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Abstract. A simple approach for calculation of anisotropic effective elastic properties of 
cracked materials is presented. Square computational domain containing randomly distributed 
cracks under plane strain conditions is considered. Effective elastic properties are expressed in 
terms of average displacement discontinuities on cracks in three test problems: uniaxial loading 
in two orthogonal directions and pure shear. These problems are solved using the displacement 
discontinuity method. Resulting effective compliances are averaged over realizations with 
different crack distributions. This approach is employed for calculation of effective elastic 
properties for two particular crack configurations: (i) one family of parallel cracks and (ii) two 
families of parallel cracks inclined at angle 300. Crack densities up to 0.8 are considered. It is 
shown that for both configurations the effective elastic properties are orthotropic even at large 
crack densities. Dependencies of Young’s moduli on crack density are obtained. At crack 
densities up to 0.1, the effective properties can be estimated analytically using the non-
interaction approximation (NIA). At higher crack densities, the NIA strongly overestimates 
effective stiffnesses. Quantitative agreement with results obtained in the literature using more 
sophisticated methods is demonstrated. 
Keywords: effective elastic properties; cracked materials; crack interactions; orthotropy; non-
interaction approximation; boundary element method; displacement discontinuity method. 
 
 

 1. Introduction 
Calculation of effective elastic properties of materials with cracks is a long standing problem 
in mechanics of materials. Changes in effective elastic properties due to cracks can be very 
significant [1]. Therefore accurate prediction of these properties is crucial in many fields, 
including mechanical engineering [2, 3], geomechanics [4, 5], material science [6] etc.  

In literature, the effective elastic properties are computed both analytically and 
numerically. In the framework of analytical methods, effective elastic properties are represented 
as a function of crack density [1] (or crack density tensor [3]). At relatively low crack densities, 
the effective properties can be estimated using the non-interaction approximation (NIA) [3]. In 
the NIA, it is assumed that the effect of many cracks is equal to a sum of independent effects 
from individual cracks. The calculation of effective properties is reduced to calculation of 
average displacement discontinuity for a single crack subjected to a given loading at infinity. 
With increasing crack density, the effect of mutual influence of cracks become significant. Then 
more accurate approximate methods, such as differential scheme [7], self-consistent scheme 
[2], Mori-Tanaka scheme [8] should be used. However, these schemes yield different 
dependencies of effective properties on crack density and the choice of a proper scheme is not 
always straightforward. Moreover, approximate schemes [9], except for the NIA, are usually 
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limited to the case of uniform distribution of crack orientations (isotropic effective properties). 
Therefore, at high crack densities, anisotropic effective elastic properties are usually calculated 
numerically. 

Numerical calculation of effective properties of cracked materials is also a challenge. To 
calculate the effective properties, deformation of the computational domain containing large 
number of cracks under the given loads should be considered. In the two-dimensional case, 
reasonable accuracy can be reached either if the number of cracks in the computational domain 
is of order of 104 or if averaging over realizations with different crack distributions is used. In 
the latter case, number of cracks in the computational domain can be of order of 102. Periodic 
boundary conditions also allow to minimize finite size effects [1]. Deformation of the 
computational domain can be described using, for example, the finite element method (FEM) 
or the boundary element method (BEM). Finite element solution requires very fine mesh, 
especially at high crack densities. In BEM, only the boundaries are discretized. This allows to 
decrease the number of degrees of freedom, compared to FEM. At the same time, the matrix 
corresponding to a system of linear equations of BEM is dense. Therefore, the choice between 
two methods is not straightforward.  

In the present paper, we present a simple approach for calculation of effective elastic 
properties in the two-dimensional case (plane strain). The square computational domain 
containing randomly distributed cracks is considered. For each crack distribution, deformation 
of the computational domain under three different loads is simulated using the displacement 
discontinuity method [10] (the simplest version of the BEM). Then effective compliances are 
calculated using average displacement discontinuities on cracks [3]. Additionally, the 
compliances are averaged over realizations in order to reduce finite size effects. This simple 
approach is employed for calculation of anisotropic effective elastic properties for two crack 
configurations: (i) one family of parallel cracks and (ii) two families of parallel cracks inclined 
at angle 300. Numerical results allow to estimate the range of applicability of the NIA and to 
study anisotropic elastic properties of the cracked material. Comparison with results obtained 
in the literature using more sophisticated methods [1] is carried out.  

 
2. Calculation of effective elastic properties of cracked materials 

In the present section, we describe the approach for calculation of effective elastic properties 
of cracked materials. Two-dimensional statement (plane strain) is considered. The matrix 
material is isotropic, linearly elastic. 

To calculate elastic properties, we consider deformation of a square computational 
domain containing cracks under three different loads: uniaxial load in two orthogonal directions 
and pure shear. In these cases, the mean strain, 𝜺𝜺, and applied stresses, 𝝈𝝈𝟎𝟎, are related to 
components of the effective compliance tensor M by Hooke’s law as follows. 

• Uniaxial load in the “horizontal” direction (𝜎𝜎𝟎𝟎 = 𝜎𝜎0𝑒𝑒1𝑒𝑒1): 

�
𝑀𝑀1111
𝑀𝑀2211
𝑀𝑀1211

� = 1
𝜎𝜎0
�
𝜀𝜀11
𝜀𝜀22
𝜀𝜀12

�. (1) 

• Uniaxial load in the “vertical” direction (𝜎𝜎0 = 𝜎𝜎0𝑒𝑒2𝑒𝑒2): 

�
𝑀𝑀1122
𝑀𝑀2222
𝑀𝑀1222

� = 1
𝜎𝜎0
�
𝜀𝜀11
𝜀𝜀22
𝜀𝜀12

�. (2) 

• Shear load 𝜎𝜎0 = 𝜎𝜎0(𝑒𝑒1𝑒𝑒2 + 𝑒𝑒2𝑒𝑒1): 

�
𝑀𝑀1112
𝑀𝑀2212
𝑀𝑀1212

� = 1
𝜎𝜎0
�
𝜀𝜀11
𝜀𝜀22
𝜀𝜀12

�. (3) 
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Tractions corresponding to loads (1)-(3) are applied at boundaries of the computational 
domain. The mean strain is calculated. Given known the mean strain, the effective properties 
are calculated using formulas (1)-(3).  

The mean strain, 𝜀𝜀, is calculated using the following decomposition [3]: 
 

𝜀𝜀 = 𝜀𝜀0 + Δ𝜀𝜀, (4) 
where 𝜀𝜀0 is the strain in material without cracks (known), Δ𝜀𝜀 is the unknown extra strain due to 
cracks. The extra strain due to cracks, Δ𝜀𝜀, is expressed in terms of the average displacement 
discontinuities (jumps of displacement) on cracks as follows [3]: 
Δ𝜀𝜀 = 1

2𝐴𝐴
∑ (𝑏𝑏𝑏𝑏 + 𝑛𝑛𝑛𝑛)𝑘𝑘

(𝑘𝑘), (5) 
where 𝑏𝑏(𝑘𝑘) is the average displacement discontinuity on the k-th crack; 𝑛𝑛(𝑘𝑘) is unit normal to  
k-th crack, A is the area of the computational domain. Crack openings, 𝑏𝑏(𝑘𝑘), under given loads 
(1)-(3) are calculated using the displacement discontinuity method [10], described in the next 
section. 

Thus, the effective elastic constants are computed as follows. For each crack distribution, 
cracks and sides of the computational domain are divided into boundary elements. The system 
of linear algebraic equations for displacement discontinuities in all boundary elements is solved 
under loading conditions, corresponding to (1)-(3). The extra strains due to cracks are calculated 
using formula (5). Then components of the effective compliance tensor are computed using 
formulas (1)-(3). Since the distribution of cracks is random, the resulting compliances are 
averaged over realizations with different crack distributions.  

In the following sections, this simple procedure is employed for calculation of effective 
properties for two particular crack configurations. 

 
3. The displacement discontinuity method (DDM) 
In the present section, we describe numerical method used for calculation of displacement 
discontinuities on cracks.  

The displacement discontinuity method (DDM), introduced in the paper [10], is the 
simplest version of the boundary element method [11]. Boundaries of the computational domain 
and cracks are divided into elements, each having the normal and the shear displacement 
discontinuities, 𝐷𝐷𝑦𝑦 and 𝐷𝐷𝑥𝑥 (Fig. 1). The displacement discontinuity along a crack is a peace-
wise constant function (e.g. zero order approximation is used).  

 

 
Fig. 1. Displacement discontinuities associated with one boundary element. 

 
Each element can be subjected to the shear and normal tractions. The displacement 

discontinuities, D, and the tractions, T, at all elements form columns: 
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𝐷𝐷 =  

⎝

⎜
⎛
𝐷𝐷𝑥𝑥1

𝐷𝐷𝑦𝑦1…
𝐷𝐷𝑥𝑥𝑁𝑁

𝐷𝐷𝑦𝑦𝑁𝑁⎠

⎟
⎞

, 𝑇𝑇 =  

⎝

⎜
⎛
𝑇𝑇𝑥𝑥1

𝑇𝑇𝑦𝑦1…
𝑇𝑇𝑥𝑥𝑁𝑁

𝑇𝑇𝑦𝑦𝑁𝑁⎠

⎟
⎞

, (6) 

where N is the total number of elements. Displacement discontinuities and tractions are 
interrelated by a system of linear equations: 
𝑇𝑇𝑥𝑥𝑖𝑖 =  ∑ 𝐴𝐴𝑥𝑥𝑥𝑥

𝑖𝑖𝑖𝑖 𝐷𝐷𝑥𝑥
𝑗𝑗𝑁𝑁

𝑗𝑗=1 + ∑ 𝐴𝐴𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖 𝐷𝐷𝑦𝑦

𝑗𝑗𝑁𝑁
𝑗𝑗=1 , 𝑖𝑖 = 1, . .𝑁𝑁,

𝑇𝑇𝑦𝑦𝑖𝑖 =  ∑ 𝐴𝐴𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 𝐷𝐷𝑥𝑥

𝑗𝑗𝑁𝑁
𝑗𝑗=1 + ∑ 𝐴𝐴𝑦𝑦𝑦𝑦

𝑖𝑖𝑖𝑖 𝐷𝐷𝑦𝑦
𝑗𝑗𝑁𝑁

𝑗𝑗=1 , 𝑖𝑖 = 1, . .𝑁𝑁.
 (7) 

Here: 
𝐴𝐴𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖 = −2𝐺𝐺 �− sin(2𝛾𝛾) 𝑓𝑓𝑥𝑥𝑥𝑥 + cos(2𝛾𝛾)𝑓𝑓𝑥𝑥𝑥𝑥 + 𝑦𝑦�sin(2𝛾𝛾)𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 − cos(2𝛾𝛾)𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦�� ,

𝐴𝐴𝑥𝑥𝑥𝑥
𝑖𝑖𝑖𝑖 = −2𝐺𝐺𝐺𝐺�cos(2𝛾𝛾)𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 + sin(2𝛾𝛾)𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦�,

𝐴𝐴𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = 2𝐺𝐺�2 sin2 𝛾𝛾𝑓𝑓𝑥𝑥𝑥𝑥 + sin(2𝛾𝛾)𝑓𝑓𝑥𝑥𝑥𝑥 − 𝑦𝑦�cos(2𝛾𝛾)𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 + sin(2𝛾𝛾)𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦��,

𝐴𝐴𝑦𝑦𝑦𝑦
𝑖𝑖𝑖𝑖 = −2𝐺𝐺 �𝑓𝑓𝑥𝑥𝑥𝑥 − 𝑦𝑦�sin(2𝛾𝛾)𝑓𝑓𝑥𝑥𝑥𝑥𝑥𝑥 − cos(2𝛾𝛾)𝑓𝑓𝑦𝑦𝑦𝑦𝑦𝑦�� , 

 (8) 

𝑓𝑓 = − 1
4𝜋𝜋(1−𝑣𝑣) �𝑦𝑦 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑦𝑦
𝑥𝑥−𝑎𝑎

− 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑦𝑦
𝑥𝑥+𝑎𝑎

� − (𝑥𝑥 − 𝑎𝑎)𝑙𝑙𝑙𝑙�(𝑥𝑥 − 𝑎𝑎)2 + 𝑦𝑦2 + (𝑥𝑥 +

𝑎𝑎)𝑙𝑙𝑙𝑙�(𝑥𝑥 + 𝑎𝑎)2 + 𝑦𝑦2�, 
where 𝛾𝛾 is the angle between elements i и j; G is the shear modulus; x, y are local coordinates 
of the j-th element in the coordinate system of the i-th element. Note that the matrix, 
corresponding to system (7), is dense.  

Thus, displacement discontinuities on cracks, D, under given loads, are calculated using 
the system of linear equations (7). The resulting average discontinuities on cracks are used for 
calculation of effective compliances of the material as described in the previous section.  

 
4. Test problem: opening of a single crack 
To verify numerical implementation of the DDM, the problem of a single crack in a square 
domain under uniaxial tension is solved (see Fig. 2). This problem also allows to estimate the 
minimum number of elements required for discretization of cracks in calculations of effective 
properties. 
 

 
Fig. 2. Relative error in average crack opening as a function of number of elements per crack. 

 
The crack and sides of the computational domain are divided into elements. The ratio of 

domain size to crack length is equal to 20. Trial and error approach shows that it is sufficient to 
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use 40 elements per side of the computational domain. Average opening of the crack is 
calculated. Results are compared with the exact analytical solution for a crack in an infinite 
domain [3]. The relative error (Δ) in average crack opening as a function of number of elements 
per crack is shown in Fig. 2.  

Fig. 2 shows that the DDM overestimates the crack opening. Therefore, the compliance 
of cracked material is also overestimated. Acceptable accuracy (relative error about 3 %) is 
reached, when 20 elements per crack are used. Therefore, this number of elements is used in 
further calculations.  

 
5. Calculation of anisotropic effective elastic properties 
In the present section, we compute effective elastic properties for two crack configurations: 
(i) one family of parallel cracks and (ii) two families of parallel cracks inclined at 30°.  

In our simulations, all cracks have the same length. To operate with dimensionless 
quantities, effective compliances are normalized by the shear modulus of the matrix. The 3D 
Poisson’s ratio equal to 1/4 is used, implying 1/3 in the case of plane strain.  Size of the 
computational domain is normalized by crack length.  

The crack density 𝜌𝜌 is calculated as [3]: 
𝜌𝜌 = 𝑁𝑁𝑁𝑁2

4𝐴𝐴
, (9) 

where 𝑁𝑁 is the number of cracks in computation domain, 𝑙𝑙 is a crack length, 𝐴𝐴 is the area of the 
computation domain. Examples of crack arrays with different crack densities are shown in 
Fig.  3. 
 

 

Fig. 3. Examples of crack arrays with different crack densities (ρ = 0.1, ρ = 0.5, ρ = 0.8). 
One family of parallel cracks (A)-(C) and two families of parallel cracks inclined at angle 30° 

(D)-(F). 
 

In all simulations, crack densities were in the interval 0.01 ≤ 𝜌𝜌 ≤ 0.8. For each value of 
crack density, 450 to 650 crack arrays were generated, with locations of crack centers 
determined by random number generator and subject to the restriction of the minimal distance 
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between cracks being larger than 0.1 crack length. Details of numerical simulations are 
summarized in Table 1. 

 
Table 1. Parameters of numerical simulations. 

Parameter Value 
Number of cracks in one array 300-350 
Number of boundary elements per one crack 20 
Number of boundary elements per one side of the computational domain 40 
Number of realizations for each value of crack density 450-650 

 
5.1. One family of parallel cracks. Consider effective elastic properties of a material 

containing randomly distributed parallel cracks (see subfigures (A)-(C) in Fig. 3). The effective 
properties are calculated using the approach described in section 2.  

It is shown that the effective elastic properties are orthotropic. One of the orthotropic axes 
is collinear with cracks. Non-zero components of the effective stiffness tensor (averaged over 
realizations) are shown in Fig. 4. Predictions of the non-interaction approximation and results 
obtained in the paper [3] are also shown in Fig. 4. 

 

 
Fig. 4. Effective stiffnesses for a material with parallel cracks. Our results (filled squares and 
triangles) and results obtained in the paper [1] (empty squares and triangles). Solid lines show 

predictions of the non-interaction approximation. 
 

It is seen from Fig. 4 that our results are in a good agreement with ones obtained in paper 
[1] by more accurate method. Stiffnesses, predicted by our method, are below the values 
obtained in the paper [1]. The reason for this difference is that the DDM slightly overestimates 
crack openings (see section 4). Therefore, compliances are also overestimated and stiffnesses 
are underestimated. At the same time, the approach described in the present paper is 
significantly simpler. 

Note that the NIA has reasonable accuracy at crack densities up to 0.1. Therefore, in this 
case, the effective elastic properties can be estimated numerically. 

From engineering point of view, it may be more informative to plot effective Young’s 
moduli rather than stiffnesses. Young’s moduli are related to components of the compliance 
tensor, M, as follows  
𝐸𝐸𝑥𝑥 = 1

𝑀𝑀1111
,𝐸𝐸𝑦𝑦 = 1

𝑀𝑀2222
, (10) 

where the x-axis is directed along cracks. Effective Young’s moduli of a material with parallel 
cracks are shown in Fig. 5.  
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Fig. 5. Young’s moduli of a material with parallel cracks, in the case of parallel family of 

cracks (squares – Ex, circles – Ey). 
 

As expected, Young’s modulus in the direction of cracks, Ex, does not depend on crack 
density. In contrast, Young’s modulus Ey is significantly affected by cracks.  

5.2. Two families of parallel cracks inclined at angle 30°. Consider effective elastic 
properties of a material containing two families of parallel cracks inclined at angle 30° (see 
subfigures (D)-(F) in Fig. 3). Partial crack densities of the two families differ by the factor of 
two: .,2 2121 ρρρρρ ≡+=  This problem was originally analyzed in the paper [3] using the 
non-interaction approximation. In the paper [3], it was shown that the effective elastic 
properties are orthotropic. The angle between one of the orthotropic axes and x-axis (horizontal 
in Fig. 3) is approximately equal to 9.8° (counter-clockwise rotation). In the present section, we 
show that at high crack densities the effective properties are still orthotropic.  

The effective compliance tensor is computed as described in section 2. We assume that 
the effective properties are orthotropic. Principal axes of the compliance tensor are found as 
follows. Coordinate axes are rotated by angle 𝛼𝛼.  Components of the compliance tensor in new 
(rotated axes) are calculated using formulas [12]: 

𝑀𝑀𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐹𝐹𝑇𝑇𝑀𝑀𝑀𝑀,𝐹𝐹(𝛼𝛼) = �
𝑐𝑐𝑐𝑐𝑐𝑐2𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼 2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼
𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐2𝛼𝛼 −2 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼

−𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐2𝛼𝛼−𝑠𝑠𝑠𝑠𝑠𝑠2𝛼𝛼
�, (11) 

where 𝛼𝛼 is a rotation angle, 𝐹𝐹𝑇𝑇 is transposed rotation matrix. Since the orthotropy of effective 
properties is approximate, we find the principal axes such that deviation from orthotropy, 𝛿𝛿, 
has minimum. The deviation is measured by the Euclidean norm [13]: 

𝛿𝛿 =
�𝑀𝑀1112

2 +𝑀𝑀2212
2 +𝑀𝑀1222

2 +𝑀𝑀1211
2

‖𝑀𝑀‖
 (12) 

Minimization of 𝛿𝛿 with respect to rotation angle 𝛼𝛼 yields the orientation of principal axes. 
Dependencies of deviation from orthotropy, 𝛿𝛿, on rotation angle, 𝛼𝛼, for several values of crack 
density are shown in Fig. 6. It is seen that for all crack densities 𝛿𝛿 has minimum at 
𝛼𝛼 ≈ 9.50. This value is in a good agreement with prediction of the non-interaction 
approximation (𝛼𝛼NIA ≈ 9.80). Therefore, the effective elastic properties are orthotropic even at 
high crack densities.  
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Fig. 6. Deviation from orthotropy, measured by norm (12), as a function of the rotation angle. 

Note that minimum value of deviation, 𝛿𝛿, is less than several percent. 
 

Effective Young’s moduli in principal axes of the compliance tensor are calculated (see 
Fig. 7). In contrast to the previous problem, both moduli decrease with increasing crack density.  
 

 
Fig. 7. Young’s moduli for a material with two families of parallel cracks inclined at angle 
30° (squares – Ex, circles – Ey). Here x and y are the principal axes of the compliance tensor.  

 
6. Conclusions 
A simple approach for calculation of effective elastic properties for cracked materials was 
presented. The approach has three main ingredients: (i) relation between extra strain due to 
cracks and average displacement discontinuities on cracks [3], (ii) the displacement 
discontinuity method [10] and (iii) averaging over realizations with different crack 
distributions. The approach was employed for calculation of effective elastic properties for two 
crack configurations: one family of parallel cracks and two families of parallel cracks inclined 
at angle 30°. Comparison with predictions of the non-interaction approximation was carried 
out. It was shown that the non-interaction approximation has acceptable accuracy for crack 
densities up to 0.1. Therefore, for these densities, the effective properties can be estimated 
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analytically. At higher crack densities, the non-interaction approximation strongly 
overestimates the effective stiffness. For both crack configurations, elastic properties are 
orthotropic even at large crack densities up to 0.8. Quantitative agreement with results reported 
in literature was demonstrated. The approach described above can be used in a variety of 
applications, including geomechanical problems, e.g. simulation of hydraulic fracturing in 
naturally fractured reservoirs [14]. 
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