

# Министерство науки и высшего образования Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Физико — механический институт Высшая школа теоретической механики и математической физики



#### КОНЕЧНО-ЭЛЕМЕНТНОЕ МОДЕЛИРОВАНИЕ ВОЛНОВОГО РЕДУКТОРА

Выполнила:

студентка гр. 5040103/20301 И.Г. Прохоренкова

Руководитель:

Доцент ВШТМиМФ, к.ф-м.н. О.С. Лобода

Консультанты:

Руководитель НИЦ, ЦНИИ РТК А.Ю. Тамм Ведущий инженер, АО "ЦКБ МТ "Рубин" А.И. Орлов

### Введение

Волновой редуктор – ключевой компонент трансмиссии, применяется во многих областях :

- робототехника,
- машиностроение,
- авиакосмическая отрасль,
- панели солнечных батарей космических аппаратов,
- системы ориентации наземных и орбитальных телескопов.

**Достоинства:** возможность реализации большого передаточного отношения, при малом количестве деталей (от 80 до 360), высокий кпд (0.8-0.9), способность передавать высокие нагрузки, низкий шум, плавность при работе, возможность точного позиционирования.

**Недостатки:** малая долговечность гибкого колеса относительно передач с жесткими колесами, сравнительно малая жесткость на начальном участке нагружения, при высоких нагрузках возможность проскакивание зубьев при применении роликовых генераторов.

Введение: исходные данные

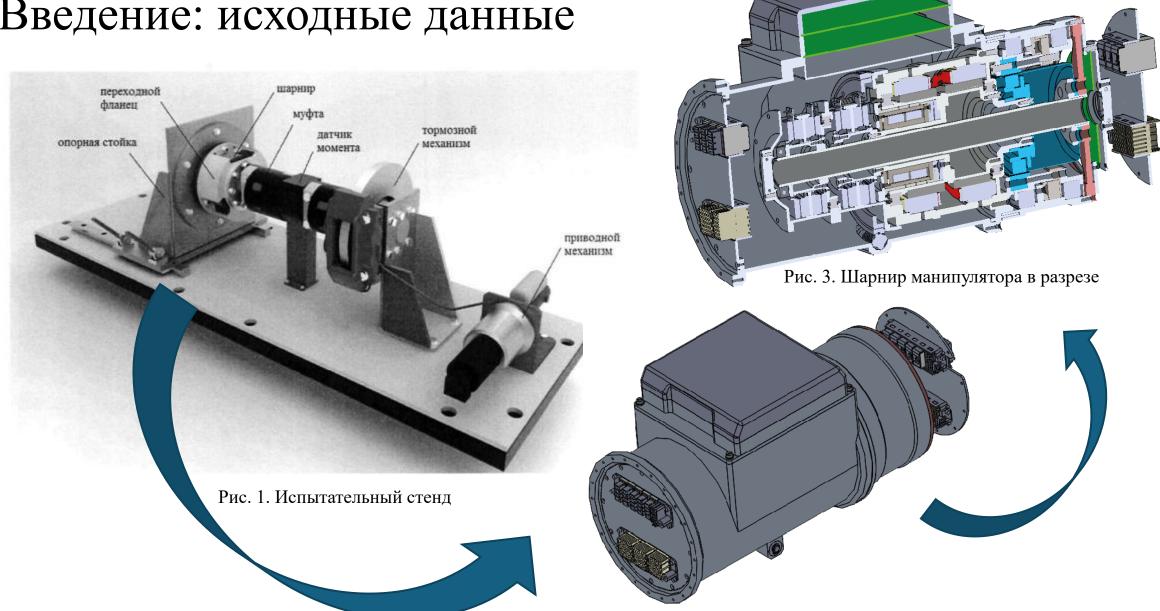



Рис. 2. Шарнир манипулятора

## Введение: строение волнового редуктора

<u>Генератор волн</u> – элемент, создающий волну деформации в гибком элементе волновой передачи.

<u>Гибкий элемент</u> – элемент в виде цилиндрической трубы или оболочки, имеет зубчатый венец на наружной поверхности.

<u>Жесткое колесо</u> – кольцевой элемент, имеющий на внутренней поверхности зубчатый венец.

Зубья жесткого колеса или гибкого элемента входят в зацепление под действием генератора волн. Волновой редуктор обеспечивает преобразование и передачу движения за счет циклического возбуждения волн деформации в гибком элементе.

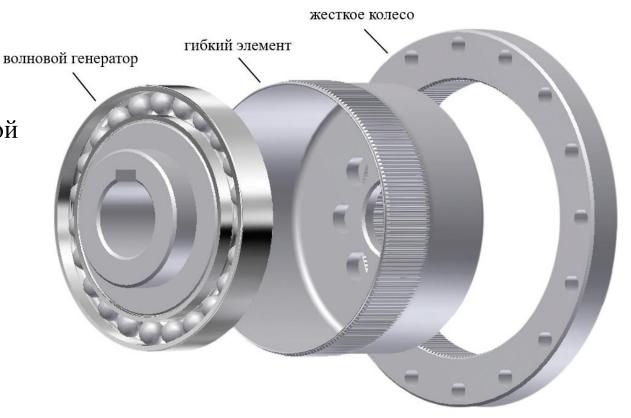



Рис. 4. Волновой редуктор

# Проблематика обнаружения неисправности редуктора

- 1. Скрытые неисправности;
- 2. Сложная структура механизмов, в которые входит волновой редуктор;
- 3. Признаки неисправностей редуктора сложно отличимы от других проблем в механизме;
- 4. Сложность в диагностике и требования большого опыта и знаний для выявления неисправности.

Возможность заранее предугадать проблемы и «опасные точки» всей конструкции является важной задачей, позволяющей своевременно выявить и устранить проблемы, предотвращая серьёзные аварии и снижая затраты на ремонт и обслуживание оборудования

#### Постановка задачи

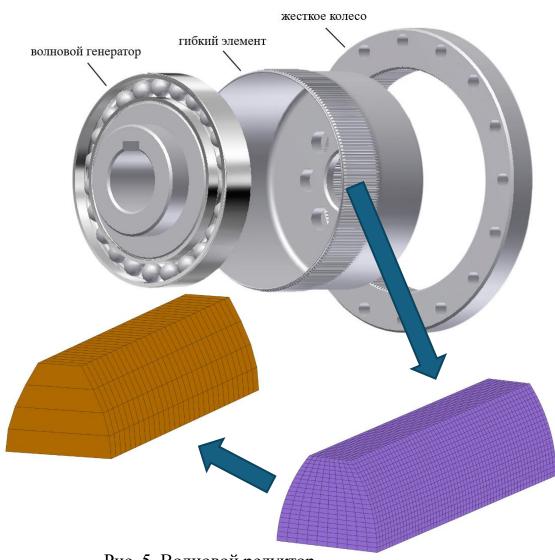



Рис. 5. Волновой редуктор

#### Цель исследования:

Разработка и сравнение различных методик моделирования зубьев, цилиндра и гибкого колеса волнового редуктора для возможности проведения комплексного виртуального испытания с использованием полноразмерной модели волнового редуктора

#### Задачи исследования:

- 1. Исследование методик моделирования зубьев;
- 2. Валидация модели гибкого колеса;
- 3. Разработка методики;
- 4. Моделирование гибкого колеса в составе редуктора.

#### Ожидаемые результаты:

Методика, обеспечивающая сокращение вычислительного времени полного виртуального испытания волнового редуктора, с условием обеспечения необходимых требований точности

## Актуальность и новизна

Работы, связанные с исследованием волнового редуктора с применением <u>МКЭ</u>:

2D моделирование зубчатого зацепления - определение НДС спроектированной геометрии зуба

3D моделирование отдельных деталей редуктора с использованием: грубой гексаэдральной или мелкой тетраэдальной КЭ разбиений

Рассматривают статическое нагружение

#### Аналитическое решение:

- Не описывает полностью физику процесса
- Является более грубым решением в сравнении с КЭМ
- Не применима при рассмотрении всего механизма (шарнира манипулятора)



Моделирование динамического поведения полноразмерной модели редуктора Колоссальные временные затраты при моделировании МКЭ с применением твердотельных элементов для деталей столь малых размеров. Размеры деталей в совокупности с возможным количеством зубьев волновой передачи ограничивают применение классических методов моделирования.

#### 1. Исследование методик моделирования зубьев

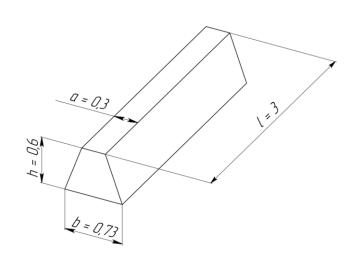



Рис. 6. Общий вид упрощенной геометрии зуба.

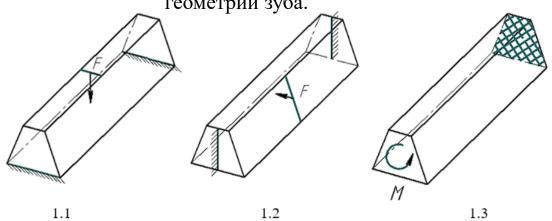



Рис. 7. Разработанные модели с приложенными граничными условиями в твердотельной постановке

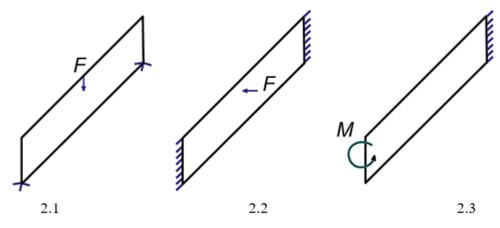



Рис. 8. Разработанные модели с приложенными граничными условиями в оболочечной постановке

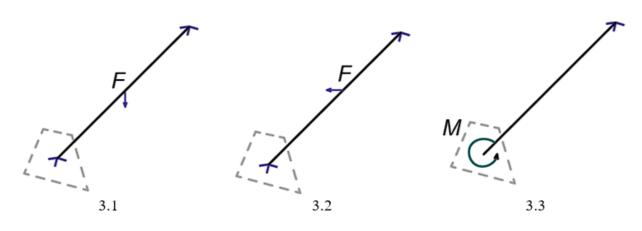



Рис. 9. Разработанные модели с приложенными граничными условиями в балочной постановке

## 1.2 Валидация результатов КЭ моделирования для зубьев: первый тип нагружения

Изгибные напряжения в зависимости от длины зуба рассчитываются по формуле

$$\sigma = -\frac{M_x}{J_x}y$$

 $M_{\chi}$  — изгибающий момент;  $J_{\chi}$  — момент инерции; y — длина зуба.

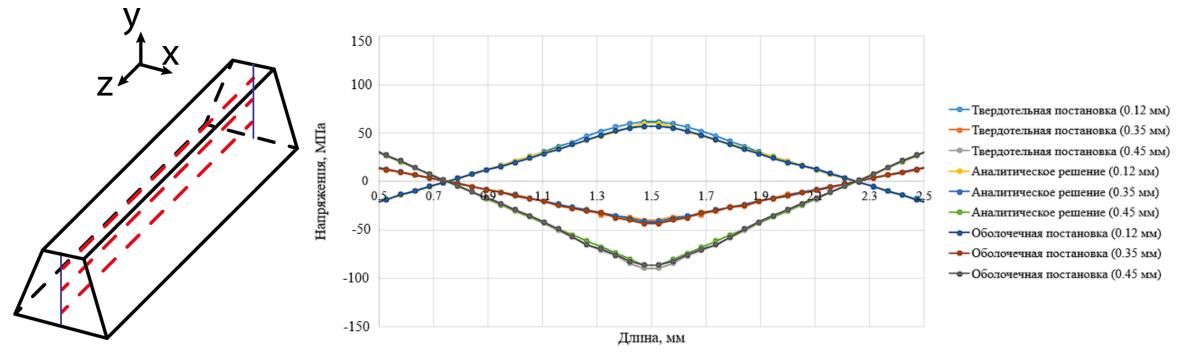



Рис. 10. Пути для отображения значений напряжений для первой постановки

Рис. 11. Зависимость напряжений от высоты зуба для случая нагружения п.1

1. Валидация результатов КЭ моделирования для зубьев:

тип нагружения п.2 и п.3

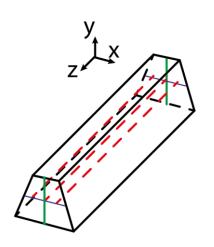



Рис. 12. Пути для отображения значений напряжений для второй постановки

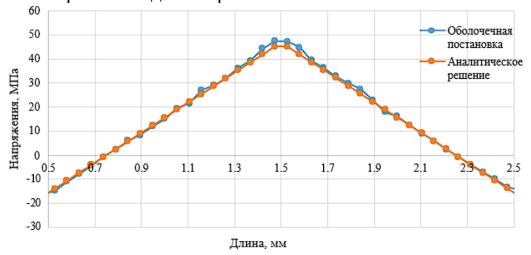



Рис. 14. Зависимость напряжений от высоты зуба для n.2 между оболочечным и аналитическим решениями

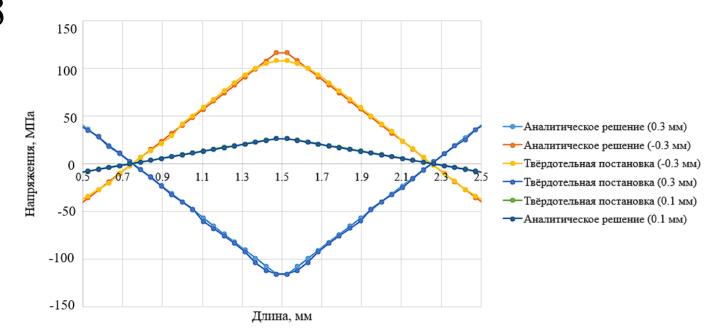



Рис. 13. Зависимость напряжений от высоты зуба для нагружения п.2 между твердотельной и аналитическим решениями

Для задачи n.3 Напряжения при кручении рассчитываются по  $\tau_{max} = \frac{M_{\rm kp}}{\alpha a b^2}$ , формуле:  $\phi = \frac{M_{\rm kp}l}{G\beta a b^3}$ 

 $M_{\kappa p}$  – крутящий момент в сечении; a, b – длинная и короткая стороны эквивалентного прямоугольника; коэффициент  $\alpha$  и  $\beta$  – выбираются из справочных таблиц.

## 1.2 Валидация результатов КЭ моделирования для зубьев: сравнение результатов

| Показатель                                                  | Твердотельная постановка                                      | Оболочечная постановка                                                                                                                                               | Балочная постановка                                                                 |
|-------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Расчётное время n.1, сек                                    | 119                                                           | 16                                                                                                                                                                   | 4                                                                                   |
| Расчётное время п.2, сек                                    | 98                                                            | 7                                                                                                                                                                    | 2                                                                                   |
| Расчётное время п.3, сек                                    | 115                                                           | 4                                                                                                                                                                    | 2.5                                                                                 |
| Ошибка решения в<br>сравнении с аналитикой<br>(не более), % | 7.5                                                           | 8                                                                                                                                                                    |                                                                                     |
| Ограничения вывода<br>результатов                           | Возможен вывод всех результатов, во всех плоскостях измерений | Возможно полное представление НДС в одной плоскости. При настройке количества точек интегрирования по толщине, возможен вывод значений в 5 точках по толщине и более | Ограничение на вывод<br>результатов, возможность<br>просмотра только в одной<br>оси |

## 2. Валидация модели гибкого колеса

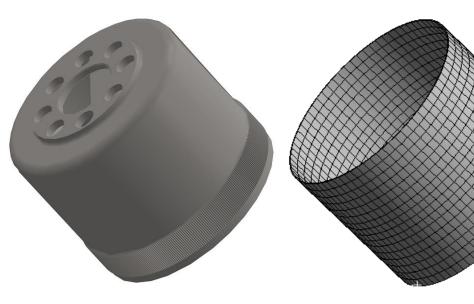



Рис. 15. Гибкое колесо в общем виде.

Рис. 16. Модель гибкого колеса для расчётов.

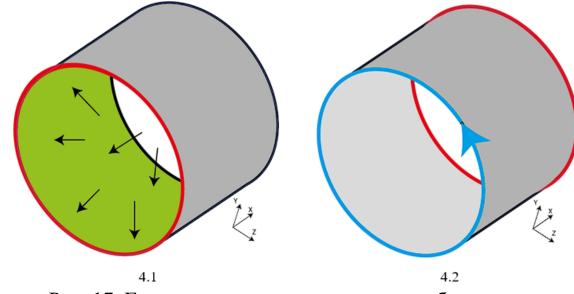



Рис. 17. Граничные условия для модели гибкого колеса для расчётов: 4.1 – расширение, 4.2 – кручение..

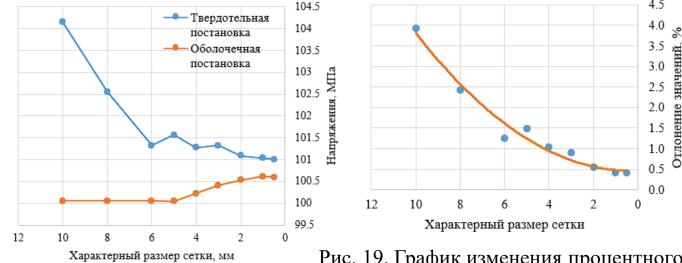



Рис. 18. График сходимости напряжений.

Рис. 19. График изменения процентного отклонения между твердотельной и оболочечной постановками для напряжений

#### 2.1 Валидация модели гибкого колеса

Кольцевые напряжения: 
$$\sigma_{\theta} = \frac{pD_i}{2t}$$

p — давление,  $D_i$  — внутренний диаметр, t — толщина цилиндра

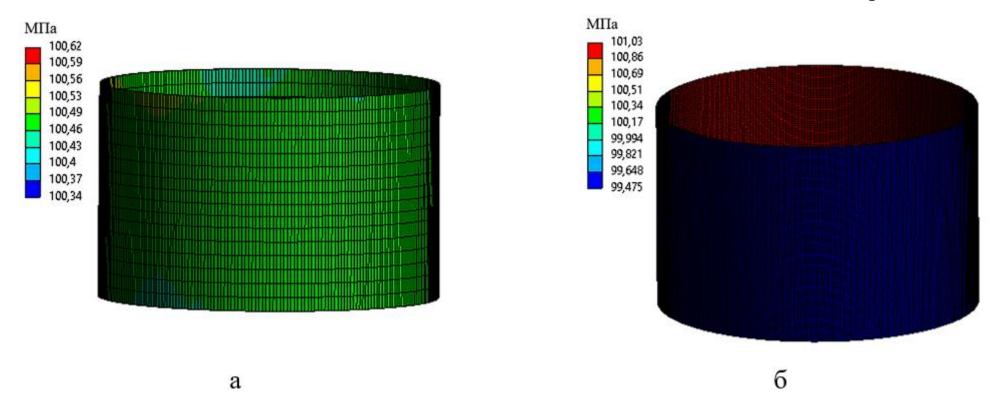



Рис. 20. Кольцевые напряжения при КЭ расчёте в случае расширения: а – оболочечная постановка, б – твердотельная постановка

#### 2.2 Валидация модели гибкого колеса

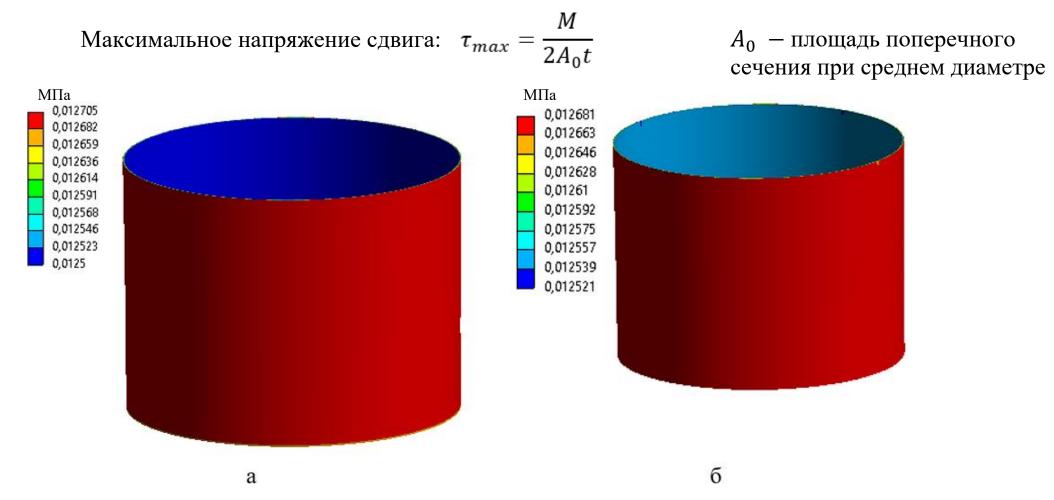



Рис. 21. Максимальное сдвиговое напряжения при КЭ расчёте в случае кручения: а – оболочечная постановка, б – твердотельная постановка

#### 2.2 Валидация модели гибкого колеса

| Показатель                           | Твердотельная | Оболочечная постановка |  |
|--------------------------------------|---------------|------------------------|--|
|                                      | постановка    |                        |  |
| Расчётное время, расширение, сек     | 8.5           | 0.7                    |  |
| Расчётное время, кручение, сек       | 2.6           | 0.6                    |  |
| Ошибка решения в сравнении с         | 1.1           | 0.3                    |  |
| аналитикой, расширение (не более), % |               |                        |  |
| Ошибка решения в сравнении с         | 0.75          |                        |  |
| аналитикой, кручение (не более), %   |               |                        |  |

Таблица 2. Сравнительная таблица для цилиндра гибкого колеса

## Разработанная методика

- ✓ Использование оболочечных элементов в 3D постановке для моделирования зубчатого зацепления и цилиндрической части гибкого элемента
- ✓ Сокращение времени выполнения полноразмерного расчета
- ✓ Точность решения аналогична твердотельной постановке
- ✓ Подходит для объёмных и мелких сборок

#### 3. Моделирование гибкого колеса в составе редуктора



Рис. 22. Гибкое и жесткое колеса в общем виде



Рис. 23. Гибкое и жесткое колеса, вид сверху

#### Три постановки:

- 1. цилиндр гибкого колеса и зубья — твердотельные элементы;
- 2. цилиндр гибкого колеса и зубья оболочечные элементы;
- 3. цилиндр гибкого колеса— оболочечный элемент, зубья балочные элементы.

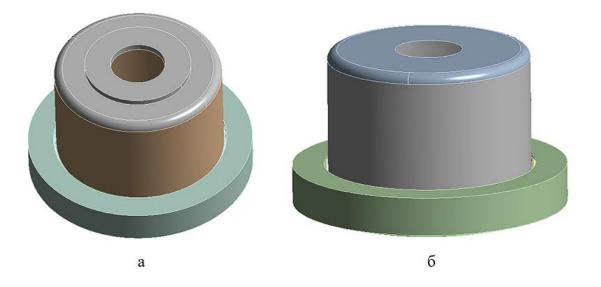



Рис. 24. Общий вид геометрии: а – постановка 1; б - постановки 2 и 3.

3. Моделирование гибкого колеса в составе

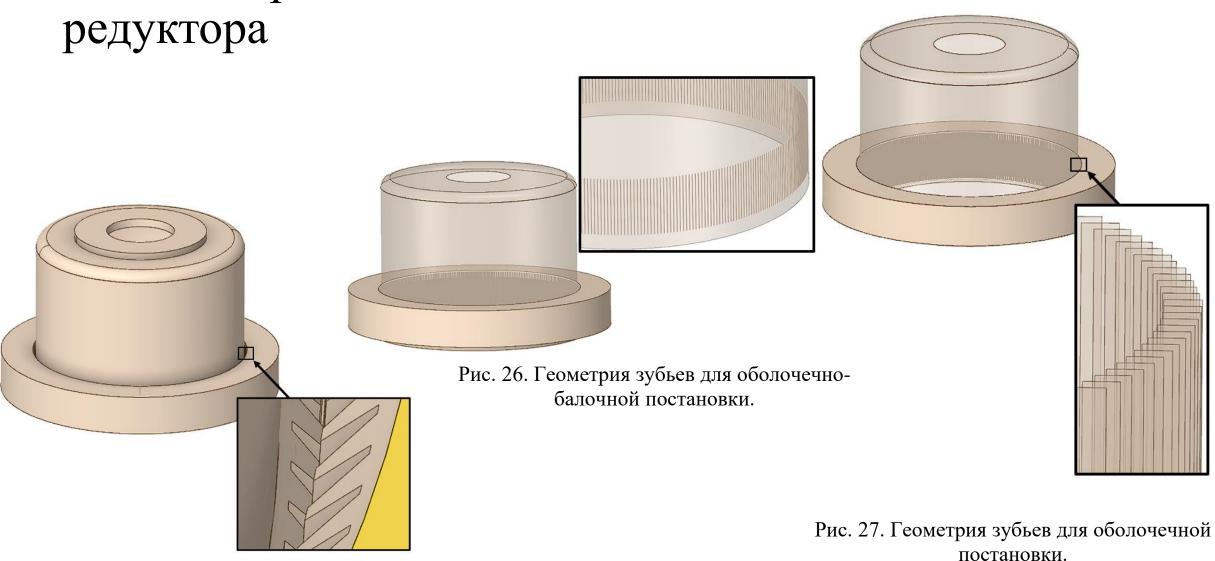



Рис. 25. Геометрия зубьев для твердотельной постановки.

## 3. Моделирование гибкого колеса в составе

редуктора

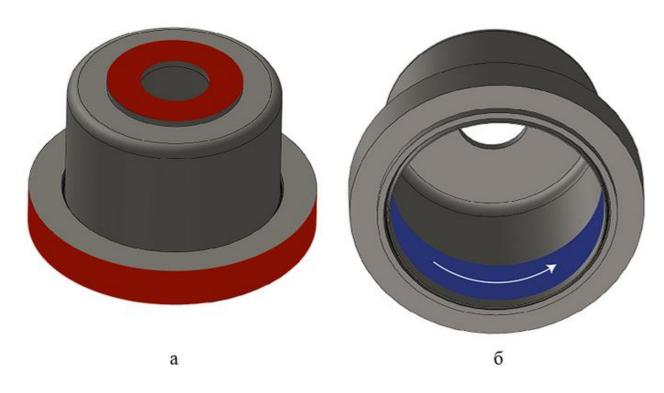



Рис. 28. Граничные условия для задачи моделирования гибкого колеса в составе редуктора: а — жесткая заделка (ограничение всех степеней свободы), б - момент.

Для сравнения значений выбраны:

- 1. максимальные напряжения, возникающие в гибком элементе;
- 2. максимальные деформации, возникающие в гибком элементе;
- 3. сравнение напряжений в плоскости сечения, представленной на рис. 29, для гибкого колеса;
- 4. время вычислений.

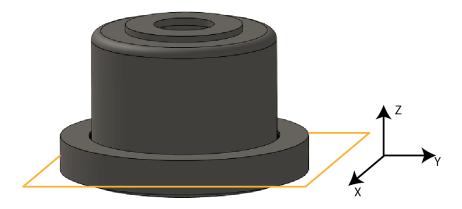
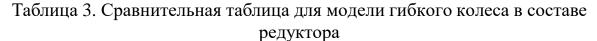



Рис. 29. Плоскость сечения для сравнения результатов


### 3.2 Моделирование гибкого колеса в составе

#### редуктора

| Постановка              | Напряжения,<br>МПа | Деформации | Время<br>вычислений, сек |
|-------------------------|--------------------|------------|--------------------------|
| Твердотельная           | 78,659             | 1,4838     | 549                      |
| Оболочечная             | 76,452             | 1,5203     | 79                       |
| Оболочечно-<br>балочная | 74,392             | 1,6621     | 66                       |

| Постановка    | 5.1   | 5.2    | 5.3  |
|---------------|-------|--------|------|
| Твердотельная |       | 2.8%   | 5.4% |
| Оболочечная   | 2.5 % |        | 2.7% |
| Оболочечно-   | 12 %  | 9.3%   |      |
| балочная      | 12 /0 | J.J /0 |      |

Таблица 4. Относительная ошибка одной постановки от другой (нумерация по горизонтали от вертикали) для напряжений (над центральной осью) и деформаций (под центральной осью)



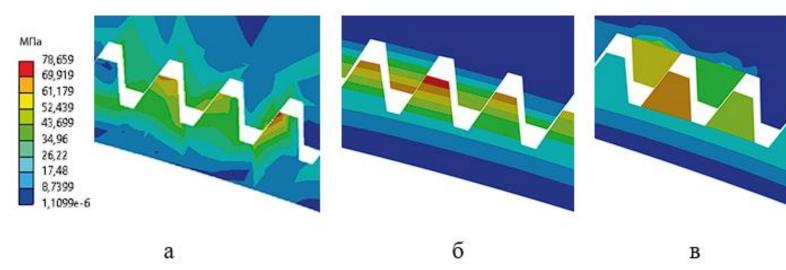



Рис. 30. Распределение напряжений для постановок: а – твердотельная; б – оболочечная; в – оболочечно-балочная

- 1. цилиндр гибкого колеса и зубья твердотельные элементы;
- 2. цилиндр гибкого колеса и зубья оболочечные элементы;
- 3. цилиндр гибкого колеса— оболочечный элемент, зубья балочные элементы.

#### Заключение

Выпущена статья: *Кузьмин М.И.*, *Тамм А.Ю.*, *Прохоренкова И.Г.* Разработка методики моделирования зубчатого зацепления волнового редуктора с применением МКЭ // Труды 34-й международной научнотехнической конференции "Экстремальная робототехника", Санкт-Петербург, Россия, 23-24 ноября 2023 г.

#### 1. Проведено исследование методик моделирования зубьев:

Смоделировано поведение 3 типов элементов, проведено сравнение НДС и валидация на основе аналитических зависимостей. Для моделирования зубьев рациональной является оболочечная постановка.

#### 2. Проведена валидация модели гибкого колеса:

Смоделировано поведение 2 типов элементов цилиндра гибкого колеса, проведено сравнение НДС и валидация на основе аналитических зависимостей. Для моделирования цилиндра гибкого колеса рациональной является оболочечная постановка.

#### Заключение

- 3. Разработана методика моделирования волнового редуктора:
- ✓ Использование оболочечных элементов в 3D постановке для моделирования зубчатого зацепления и цилиндрической части гибкого элемента
- ✓ Сокращение времени выполнения полноразмерного расчета
- ✓ Точность решения аналогична твердотельной постановке
- ✓ Подходит для объёмных и мелких сборок
- 4. Для подтверждения разработанной методики проведено моделирование гибкого колеса в составе редуктора:
  - Смоделировано три случая, проведено сравнение НДС;
  - При анализе подтверждено: для моделирования гибкого колеса в составе редуктора рациональной является оболочечная постановка цилиндра и зубьев гибкого колеса. В сравнении с твердотельной постановкой: отклонение результатов не превосходит 3%, время расчёта меньше в 7 раз.

## СПАСИБО ЗА ВНИМАНИЕ!