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Abstract

An impact oscillator with a drift, which is important in many applications, is considered. The model accounts for the

visco-elastic impacts and is capable to mimic the dynamics of a bounded progressive motion. To simplify the dynamic

analysis a simple transformation decoupling the original co-ordinates is proposed. As the result the bounded oscilla-

tions can be studied separately from the drift as the drift does not influence the dynamics of the bounded system. On the

contrary the drift depends on the bounded dynamics and can be reconstructed once the bounded oscillatory motion is

determined. The accuracy of the analytical reconstruction allows to calculate even strange chaotic attractors. Evolu-

tions of co-existing periodic and strange attractors were studied.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Impacting oscillators have many applications (e.g. [1–5]) and their fundamental dynamic behaviour has been studied

vigorously in the past (e.g. [6–12]) showing great complexity and sensitivity to the system parameters and the initial

conditions. In most cases it is assumed that the impacting system or its elements oscillate around their equilibrium

positions. If one poses a fundamentally important question ‘What will happen to the complex dynamics of an impact

oscillator if a simultaneous drift occurs?�, the answer cannot be easily found in the published literature. Only recently

this question has started to be addressed [13–17]. The simplest physical model with drift comprised of a mass loaded by

a force having static and harmonic components, and a dry friction slider was studied in [13,14]. Despite of its simple

structure, a very complex dynamics was revealed. The main result from that work was a finding that the best pro-

gression occurs when the system responds periodically. A more complicated model including the visco-elastic properties

of the contact between the impacting mass and the frictional slider has been formulated and its equations of motion

have been developed in [15]. In [16] this model was used to mimic dynamics of vibro-impact ground moling system, and

it was shown that it reflects well both the dynamics of the vibro-impact system and the soil resistance characteristics. It

was also found that the maximum progression is achieved when the responses switch from periodic to chaotic. To

calculate periodic responses and to determine conditions when the periodicity is lost, a special semi-analytical method

was developed in [17]. The method constructs a periodic response assuming that each period is comprised of a sequence

of distinct phases for which analytical solutions are known. Based on this assumption a system of four piecewise linear

first order differential equations is transformed to a system of nonlinear algebraic equations. It should be noted that in
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all these studies the system co-ordinates are drifting away from the initial position and it makes the application of

standard tools of nonlinear dynamics difficult. To overcome this difficulty a simple co-ordinate transformation is

proposed in this paper, and analytical drift reconstruction for visco-elastic impact oscillators is developed.

The paper is organized as follows. In the next section, the description of the considered impact oscillator and

equations of motion are given. These equations of motion are linear for each phase and their solutions are unbounded

as the system drifts from the initial position. A simple co-ordinate transformation which allows to separate the bounded

oscillatory motion from the drift is presented in the next section. In this section the solutions of the new equations of

motion for each phase are also given. In Section 4 it is shown how to reconstruct a progressive motion of the system if

the dynamics of the bounded system is known and this is illustrated by three examples. The accuracy of the proposed

analytical method allows to reconstruct the chaotic strange attractor, which together with some nonlinear dynamics

studies are discussed in Section 5.

2. Impact oscillator with drift

We consider a simple two degrees-of-freedom oscillator in nondimensional form, which is shown in Fig. 1. A mass m
is driven by an external force f containing static b and dynamic a cosðxs þ uÞ components. The weightless slider has a

linear visco-elastic pair of stiffness k and damping ratio 2n. As has been reported in [15] the slider drifts in stick-slip

phases where the relative oscillations between the mass and the slider are bounded ranging from periodic to chaotic

motion. Similarly to the stick-slip phenomena reported in [18,19], the progressive motion of the mass occurs when the

force acting on the slider exceeds the threshold of the dry friction force d. x, z, v represent the absolute displacements of

the mass, slider top and slider bottom, respectively. It is assumed that the model operates in a horizontal plane, or the

gravitational force is compensated. At the initial moment s ¼ 0 there is a distance between the mass and the slider top

called gap, g. The difference ðzþ gÞ � x allows to monitor this distance in time. For the simplicity of the further analysis

the dimensionless friction threshold force, d is set to 1 and for all numerical examples u ¼ p=2, g ¼ 0:02.
The considered system operates at the time in one of the following modes: no contact, contact without progression,

and contact with progression. A detailed consideration of these modes and dimensional form of the equations of motion

can be found in [15]. For the purpose of clarity a brief summary outlining how all particular phases of the dynamic

responses were defined is given below.

No contact. If the distance between the mass and the slider top is greater than zero, zþ g � x > 0, then the mass and

the slider top move separately. The motion of the mass is determined from:
x0 ¼ y; y0 ¼ a cosðxs þ uÞ þ b; ð1Þ
where 0 denotes d=ds. Equations of motion for the top and the bottom of the slider are
z0 ¼ � 1

2n
ðz� vÞ; ð2Þ

v0 ¼ 0: ð3Þ
Fig. 1. Physical model of impact system with drift.
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Contact without progression. This mode occurs when the distance between the mass and the slider top is equal to

zero, i.e. zþ g � x ¼ 0, and the force acting on the mass from the slider is greater than zero but smaller than the

threshold of the dry friction force. This can be expressed as
0 < 2nz0 þ ðz� vÞ < 1: ð4Þ
The mass and the slider top move together without progression, and the second equation of (1) gains additional elastic

and viscous terms:
x0 ¼ y; y0 ¼ �2nz0 � ðz� vÞ þ a cosðxs þ uÞ þ b: ð5Þ
The velocity of the slider top is equal to the velocity of the mass, and the displacement of the slider top is in phase

with the mass displacement but differs by gap, g
z0 ¼ x0; x ¼ zþ g: ð6Þ
When there is no progression, the bottom of the slider remains stationary, hence its velocity is equal to zero, v0 ¼ 0.

Contact with progression. When the distance between the mass and the slider top is equal to zero, zþ g � x ¼ 0, and

the force acting on the mass is greater than the threshold of dry friction force which can be described as
2nz0 þ ðz� vÞP 1; ð7Þ
the mass and the top and the bottom of the slider move together, and progression takes place. Equations of motion for

the mass are
x0 ¼ y; y0 ¼ a cosðxs þ uÞ þ b� 1: ð8Þ
The displacement and the velocity of the slider top are as before (see Eq. (6)). The velocity of the slider bottom can

be calculated from the expression:
v0 ¼ z0 þ 1

2n
ðz� v� 1Þ: ð9Þ
3. Separation of bounded oscillatory motion from drift

The basic aim of the investigated system is to overcome the frictional force and move downwards. This means that

the displacements of the mass and the slider are unbounded. In addition, the dynamics of this system is very complex

ranging from different types of periodic motion to chaos [15]. These facts rise some difficulties in analysing the system

dynamics in a standard way. In this paper we give a simple co-ordinates transformation, which resolves the problem of

the motion unboundiness.

We introduce a new system of co-ordinates ðp; q; vÞ instead of ðx; z; vÞ:

p ¼ x� v; q ¼ z� v: ð10Þ
The main idea behind this transformation is to separate the oscillatory motion of the system from the drift. In fact in

the new co-ordinates system p and q are displacements of the mass and the slider top relative to the current position of

the slider bottom v. It will be demonstrated here that the introduction of the new co-ordinates allows to study a

progressive motion shown in Fig. 2(a) as independent bounded oscillations depicted in Fig. 2(b) and dependent on them

drift shown in Fig. 2(c).

The equations of motion for each phase can be rewritten as follow:

No contact
p0 ¼ y; y0 ¼ a cosðxs þ uÞ þ b; for p < qþ g;

q0 ¼ � 1

2n
q; v0 ¼ 0:

ð11Þ



Fig. 2. Time histories of (a) drifting displacement of the mass (solid line) and the slider bottom (dash line); (b) bounded displacement

of the mass p ¼ x� v; and (c) progressive displacement of the slider bottom v.
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Contact without progression
p0 ¼ y;

y0 ¼ �2ny � qþ a cosðxs þ uÞ þ b; for p ¼ qþ g and 0 < 2ny þ q < 1;

q0 ¼ y; v0 ¼ 0:

ð12Þ
Contact with progression
p0 ¼ � 1

2n
ðq� 1Þ;

y0 ¼ a cosðxs þ uÞ þ b� 1; for p ¼ qþ g and 2ny þ qP 1;

q0 ¼ � 1

2n
ðq� 1Þ; v0 ¼ y þ 1

2n
ðq� 1Þ:

ð13Þ
As can be clearly seen from Eqs. (11)–(13), the first three equations of each set describing the mass and slider top

motions do not depend on the displacement of the slider bottom, v. This means that there is no influence of the

progression v on the bounded system dynamics. On contrary the motion of the slider bottom depends on the mass

velocity and the displacement of the slider top (see the last equation of (13)), hence the progression (drift) can be

determined once the oscillatory mass and the slider top motions are known.

The equations of motion are linear for each phase, therefore the global solution can be constructed by joining the

local solutions for each phase at the points of discontinuities. The set of initial values ðs0; p0; y0; q0Þ defines in which

phase the system will operate. If p0 < q0 þ g, it will be no contact phase. For p0 ¼ q0 þ g, it will be contact without

progression phase if 0 < 2ny0 þ q0 < 1 or contact with progression phase if 2ny0 þ q0 P 1. The solutions for each phase

are given below.

For no contact phase:
pðsÞ ¼ p0 þ y0ðs � s0Þ þ
b
2
ðs � s0Þ2

� a
x2

½cosðxs þ uÞ � cosðxs0 þ uÞ þ xðs � s0Þ sinðxs0 þ uÞ�;

yðsÞ ¼ y0 þ bðs � s0Þ þ
a
x
½sinðxs þ uÞ � sinðxs0 þ uÞ�;

qðsÞ ¼ q0 exp
�
� s � s0

2n

�
:

ð14Þ
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For contact without progression phase:
pðsÞ ¼ bþ g þ expð�nðs � s0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ðs

�
� s0Þ þ b

�

þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þ2 þ 4n2x2

q sinðxs þ u þ aÞ;

yðsÞ ¼ expð�nðs � s0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ðs

�
� s0Þ þ d

�

þ axffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þ2 þ 4n2x2

q cosðxs þ u þ aÞ;

qðsÞ ¼ bþ expð�nðs � s0ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2

1 þ C2
2

q
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ðs

�
� s0Þ þ b

�

þ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þ2 þ 4n2x2

q sinðxs þ u þ aÞ;

ð15Þ
where
C1 ¼ p0 � b� g � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þ2 þ 4n2x2

q sinðxs0 þ u þ aÞ; ð16Þ

C2 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� n2
p y0

8><
>: þ nðp0 � b� gÞ � a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ x2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x2Þ2 þ 4n2x2

q sinðxs0 þ u þ a þ cÞ

9>=
>;; ð17Þ

a ¼ arctan
1� x2

2nx

� �
;

b ¼ arctan
C1

C2

� �
;

c ¼ arctan
x
n

� �
;

d ¼ arctan
�nC1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
C2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
C1 � nC2

 !
:

For contact with progression phase:
pðsÞ ¼ g þ 1þ ðp0 � g � 1Þ exp
�
� s � s0

2n

�
;

yðsÞ ¼ y0 þ ðb� 1Þðs � s0Þ þ
a
x
½sinðxs þ uÞ � sinðxs0 þ uÞ�;

qðsÞ ¼ ðq0 � 1Þ exp
�
� s � s0

2n

�
þ 1:

ð18Þ
When the conditions corresponding to the current phase fail, the next phase begins, and the final displacements and

velocity for the preceding phase define the initial conditions for the next one. The details of the semi-analytical method

allowing to calculate the responses of the system using this idea are outlined in [17].
4. Reconstruction of progressive motion

As was mentioned before, the progression vðsÞ can be calculated separately if the dynamics of the bounded system

ðp; y; qÞ is known (i.e. the sequence of the phases and the initial conditions for them). By solving the last equations of

Eqs. (11)–(13) we have learnt that during the no contact and contact without progression phases the progression does not

change its value and is equal to



Fig. 3. Phase plane of a period two motion constructed for a ¼ 0:3, b ¼ 0:1, n ¼ 0:01, x ¼ 0:1. No contact phase is marked by dash

and dotted lines, contact without progression phase––by solid lines and contact with progression phase––by dotted lines.

Table 1

Sequence of phases and corresponding initial conditions

Point Phase s0 p0 y0 q0

1 Contact without progression 1142.28514 0.02 4.58005 0.0

2 Contact with progression 1142.48663 0.93131 4.43472 0.91131

3 Contact without progression 1146.21267 1.02 0.0 1.0

4 No contact 1147.60385 0.04328 )1.16404 0.02328

5 Contact without progression 1188.10028 0.02 5.68688 0.0

6 Contact with progression 1188.25661 0.90719 5.64034 0.88719

7 Contact without progression 1194.99997 1.02 0.0 1.0

8 No contact 1196.61048 0.03901 )0.95049 0.01901

1 Contact without progression 1267.97881 0.02 4.57225 0.0

Fig. 4. Reconstructed progression using Table 1 and Eqs. (19) and (20); a ¼ 0:3, b ¼ 0:1, n ¼ 0:01, x ¼ 0:1.
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vðsÞ ¼ v0: ð19Þ
During the contact with progression phase it can be calculated as
vðsÞ ¼ v0 þ p0 � g � 1þ ðp0 � g � 1Þ exp
�
� s � s0

2n

�
þ y0ðs � s0Þ þ

b� 1

2
ðs � s0Þ2 �

a
x2

½cosðxs þ uÞ

� cosðxs0 þ uÞ þ xðs � s0Þ sinðxs0 þ uÞ�: ð20Þ
To make the procedure of reconstruction of progressive motion clearer let us consider a numerical example. In Fig. 3

a phase plane of a period two motion is shown. Dash and dotted, solid and dotted lines denote no contact, contact

without progression and contact with progression phases respectively. This phase portrait was constructed analytically

using the data from Table 1, where a typical sequence of the different phases and corresponding to them initial con-

ditions are listed. The values in Table 1 were calculated using the semi-analytical method developed for this system and

outlined in [17]. The described portion of a complete table of initial conditions starts at the moment s0 ¼ 1142:28514,
Fig. 5. Chaotic motion on the phase plane for a ¼ 0:3, b ¼ 0:1, n ¼ 0:01, x ¼ 1:4.

. Poincar�ee section for a ¼ 0:3, b ¼ 0:1, n ¼ 0:01, x ¼ 1:4; (a) calculated semi-analytically; (b) obtained by direct numerical

tion.
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when the contact without progression phase begins, and ends at s0 ¼ 1267:97881 after one period T ¼ 2Text ¼ 2ð2p=xÞ.
In this case one period of motion is comprised of eight phases commencing at points 1–8 depicted in the zoom-up of the

stick-slip motion of Fig. 3. Having this data it is possible to reconstruct the progression of the system, which is shown in

Fig. 4.
Fig. 7. Evolution of basins of attraction for a ¼ 0:3, b ¼ 0:1, n ¼ 0:1; (a) x ¼ 1:4, (b) x ¼ 1:45, (c) x ¼ 1:56, (d) x ¼ 1:58, (e) x ¼ 1:60

and (f) x ¼ 1:70.
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It can be clearly seen from Fig. 3 that at p < 0:02 system operates in no contact phase. The reason for this is that the

condition for this phase is p < g þ q and q is always positive (the top of the slider is not able to move in opposite way to

the progression). For contact with progression phase the velocity of the mass y is always positive and the displacement of

the mass p is very close to 1.02 as expð�ðs � s0Þ=2nÞ rapidly tends to 0.

Using the same procedure any dynamic response can be calculated. In Fig. 5 a phase portrait of chaotic motion

(a ¼ 0:3, b ¼ 0:1, n ¼ 0:01, x ¼ 1:4) for 40 periods of external excitation is shown. The parts of the curve which are

located on the left from left dash line, account for the no contact phase, while those between two dash lines for the

contact without progression phase, and finally the ones which coincide with right dash line, denote the contact with

progression phase.

The presented method of constructing tables of various phases of motion allows to calculate even chaotic responses.

Since motion within a particular phase is described analytically with the initial conditions determined from a set of

nonlinear algebraic equations [17], the accuracy of this method is high. For example, Poincar�ee sections shown in Fig. 6

give a comparison between strange attractors calculated by our semi-analytical method and by a direct numerical

integration using Dynamics package [20]. More insight in the investigated system dynamics is given below.
5. Nonlinear dynamics analysis

The proposed co-ordinate transformation allows to study dynamics of the systems with drift in the same way as

systems with bounded oscillations. Once the drift is subtracted from the oscillatory motion the cell-to-cell mapping

method [21] can be deployed to find co-existing attractors and their basins. Evolution of the strange attractor and co-

existing periodic orbits under increasing frequency x is shown in Fig. 7 for a ¼ 0:3, b ¼ 0:1, n ¼ 0:1. The presented

basins of attractions have been constructed using Dynamics package [20] adopting the following colour coding. The

strange chaotic attractor and its basin are marked in orange and yellow respectively. The period four motion and its

basin are coloured in black and purple. Red colour marks the attractor for blue basin, and green colour marks the

attractor for pink basin. All presented cases feature fractal boundaries of attractions. For larger x there is noticeable

increase in fractality of the basins or erosion of basin of attraction (see [22] for example).

As can be seen from Fig. 7 co-existence of two (Fig. 7a and d) and three (Fig. 7b, c, e and f) attractors were found for

this set of parameters. These attractors can be clearly seen in Figs. 8 and 9, where they are separated. Phase planes are

drawn to show the shape of periodic orbits and Poincar�ee maps are constructed for chaotic strange attractors. At

x ¼ 1:4 period four orbit (Fig. 8a) and strange attractor (Fig. 8b) were determined. As basins of attractions of these

attractors are moving significantly under changing frequency, appropriate corrections have to be made to follow the

structural changes of these attractors (bifurcations). The difficulty of following periodic orbit is demonstrated in Fig. 10,

where two bifurcation diagrams are used to monitor period four attractor shown in Figs. 7a–c and 8a. The first of them

(Fig. 10a) is constructed taking into account the changes of the basin of attraction by appropriately choosing initial

conditions obtaining eventually a real picture of the attractor evolution. The second bifurcation diagram (Fig. 10b) is

calculated without correction of initial conditions resulting in appearance of false bifurcations. This is due to inap-

propriate initial conditions to follow period four. For example, there is no bifurcation of period four into period 12 at

x 	 1:445. As can be clearly seen from Fig. 7b these two attractors co-exist for x ¼ 1:45, and their basins are strongly

intertangled. With the frequency being increased period twelve attractor disappears, a new chaotic attractor (coloured
Fig. 8. Coexisting attractors for a ¼ 0:3, b ¼ 0:1, n ¼ 0:1, x ¼ 1:4 (see Fig. 7a): (a) phase plane for period four attractor and (b)

Poincar�ee section for strange attractor.



Fig. 9. Coexisting attractors for a ¼ 0:3, b ¼ 0:1, n ¼ 0:1, x ¼ 1:6 (see Fig. 7e): phase planes for (a) period five and (b) period six

attractors and (c) Poincar�ee section for strange attractor.

Fig. 10. Bifurcation diagram p ¼ f ðxÞ for a ¼ 0:3, b ¼ 0:1, n ¼ 0:1 for period four attractor (a) with initial conditions correction and

(b) without it.

160 E. Pavlovskaia, M. Wiercigroch / Chaos, Solitons and Fractals 19 (2004) 151–161
in red) emerges, and at x ¼ 1:56 the basins of this new attractor and the period four are easily distinguished as can be

seem from Fig. 7c. At x 	 1:571 the above mentioned chaotic motion bifurcates through cascade of subcritical period-

doubling bifurcations into period six. At x 	 1:5757 the period four attractor disappears and its basin of attraction

merges with the basin of the strange attractor. Thus the only two attractors co-exist at x ¼ 1:58 as shown in Fig. 7d.

Then a new attractor emerges, and at x ¼ 1:6 we have co-existence of two periodic (period five and period six) and

strange attractors (Fig. 7e). These coexisting attractors are shown in Fig. 9 as phase planes and Poincar�ee map. Finally
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the period six attractor undergoes a subcritical bifurcation into a period three at x 	 1:6395, and at x ¼ 1:7 we have co-
existence of the period three, a new period nine and the strange attractors as shown in Fig. 7f.
6. Conclusions

In this paper, an impact oscillator with a drift is considered. The dynamics of this system is very complex ranging

from different types of periodic motion to chaos. The solutions of the equations of motion constructed for each phase

allow to calculate dynamic responses exactly, i.e. without necessity of numerical integration. The global solution is

obtained by joining together the local solutions for different phases in the points of discontinuities, which are roots of

the resulting nonlinear algebraic equations. To simplify the dynamic analysis of this system even further, a co-ordinate

transformation has been proposed. The main idea behind this transformation is very simple, i.e. to monitor the dis-

placements of the system elements relatively to the progression of the system (see Eqs. (11)–(13)). As the result the

bounded system oscillations can be studied separately from the drift (progression) as the drift does not influence the

dynamics of the bounded system. On the contrary the drift of the system depends on the bounded dynamics and can be

determined once the bounded oscillatory motion is known. The proposed co-ordinate transformation allows to study

system with drift as a bounded dynamical system, therefore the standard tools of nonlinear dynamics analysis can be

used. The evolution of the basins of attractions was investigated showing co-existence of three different attractors

having fractal boundaries.
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