘+𝑥

0

4

√

𝑢2

(𝑘 + 𝑥)2 − 𝑢2
𝑑𝑢 = (𝑘 + 𝑥)∫

1

0

4

√

𝑣2

1 − 𝑣2
𝑑𝑣 = (𝑘 + 𝑥)𝛽.

Let us calculate 𝛽 :

𝛽 = ∫

1

0

4

√

𝑣2

1 − 𝑣2
𝑑𝑣 = 1

2 ∫

1

0
𝑦−1∕4(1 − 𝑦)−1∕4𝑑𝑦 = 1

2
𝐵
( 3
4
, 3
4

)

,

where 𝐵 denotes the beta function. Using known properties of the beta function, we get:

𝛽 = 1
2

(𝛤
(

3
4

)

)2

𝛤
(

3
2

) = 2𝜋2

1
2

√

𝜋(𝛤
(

1
4

)

)2
= 4𝜋3∕2

(𝛤
(

1
4

)

)2

Let us estimate 𝐴2:

𝐴2 =
4

√

𝑘2

(𝑘 + 𝑥)2 − 𝑘2
= 4

√

1
(1 + 𝑥

𝑘 )
2 − 1

= 4

√

√

√

√

1
𝑥
𝑘

(

2 + 𝑥
𝑘

) ⩽ 4

√

𝑘
𝑥

4

√

1
2
.

inally, we obtain inequalities:

|𝑏(𝑁)
𝑘 (𝑥)| ⩽

√

2
𝜋

(

1 + 2𝛽(𝑘 + 1) + 2 4

√

1
2

4

√

𝑘
𝑥

)

⩽ 𝑐1 + 𝑐2𝑘 + 𝑐3
4

√

𝑘
𝑥
,

here

𝑐1 = 3.6, 𝑐2 = 2.8, 𝑐3 = 1.4.

he statement is thus fully proven.

emma 1. The following statements are true for the Bessel function:

1. as 𝑥 → +∞

𝐽0(𝑥) =
√

2
𝜋𝑥

cos
(

𝑥 − 𝜋
4

)

+ 𝑂
( 1
𝑥

)

2. as 𝜈 → +∞, 𝑥 > 1

𝐽𝜈 (𝜈𝑥) =
√

2

𝜋𝜈
√

𝑥2 − 1
cos

(

𝜈𝑔(𝑥) + 𝜋
4

)

+ 𝑂
( 1
𝜈

)

where

𝑔(𝑥) = arccos 1
𝑥
−
√

𝑥2 − 1

3. as 𝜈 → +∞

𝐽𝜈 (𝜈) =
𝛤
(

1
3

)

2
2
3 𝜋 ⋅ 6

√

3𝜈
1
3

+ 𝑂

(

1

𝜈
2
3

)

4. for 0 < 𝑥 ⩽ 1

|𝐽𝜈(𝜈𝑥)| ⩽
𝑒−𝜈𝑓 (𝑥)

(1 − 𝑥2)
1
4
√

2𝜋𝜈
,

where function 𝑓 (𝑥) is a strictly decreasing function and 𝑓 (1) = 0.
Proof. All statements are well known and can be found in the book [27]. □

8 
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It should be noted that Bessel functions of the first kind often arise in harmonic crystal models. For example, in the paper by
lein and Prigogine [28], based on the solution obtained by Schrödinger [29], it was shown that in an infinite one-dimensional
armonic crystal with random initial conditions, the oscillations of kinetic and potential energy are described by the Bessel function
f the first kind and zero order, and tend to equal equilibrium values.

In the works [30,31], the non-trivial properties of Bessel functions were required to prove the uniform boundedness of the
olutions of the infinite harmonic crystal.

ppendix B. Proof of Theorem 2 on mean recurrence time

Let us outline the proof strategy. First, we will reduce the problem to computing the mean recurrence time in a subset �̂� of a
classical dynamical system, which is a shift on a torus. These shifts on the torus define a strongly ergodic dynamical system with
an invariant Lebesgue measure. Therefore, we can use the Smoluchowski–Katz formula, which expresses the mean recurrence time
(Lemma 3) in terms of the invariant measure. The upper bound follows almost immediately if we apply it to a set that is a rectangle
on the torus contained in �̂�.

To obtain the lower bound, we reduce the problem to estimating the density of the sum of independent identically distributed
andom variables in the domain of large deviations. Local theorems for large deviations has been known since the 1950s [32,33]
nd is well described, for example, in the book [34]. However, the mentioned sources have restrictions on the random variables
hat do not hold in our case. It is also quite difficult to extract all the necessary constants from those works. Therefore, we had to
eprove some local theorems of large deviations, relying on techniques and ideas from [32–34].

Let us proceed with a detailed proof.
Without loss of generality, we can assume that 𝑁 is an odd number given by 𝑁 = 2𝑛 + 1. From the condition 𝑁 ⩾ 7, it follows

hat 𝑛 ⩾ 3. Let us rewrite the formula for ℎ(𝑡) as follows:

ℎ(𝑡) = 1
𝑛

𝑛
∑

𝑘=1
cos

(

4𝜔𝑡 sin 𝜋𝑘
2𝑛 + 1

)

= 1
𝑛

𝑛
∑

𝑘=1
cos

(

𝑡𝜔𝑘
)

,

where we introduced the notation

𝜔𝑘 = 4𝜔 sin 𝜋𝑘
2𝑛 + 1

, 𝑘 = 1,… , 𝑛.

onsider the 𝑛-dimensional torus

𝑇𝑛 = {(𝜑1,… , 𝜑𝑛) ∶ 𝜑𝑘 ∈ [0, 2𝜋]}

nd the shifts on it

𝑔𝑡(𝜑1,… , 𝜑𝑛) = (𝜑1 + 𝜔1𝑡,… , 𝜑𝑛 + 𝜔𝑛𝑡), 𝑡 ⩾ 0,

here addition is taken modulo 2𝜋. Then the following obvious equality holds:

ℎ(𝑡) = 𝐻(𝑔𝑡(0̄)), 0̄ = (0, 0,… , 0) ∈ 𝑇𝑛,

𝐻(𝜑1,… , 𝜑𝑛) =
1
𝑛

𝑛
∑

𝑘=1
cos(𝜑𝑘)

The Lindemann–Weierstrass theorem implies that the numbers 𝜔1,… , 𝜔𝑛 are linearly independent over the rationals. Thus, the flow
𝑔𝑡 is strong ergodic [35] with the invariant measure 𝜇 given by:

𝜇(𝐵) =
( 1
2𝜋

)𝑛
|𝐵|,

where | ⋅ | denotes the Lebesgue measure of a set 𝐵 ⊂ 𝑇𝑛. Clearly, 𝑡 ∈ 𝐴(𝑥) if and only if

𝑔𝑡(0̄) ∈ �̂�(𝑥) = {�̄� ∈ 𝑇𝑛 ∶ 𝐻(�̄�) > 𝑥}

Hence, the time 𝜏(𝑥) is the mean recurrence time of the trajectory of the flow 𝑔𝑡 to the set �̂�(𝑥) and therefore, due to strong ergodicity,
𝜏(𝑥) is well-defined. For a set 𝐵 ⊂ 𝑇𝑛, let 𝜏𝐵 be the mean recurrence time to 𝐵, defined in a similar manner, if it exists. Then

𝜏(𝑥) = 𝜏�̂�(𝑥).

Next, using this representation, we will estimate 𝜏(𝑥).
Notice that if cos𝜑𝑘 ⩾ 𝑥 for all 𝑘 = 1,… , 𝑛, then (𝜑1,… , 𝜑𝑛) ∈ 𝐴(𝑥). Therefore,

𝜏(𝑥) ⩽ 𝜏𝐼 ,

here 𝐼 = {(𝜑1,… , 𝜑𝑛) ∈ 𝑇𝑛 ∶ cos𝜑𝑘 ⩾ 𝑥}. From the paper [36], we easily obtain the following formula:

𝜏𝐼 = 2𝜋 𝛥𝑛−1 − 1
∑𝑛 , 𝛥 = 𝜋 .
𝛥 𝑘=1 𝜔𝑘 arccos(𝑥)

9 
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Hence, we have the estimate:

𝜏𝐼 ⩽ 𝜋
2𝜔

1
∑𝑛

𝑘=1 sin
𝜋𝑘

2𝑛+1

𝛥𝑛 = 𝜋
2𝜔

1
1
2 cot

𝜋
2𝑛+1

𝛥𝑛 ⩽ 1
𝜔
𝛥𝑁∕2.

It is easy to see that

arccos(𝑥) ⩾
√

2(1 − 𝑥)

for 𝑥 ∈ (0, 1). Thus, the upper bound is established.
Let us prove the lower bound. We will use the Smoluchowski–Katz formula for the mean recurrence time (Lemma 3). This yields

the equality:

𝜏(𝑥) = lim
𝜀→0+

𝜀
1 − 𝜇(�̂�(𝑥))
𝜇(�̂�(𝑥)𝜀)

=
1 − 𝜇(�̂�(𝑥))

𝜋𝑛(𝑥)
, (B.1)

where we define

𝜋𝑛(𝑥) = lim
𝜀→0+

1
𝜀
𝜇(�̂�(𝑥)𝜀) = lim

𝜀→0+

1
𝜀 ∫𝜑∈𝑇𝑛∶ 𝐻(𝜑)⩾𝑥, 𝐻(𝑔𝜀(𝜑))<𝑥

𝜇(𝑑𝜑).

Refer to Lemma 3 for the definition of �̂�(𝑥)𝜀.
First, let us estimate 𝜇(�̂�(𝑥)). Suppose 𝑈1,… , 𝑈𝑛 are independent random variables uniformly distributed on the interval [0, 2𝜋].

Then,

𝜇(�̂�(𝑥)) = P

(

1
𝑛

𝑛
∑

𝑘=1
cos𝑈𝑘 ⩾ 𝑥

)

,

here P(⋅) denotes the probability of the corresponding event. By applying Hoeffding’s inequality, we obtain the estimate:

P

(

1
𝑛

𝑛
∑

𝑘=1
cos𝑈𝑘 ⩾ 𝑥

)

⩽ 𝑒−
𝑛𝑥2
2 .

Therefore, we have shown that

𝜏(𝑥) ⩾ 1 − 𝑒−
𝑛𝑥2
2

𝜋𝑛(𝑥)
.

Using simple calculus we obtain the bounds:

𝜏(𝑥) ⩾ 1 − 𝑒−
𝑛
2

𝜋𝑛(𝑥)
𝑥2 ⩾ 1 − 𝑒−

3
2

𝜋𝑛(𝑥)
𝑥2 (B.2)

Let us prove the following lemma:

emma 2. The formula holds:

𝜋𝑛(𝑥) =
( 1
2𝜋

)𝑛

∫𝜑∈𝑇𝑛∶ 𝐻(𝜑)=𝑥
[(�̄�, 𝜈)]+𝑑𝜎,

where [𝑥]+ = max{𝑥, 0}, �̄� = (𝜔1,… , 𝜔𝑛), (, ) is the Euclidean scalar product, 𝑑𝜎 is the standard volume element on the surface
𝑆(𝑥) = {𝜑 ∈ 𝑇𝑛 ∶ 𝐻(𝜑) = 𝑥}, 𝜈 is the unit normal vector to the surface 𝑆(𝑥) directed outward from 𝐴(𝑥):

𝜈 = − 1
|∇𝐻|

∇𝐻.

Proof. The formula is obtained by covering the surface 𝑆(𝑥) with small neighborhoods and locally tracking the volume element on
this surface. □

From Lemma 2, we obtain the representation:

𝜋𝑛(𝑥) =
( 1
2𝜋

)𝑛

∫𝑆(𝑥)
[�̄�,−∇𝐻]+𝜔𝐻 ,

where 𝜔𝐻 = 1
|∇𝐻|

𝑑𝜎 is the Gelfand–Leray differential form. Using the Cauchy–Bunyakovsky–Schwarz inequality, we obtain the
stimate:

𝜋𝑛(𝑥) ⩽
( 1
2𝜋

)𝑛
|�̄�|∫𝑆(𝑥)

𝜔𝐻 ⩽ 4𝜔
√

𝑛
( 1
2𝜋

)𝑛

∫𝑆(𝑥)
𝜔𝐻 .

et 𝑈1,… , 𝑈𝑛 be the random variables defined above. It is easy to see that the random variable

𝑊𝑛 = 𝐻(𝑈 ) = 1
𝑛
∑

cos𝑈𝑘 (B.3)

𝑛 𝑘=1

10 
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has density 𝑝𝑊𝑛
(⋅) and

𝑝𝑊𝑛
(𝑥) =

( 1
2𝜋

)𝑛

∫𝑆(𝑥)
𝜔𝐻 .

hus, we have proven the inequality:

𝜋𝑛(𝑥) ⩽ 4𝜔
√

𝑛𝑝𝑊𝑛
(𝑥).

Hence, by Lemma 4, we conclude that

𝜋𝑛(𝑥) ⩽ 4𝜔𝑛
3
2

(

2𝛽
1 − 𝑥

)3
(
√

1 − 𝑥
𝛾

)𝑛

.

The constants 𝛽 and 𝛾 are defined in Lemma 4. Substituting this estimate into inequality (B.2), we obtain:

𝜏(𝑥) ⩾ 1 − 𝑒−
3
2

4𝜔𝑛
3
2
(

2𝛽
1−𝑥

)3
(

√

1−𝑥
𝛾

)𝑛 𝑥
2 ⩾ 1

𝜔
1 − 𝑒−

3
2

4(2𝛽)3
(1 − 𝑥)3𝑥2

𝑛
3
2

(

𝛾
√

1 − 𝑥

)𝑛

⩾ 1
𝜔
1 − 𝑒−

3
2

4(2𝛽)3
(1 − 𝑥)3𝑥2

(𝑁∕2)
3
2

(

𝛾
√

1 − 𝑥

)𝑁∕2 (
𝛾

√

1 − 𝑥

)−1∕2

= 1
𝜔
𝜃
(1 − 𝑥)

7
2 𝑥2

𝑁
3
2

(

𝛼1
4
√

1 − 𝑥

)𝑁

,

where

𝛼1 =
√

𝛾, 𝜃 = 1 − 𝑒−
3
2

4(2𝛽)3
23∕2 1

√

𝛾
> 10−9.

hus, the theorem is completely proven.
At the end of Appendix B, we provide a hint on improving the estimates for 𝜏(𝑥). The key idea involves employing a probability

nterpretation for the quantity 𝜋𝑛 defined in Formula (B.1). Now we formulate it in more details. Let us consider random variables
𝜉1,… , 𝜉𝑛) ∈ 𝑇𝑛 with the joint density function

𝑝𝜉 (𝜑) =
1
𝑍
[�̄�,−∇𝐻]+ = 1

𝑍

[

1
𝑛

𝑛
∑

𝑘=1
𝜔𝑘 sin𝜑𝑘

]+

,

where 𝑍 is the normalized factor defined by the condition:

∫𝑇𝑛
𝑝𝜉 (𝜑)𝑑𝜇(𝜑) = 1.

Next introduce the random variable 𝜂 = 𝐻(𝜉) = 1
𝑛
∑𝑛

𝑘=1 cos 𝜉𝑘. It is evident that 𝜂 has a density function 𝑝𝜂(𝑥). From Lemma 2,
ollows the equality

𝜋𝑛(𝑥) = 𝑝𝜂(𝑥)𝑍.

y the central limit theorem (Lyapunov’s formulation), it follows that 𝑍 ∼ 𝑐∕
√

𝑛 for some absolute constant 𝑐 > 0, independent
f 𝑛. Therefore, the estimation of the asymptotic for 𝜋𝑛(𝑥) is reduced to determining the asymptotic for 𝑝𝜂(𝑥). The asymptotic for
𝜂(𝑥) pertains to a local theorem for large deviation of dependent random variables 𝜉1,… , 𝜉𝑛. We hypothesize that employing more
dvanced techniques in large deviation theory will result in an explicit asymptotic expression for 𝑝𝜂(𝑥).

uxiliary lemmas

emma 3. For an ergodic flow 𝑔𝑡, the Smoluchowski–Kac formula holds for the mean recurrence time 𝜏𝐵 to a set 𝐵:

𝜏𝐵 = lim
𝜀→0+

𝜀
1 − 𝜇(𝐵)
𝜇(𝐵𝜀)

,

where 𝜇 is the normalized invariant measure of the flow, 𝐵𝜀 = 𝐵 ⧵ (𝑔𝜀𝐵) represents the points in 𝐵 that leave 𝐵 after the transformation 𝑔𝜀.

roof. This formula can be found in [36]. For the sake of completeness, we provide a proof for the case of an ergodic discrete-time
ynamical system. Let 𝑇 denote the corresponding transformation, and let 𝜇 be the invariant measure. We will use the notation
ntroduced in (12) by replacing the set 𝐴 with 𝐵. According to the ergodic theorem, we have:

lim
𝑁→∞

𝑁
𝑡𝑁

= 𝜇(�̂�),

where �̂� = 𝐵 ⧵ (𝑇 (𝐵)) represents the points in 𝐵 that leave 𝐵 after the transformation 𝑇 . Furthermore, due to the ergodic theorem,
e have the relation:

lim 1
𝑁
∑

(𝑆𝑘 − 𝑡𝑘) = 𝜇(𝐵′)

𝑁→∞ 𝑠𝑁 𝑘=1

11 
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where 𝐵′ denotes the complement of the set. We can then write:

𝜏𝐵 = lim
𝑁→∞

1
𝑁

𝑁
∑

𝑘=1
(𝑆𝑘 − 𝑡𝑘) = lim

𝑁→∞

𝑠𝑁
𝑁

1
𝑠𝑁

𝑁
∑

𝑘=1
(𝑆𝑘 − 𝑡𝑘) =

𝜇(𝐵′)
𝜇(�̂�)

.

We used the fact that

lim
𝑁→∞

𝑠𝑁 − 𝑡𝑁
𝑁

= 0.

hus, the Smoluchowski–Kac formula for discrete dynamical systems is established. The transition to continuous time is straightfor-
ard since our main dynamical system on the torus is smooth. □

emma 4. Let 𝑈1,… , 𝑈𝑛 be independent random variables uniformly distributed on the interval [0, 2𝜋]. Consider the random variable:

𝑊𝑛 =
1
𝑛

𝑛
∑

𝑘=1
cos𝑈𝑘.

Then, for all 0 < 𝑥 < 1 and 𝑛 ⩾ 3, the density 𝑝𝑊𝑛
of the random variable 𝑊𝑛 satisfies the following estimate:

𝑝𝑊𝑛
(𝑥) ⩽ 𝑛

(

2𝛽
1 − 𝑥

)3
(
√

1 − 𝑥
𝛾

)𝑛

,

where

𝛽 = 95, 𝛾 = 2
√

𝜋𝑒

Proof. This statement can be regarded as a local inequality of large deviations (see [32,33]). To prove the statement, we will use
ideas from [32].

Consider the generating functions of the random variables 𝑊𝑛 and cos𝑈1:

𝑀𝑛(𝑧) = E𝑒𝑧𝑊𝑛 = ∫R
𝑒𝑧𝑥𝑝𝑊𝑛

(𝑥)𝑑𝑥,

𝑢(𝑧) = E𝑒𝑧 cos𝑈1 = 1
2𝜋 ∫

2𝜋

0
𝑒𝑧 cos 𝑥𝑑𝑥.

Since 𝑊𝑛 and cos𝑈1 are bounded, 𝑀𝑛(𝑧) and 𝑢(𝑧) are well-defined for any 𝑧 ∈ C. We have the obvious equality:

𝑀𝑛(𝑧) =
(

𝑢
( 𝑧
𝑛

))𝑛
. (B.4)

By the stationary phase method (see [23]), it follows that for large |𝑡| and all 𝑎 ∈ R, the following asymptotic holds:

𝑢(𝑎 + 𝑖𝑡) = 1
2𝜋 ∫

2𝜋

0
𝑒𝑎 cos 𝑥𝑒𝑖𝑡 cos 𝑥𝑑𝑥 ∼

𝑐1(𝑎) + 𝑐2(𝑎)𝑒−𝑖𝑡
√

|𝑡|
,

where 𝑐1 and 𝑐2 are functions depending only on 𝑎, but not on 𝑡. Therefore, for 𝑛 ⩾ 3 and all 𝑎 ∈ R, the function 𝑀𝑛(𝑎 + 𝑖𝑡) is
absolutely integrable with respect to 𝑡 on R, and the inversion formula holds:

𝑝𝑊𝑛
(𝑥) = 1

2𝜋𝑖 ∫

𝑎+𝑖∞

𝑎−𝑖∞
𝑀𝑛(𝑧)𝑒−𝑧𝑥𝑑𝑧.

he value of 𝑎 will be chosen later to obtain the best upper bound for the density. Using formula (B.4), we obtain:

𝑝𝑊𝑛
(𝑥) = 1

2𝜋 ∫

+∞

−∞
𝑢𝑛

(𝑎 + 𝑖𝑡
𝑛

)

𝑒−(𝑎+𝑖𝑡)𝑥𝑑𝑡 = 𝑛𝑒−𝑎𝑛𝑥

2𝜋 ∫

+∞

−∞
𝑢𝑛 (𝑎 + 𝑖𝑡) 𝑒−𝑖𝑡𝑛𝑥𝑑𝑡. (B.5)

In the last equality, we made the substitution 𝑎 → 𝑎𝑛, 𝑡 → 𝑡𝑛. Note that |𝑢(𝑎 + 𝑖𝑡)| ⩽ 𝑢(𝑎) for all 𝑎, 𝑡 ∈ R. Therefore,
|

|

|

|

|

∫

+∞

−∞
𝑢𝑛 (𝑎 + 𝑖𝑡) 𝑒−𝑖𝑡𝑛𝑥𝑑𝑡

|

|

|

|

|

=
|

|

|

|

|

∫

1

−1
𝑢𝑛 (𝑎 + 𝑖𝑡) 𝑒−𝑖𝑡𝑛𝑥𝑑𝑡 + ∫

|𝑡|⩾1
𝑢𝑛 (𝑎 + 𝑖𝑡) 𝑒−𝑖𝑡𝑛𝑥𝑑𝑡

|

|

|

|

|

⩽ 2𝑢𝑛(𝑎) +
|

|

|

|

|

∫
|𝑡|⩾1

𝑢𝑛 (𝑎 + 𝑖𝑡) 𝑒−𝑖𝑡𝑛𝑥𝑑𝑡
|

|

|

|

|

.

pplying Lemma 6, we obtain inequalities for the last integral:
|

|

|

|

|

∫
|𝑡|⩾1

𝑢𝑛 (𝑎 + 𝑖𝑡) 𝑒−𝑖𝑡𝑛𝑥𝑑𝑡
|

|

|

|

|

=
|

|

|

|

|

∫
|𝑡|⩾1

𝑢𝑛−3 (𝑎 + 𝑖𝑡) 𝑢3(𝑎 + 𝑖𝑡)𝑒−𝑖𝑡𝑛𝑥𝑑𝑡
|

|

|

|

|

⩽ 𝑢𝑛−3(𝑎)∫
|𝑡|⩾1

𝛽3𝑒3𝑎

|𝑡|
3
2

𝑑𝑡 = 4𝛽3𝑒3𝑎𝑢𝑛−3(𝑎) = 4
(

𝛽𝑒𝑎

𝑢(𝑎)

)3
𝑢𝑛(𝑎).

Thus, we have proved the inequality:
|

|

|

|

|

∫

+∞

−∞
𝑢𝑛 (𝑎 + 𝑖𝑡) 𝑒−𝑖𝑡𝑛𝑥𝑑𝑡

|

|

|

|

|

⩽

(

2 + 4
(

𝛽𝑒𝑎

𝑢(𝑎)

)3
)

𝑢𝑛(𝑎).

Substituting this estimate into formula (B.5), we obtain:

𝑝 (𝑥) ⩽ 𝑐 (𝑎)𝑒𝑛𝜆(𝑎,𝑥), (B.6)
𝑊𝑛 𝑛

12 
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where

𝑐𝑛(𝑎) =
𝑛
2𝜋

(

2 + 4
(

𝛽𝑒𝑎

𝑢(𝑎)

)3
)

, 𝜆(𝑎, 𝑥) = −𝑎𝑥 + ln 𝑢(𝑎).

From Lemma 5, it follows that:

𝜆(𝑎, 𝑥) ⩽ −𝑎𝑥 + 𝑎 + ln 𝛿 − 1
2
ln 𝑎 = (1 − 𝑥)𝑎 + ln 𝛿 − 1

2
ln 𝑎 = 𝑓 (𝑎).

Let us find the derivative of 𝑓 :

𝑓 ′(𝑎) = 1 − 𝑥 − 1
2𝑎

.

herefore, the minimum of the function 𝑓 is attained at the point 1
2(1−𝑥) . Taking this point as 𝑎, we have:

𝑎 = 𝑎(𝑥) = 1
2(1 − 𝑥)

.

We obtain the inequalities:

𝜆(𝑎(𝑥), 𝑥) ⩽ 𝑓 (𝑎(𝑥)) = 1
2
+ ln 𝛿 − 1

2
ln 1

2
+ ln

√

1 − 𝑥 = ln

√

1 − 𝑥
𝛾

,

where

𝛾 = 1
√

2𝑒𝛿
= 2

√

𝜋𝑒
.

ubstituting the obtained estimate into (B.6), we have:

𝑝𝑊𝑛
(𝑥) ⩽ 𝑐𝑛(𝑎(𝑥))

(
√

1 − 𝑥
𝛾

)𝑛

.

ext, we estimate 𝑐𝑛(𝑎(𝑥)) based on Lemma 5:

𝑐𝑛(𝑎) ⩽
𝑛
2𝜋

(

2 + 4
(

𝛽𝑒𝑎𝑎
𝑒𝑎 − 1

)3
)

⩽ 𝑛
𝜋

(

1 + 2𝛽3
(

𝑎 + 𝑎
𝑒𝑎 − 1

)3
)

⩽ 𝑛
𝜋
(

1 + 2𝛽3 (𝑎 + 1)3
)

.

Using the fact that 𝑎 = 𝑎(𝑥) = 1
2(1−𝑥) >

1
2 , we obtain:

𝑐𝑛(𝑎) ⩽
𝑛
𝜋
(

(2𝑎)3 + 2𝛽3(𝑎 + 2𝑎)3
)

= 𝑛
𝜋
(23 + 2𝛽3 ⋅ 33)𝑎3 ⩽ 𝑛

𝜋
1 + 2𝛽3(1.5)3

(1 − 𝑥)3
⩽ 𝑛

3𝛽3

(1 − 𝑥)3
⩽ 𝑛

(

2𝛽
1 − 𝑥

)3
. □

Lemma 5. For all 𝑎 > 0, the following inequalities hold:
𝑒𝑎 − 1

𝑎
⩽ 𝑢(𝑎) ⩽ 𝛿 𝑒𝑎

√

𝑎
, (B.7)

here 𝛿 = 1
2

√

𝜋
2 .

roof. We have the equality:

𝑢(𝑎) = 1
𝜋 ∫

𝜋

0
𝑒𝑎 cos 𝑥𝑑𝑥.

irst, we prove the upper bound. Using the inequality sin 𝑥 ⩾ 2
𝜋 𝑥 valid for 𝑥 ∈ [0, 𝜋2 ] and the equality cos 𝑥 = 1 − 2 sin2 𝑥

2 , we obtain
that for all 𝑥 ∈ [0, 𝜋] the following estimate holds:

cos 𝑥 ⩽ 1 − 2
( 2
𝜋
𝑥
2

)2
= 1 − 2

𝜋2
𝑥2.

Therefore, for 𝑢(𝑎) we have the inequalities:

𝑢(𝑎) ⩽ 1
𝜋 ∫

𝜋

0
𝑒𝑎(1−

2
𝜋2

𝑥2)𝑑𝑥 ⩽ 𝑒𝑎

𝜋 ∫

+∞

0
𝑒−𝑎

2
𝜋2

𝑥2𝑑𝑥 = 𝑒𝑎

𝜋
1
2

√

𝜋3

2𝑎
= 𝛿 𝑒𝑎

√

𝑎
.

Next, we check the left inequality in (B.7). Using the inequality cos 𝑥 ⩾ 1 − 2
𝜋 𝑥, we have:

𝑢(𝑎) ⩾ ∫

𝜋
2

0
𝑒𝑎 cos 𝑥𝑑𝑥 ⩾ ∫

𝜋
2

0
𝑒𝑎(1−

2
𝜋 𝑥)𝑑𝑥 = 𝜋

2
𝑒𝑎 − 1

𝑎
⩾ 𝑒𝑎 − 1

𝑎
. □
13 
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Fig. 3. The graphs presented in logarithmic scale illustrate the number of returns, mean, and standard deviation of the repetition time ℎ(𝑡) ≥ 𝑥 for systems of 7,
10, and 13 particles. The graphs show that as the number of particles increases, the system return frequency decreases, while the mean and standard deviation
of the repetition time increase.

Lemma 6. For all 𝑎 > 0 and |𝑡| > 1, the following inequality holds:

|𝑢(𝑎 + 𝑖𝑡)| ⩽ 𝛽 𝑒𝑎
√

|𝑡|
,

where 𝛽 = 95.

Proof. To prove the lemma, we will use the results from the paper [37]. We have the equality:

𝑢(𝑎 + 𝑖𝑡) = 1
𝜋 ∫

𝜋

0
𝑒𝑎 cos 𝑥𝑒𝑖𝑡 cos 𝑥𝑑𝑥 = 𝐼

(

0, 𝜋
4

)

+ 𝐼
(𝜋
4
, 3𝜋
4

)

+ 𝐼
( 3𝜋

4
, 𝜋

)

,

where

𝐼(𝑝, 𝑞) = 1 𝑞
𝑒𝑎 cos 𝑥𝑒𝑖𝑡 cos 𝑥𝑑𝑥.
𝜋 ∫𝑝

14 
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We estimate the integral 𝐼
(

0, 𝜋4
)

using Corollary 2, page 6 of [37] (an analogue of van der Corput’s lemma):

|

|

|

|

𝐼
(

0, 𝜋
4

)

|

|

|

|

⩽ 1
4
𝑒𝑎 min{1, 48

√

|𝑡|( 𝜋4 )
2 1
2𝜋

1
√

2

} ⩽ 46 𝑒𝑎
√

|𝑡|
.

similar estimate holds for the third integral:

𝐼
( 3𝜋

4
, 𝜋

)

⩽ 46 𝑒𝑎
√

|𝑡|
.

To estimate the second integral, we perform integration by parts:

𝐼
(𝜋
4
, 3𝜋
4

)

= 1
𝜋
𝑒𝑎 cos 𝑥 𝑒𝑖𝑡 cos 𝑥

−𝑖𝑡 sin 𝑥
|

|

|

|

3𝜋
4

𝜋
4

+ 1
𝑖𝑡𝜋 ∫

3𝜋
4

𝜋
4

𝑒𝑖𝑡 cos 𝑥 𝑑
𝑑𝑥

(

𝑒𝑎 cos 𝑥

sin 𝑥

)

𝑑𝑥.

Thus, we obtain the inequality:

|

|

|

|

𝐼
(𝜋
4
, 3𝜋
4

)

|

|

|

|

⩽ 𝑒𝑎

|𝑡|

⎛

⎜

⎜

⎝

2
𝜋 1

√

2

+ 1
2
(1 + 1

1
2

)
⎞

⎟

⎟

⎠

⩽ 3 𝑒
𝑎

|𝑡|
⩽ 3 𝑒𝑎

√

|𝑡|
.

By summing up the inequalities for all three integrals, we obtain the statement of the lemma. □
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