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Abstract. An approach for description of internal evolution pro-
cesses in materials basing on the Euler equations and the mass bal-
ance equations containing source terms is proposed. Dynamics of
the complex material such as structured liquids in nanochannels,
metals with dissolved hydrogen and various impurities are discussed
within a two-component continuum model. The effect of stress state
on the internal structure of the materials is investigated.

1 Motivation and some examples

The classical equations of continuum include the equations of momentum
and mass balance and the equation of state. As a rule, the mass balance
equation after linearization is not used for further solution of problems.
However, in some cases the mass balance equation plays a very important
role. Primarily these are problems examining materials with a complex
internal structure – materials with various impurities, structured liquids
in nanochannels, metals with dissolved hydrogen. In these cases, we must
begin the research with the mass balance equations and the analysis of
source terms.

One of possible approaches, which allows us to consider the influence
of internal degrees of freedom on structural reconstructions at a material,
is the description of unknown particle kinematics of continuous media by
phenomenological transport equations of substance (for example Fick’ laws).
The diffusion equations, that describe the relative motion of particles within
a representative volume, should complement the basic equations of motion
of a continuous media. This usually leads to the following difficulties.

First, the diffusion transfer of mass (which can change the internal struc-
ture of the material) may depend on the stress state of the material. This
leads to necessity to choose diffusion coefficients using experimental data
and thus makes it is impossible to build a general mathematical model de-
scribing materials with complex structures.
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Secondly, it is known that the mass diffusion transfer inside material
can cause in changes the internal structure of the material. It is not de-
rived directly from the phenomenological equations. Usually to describe this
phenomenon, we have to introduce artificial parameters associated with the
concentration change in the equation of state of the material.

The aim of those lectures is to propose a different approach which allows
us to describe internal evolution processes in the material. The approach is
based on usage the Euler equations and the mass balance equations contain-
ing source terms. Choosing by some means the source terms that determine
the mass transfer between a moving substance and the media, we can derive
the equation of state of the substance. Besides the effect of stress state on
evolution processes in the material (the diffusion of impurities) taken into
account by introduction to the basic equations of dissipative term with a
coefficient depending on the spherical part of the strain tensor. Then the
classical evolution equations arise as a particular case within our approach.

In this section we show how this approach may be used to some model
problems. In 1.2 we give a brief exposition of the law of particles conser-
vation. An example of a chemical adsorption of substances is given in 1.3.
Selecting the source terms in the mass balance equation allows us to control
the process of adsorption. In 1.4 we discuss the connection of rheological
models of materials and continuum models and shows how the choice of
the source terms can affect the equation of state of the material. In 1.5
using continuum mechanics we obtain diffusion equation and introduce the
resistance force to the diffusion flux being proportional to its velocity. The
diffusion coefficient depends on the normal deformation basic media.

1.1 Particle balance and mass balance equation

Let η(r, t) be the number density at a given point r of an inertial refer-
ence system. Specifying by dN the number of particles in the elementary
volume dV we can write

dN = η(r, t)dV, η ≥ 0.

The mass density ρ(r, t) and the number density are connected by the re-
lation

ρ = mη, (1)

where m is the mass of one particle. Let V be a volume in the reference
frame and the boundary of V be a closed surface S = ∂V . It is assuming
that the total number of particles in media remains unchanged and we can
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formulate the following particle balance equation

d

dt

∫
V

η(r, t)dV = −
∫
S

ηn · vdS = −
∫
V

∇ · (ηv)dV, (2)

where v is the velocity of particles. In the local form Eqs.(2) can be written

∂η

∂t
+∇ · (ηv) = 0. (3)

Using (1) we can get the mass balance equation

∂ρ

∂t
+∇ · (ρv) = 0. (4)

If the density of particles can be changed, the particle balance equation
should be modified as follows

d

dt

∫
V

η(r, t)dV =

∫
V

χ(r, t)dV −
∫
S

ηn · vdS

=

∫
V

[
χ(r, t)−∇ · (ηv)

]
dV. (5)

Here the function χ is the rate of production (destruction) of particles at a
point of the reference frame. Then equations (3) and (4) take the form

∂η

∂t
+∇ · (ηv) = χ (6)

or
∂ρ

∂t
+∇ · (ρv) = J. (7)

Here the functions χ and J = mχ are co-called source teams and charac-
terize the rate of mass production (destruction) of particles.

Now we present some examples where the equation (7) is used for de-
scription of various phenomena.

1.2 Adsorption of impurities

The first example is a chemical adsorption of substances (see Whitham
(1974)). The situation is that a fluid carrying dissolved substances or par-
ticles (impurities) flows through a fixed bed and impurities being carried
is partially adsorbed on the fixed solid material in the bed. The fluid flow
is idealized to have a constant velocity v. Then if ρf is the density of the
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(a) (b)

Figure 1. The density of the adsorbed substance: (a) the uniform distri-
bution v = 1, k1 = 4, k2 = 0, A = 0.1, B = 1; (b) the uneven distribution
v = 20, k1 = 4, k2 = 0, A = 0.7, B = 1.

material carried in the fluid, and ρs is the density deposited on the solid,
the conservation equations have the forms

∂ρs
∂t

= J, (8)

∂ρf
∂t

+
∂

∂x

(
ρfv

)
= −J, (9)

where the source term is as follows:

J = k1(A− ρs)ρf − k2ρs(B − ρf ). (10)

The first term of (10) represents deposition from the fluid to the solid at
a rate proportional to the amount in the fluid, but limited by the amount
being already on the solid up to the capacity A. The second term is the
reverse transfer from the solid to the fluid. The numerical solution of the
system (8)–(10) is carried out. Depending on the system parameters, we
have the uniform distribution of the adsorbed substance (Figure 1a) and
the non-uniform distribution of the adsorbed substance (Figure 1b).

Let us find the analytical solution under certain simplifications. The
system (8)–(10) can be rewritten as

∂

∂t

(
ρf + ρs

)
+ v

∂ρf
∂x

= 0,

∂ρs
∂t

= k1ρf (A− ρs) − k2ρs(B − ρf ).

For relatively slow changes in the densities and relatively high reaction rates
k1, k2, the second equation is taken in the approximate quasi-equilibrium
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form in which the ∂ρs/∂t is neglected and

ρs(ρf ) =
k1A

k2B + (k1 − k2)ρf
.

Substituting this expression into the first equation of the system (8)–(10)
yields

∂ρf
∂t

+ c (ρf )
∂ρf
∂x

= 0, c(ρf ) =
v

1 + ∂ρs/∂ρf
.

Thus, the density changes propagate at the speed of c(ρf ). If the densities
concerned are small, the value of c(ρf ) is approximately equal to

c =
k2B

k1A+ k2B
v.

The propagation speed depends on the reaction rates involved, being slower
for substances with larger attraction toward the solid.

1.3 Rheological models of materials. The equations of state and
source terms

The concept of a rheological model of a material is given by Reiner
(1958); Palmov (1998). Rheological models are often used to describe the
materials with complex internal structure, in particular dispersed systems
of two or three phases. Rheology considers such materials as homogeneous,
the mechanical properties of which coincide with the properties of real ma-
terials. A mathematical model of the mechanical properties of the material
is given by the constitutive equation (the equation of state). To compose
the constitutive equations for materials with complex rheological properties
each basic property material is modeled by suitable rheological element. For
example the elasticity is simulated by an elastic spring (the Hooke element),
the viscosity is simulated by a viscous damper (the Newton element) and the
plasticity is simulated by a dry friction damper (the St.Venant element). By
combining the fundamental rheological elements either in series or parallel
we form the rheological model with the complex material properties.

Our aim is to show the connection of rheological models of materials and
continuum models. Consider as an example the Maxwell material. This
viscoelastic material whose rheological model consists of a Hooke element
and a Newton element in series. The constitutive equations for this material
in the simplest one-dimensional case is as follows:

ε̇ =
σ̇

E
+
σ

µ
, (11)
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where ε is the strain, σ is the mean normal stress, E is elastic modulus, µ
is the viscosity coefficient. It is shown that the rheological equation of state
(11) can be obtained from the mass conservation law (7). The rheological
material has a complex internal structure and the mass exchange between
the material and the media is possible, for example, due to change in a phase
state of the material. Suppose that the material is initially at rest with the
density ρ0 and the perturbation quantity ρ̃ = ρ − ρ0 and the velocity v
are small. Then, linearizing the equation (7) and expressing the velocity in
terms of the displacement u, we obtain

∂ρ̃

∂t
+ ρ0

∂2u

∂x∂t
= J.

Assuming ε = ∂u/∂x, it yields

∂ρ̃

∂t
+ ρ0

∂ε

∂t
= J. (12)

The mean normal stress is assumed to be a function of relative mass density
ρ0/ρ

σ = k

(
1− ρ

ρ0

)
. (13)

The coefficient k links the stress to a change of mass density. Substituting
(13) into (12), we find

ε̇ =
σ̇

k
+
J

ρ0
. (14)

In order to obtain the equation of state of the material we need to define
the source term J . It is done as follows:

J = −αρ̃, α ≥ 0,

where the coefficient α determines the rate of exchange processes between
the material and the media (in this case dissipation of the material) and,
taking into account (13) we arrive at the following expression

J =
αρ0
k

σ,

Then, substituting the last expression in (14), we get

ε̇ =
σ̇

k
+
α

k
σ. (15)

The constitutive equation (15) describes the Maxwell material by using a
mass balance equation. The equation (15) coincides with the rheological
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constitutive equation (11), when E = k and µ = k/α. It is noted that
if there are no exchange processes between the material and the medium
α = 0 (J = 0), then (15) is the equation of state describing the Hooke
material.

It is shown that the rheological constitutive equation for the Kelvin–
Voigt material (viscoelastic material with the rheological model that repre-
sents a parallel connection of a Hooke element and a Newton element) can
be obtained from a continuous two-component model of the media.

1.4 Diffusion equation

Consider a flux of particles moving in a media (the penetration of a
substance, such as a liquid, gas, or vapor, through a solid or another liq-
uid; motion special liquids). Assume that we can neglect the exchange of
particles between the medium and diffusion flux. The diffusion equation is
generally obtained from the law of mass conservation, assuming that the
mass diffusion flux is proportional to the density gradient (Fick’s first law)

ρv = −κD∇ρ,

and the corresponding diffusion equation (Fick’s second law) is

∂ρ

∂t
= κD∇2ρ.

The constant κD is the diffusion coefficient. It depends on the properties
of the media and the type of the diffusion liquid. We obtain the diffusion
equation using the system of equations describing the motion of a homoge-
neous substance (liquid). For this purpose we consider fluxes in which the
entropy of a liquid element is constant. Then, the system of equations of
a flux motion is determined by the law of mass conservation, described by
equation (4), and the equation of motion (the equation of dynamics)

ρ
dv

dt
= ρF −∇p, (16)

where p is the pressure at the point of the diffusion flux, F is the mass ex-
ternal force. Equation (4) and (16) should be supplemented by an equation
of state, defining the density as a function of pressure

ρ = ρ
(
p
)
. (17)

The specific form of the equation of state is related with the nature of
matter flux. It introduces into the equation (16) a dissipative term, i.e., we
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assume that the force of interaction between matter flux and the medium is
proportional to the velocity of the flux and the equation (16) can be written
as

ρ
dv

dt
= ρF −∇p− βv. (18)

The force βv is obtained by linearization of the known formula used in
hydraulics, see Loitsyansky (1987), where the square-law of resistance is
given. The coefficient β, which can depend on the stress state of the medium
(strain field), is defined below. Supposing that the forces of inertia can be
considered as negligibly small (examples of such flows, see Batchelor (1967)),
v is defined by the equation (18) and substituting it into the equation (3),
we can be obtained

∂ρ

∂t
= ∇ ·

( 1

β
∇p

)
− ρ∇ · F − F · ∇ρ. (19)

Usually the mass external force occurs under the force of gravity ∇ ·F = 0
and the last term in equation (19) is negligibly small, then

∂ρ

∂t
= ∇ ·

( 1

β
∇p

)
. (20)

Suppose that the substance is initially at rest with pressure p0 and density
ρ0. Assuming the density values of the perturbation ρ̃ = ρ−ρ0 and pressure
p̃ = p− p0 are small, we can assume that the equation of state has the form

p̃ = c20 ρ̃, (21)

where c0 is speed of propagation of sound waves in a fluid. Substituting
(21) in (20), we obtain

∂ρ

∂t
= ∇ ·

(c20
β

∇ρ
)
, β = k

ρ0
D(ε)

, (22)

where the coefficient k of resistance to the motion of matter is a dimension-
less number which depends on physical state of the medium, D = D(ε) is the
size of through passage section (flow section), which can depend on a stress
state of the medium. Indeed, for structures under uniaxial compression the
size of flow section can change and to determine the dependence D = D(ε)
it is necessary to consider the state of stress the basic media. Thus, the ob-
tained equation (22) is the diffusion equation of the flux of matter, taking
into account the influence of the stress state of the medium. In the absence
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of deformation of the medium D = D0, equation (22) coincides with the
classical diffusion equation (19), where

κD = k
c20ρ0
D0

. (23)

Introduction of the dissipative terms and the resistance coefficient β are dis-
cussed further in detail to describe the motion of fluid flow in nanochannels
(Section 3) and flow motion of mobile hydrogen particles (Section 4).

1.5 Conclusion to section 1

The approach which allows us to describe internal evolution processes
in the material with the help of the Euler equations and the mass balance
equations containing source terms is proposed. Now it is of interest to
extend the results to models of two-component continuum. According to the
remarks from above the lectures are organized as follows. A mechanical two-
component model of the solid of complex structure is presented in section
2. This model is used in sections 3 and 4. In section 3 we propose a
mathematical model of a fluid flow in a two-dimensional nanochannel, which
is caused by the motion of one of the confining walls parallel to the other
immovable wall. The two-component model of the material, in which atomic
hydrogen dissolved, is constructed in section 4.

2 Two-component model of media

The rational mechanics of continuous media ignores such an important phys-
ical property of any real material as its discrete structure. It is clear that
the model of a solid in the framework of the rational mechanics should have
a complex structure in order to reflect the properties of discrete structure
of the matter. Such a complex structure is determined by the presence of
internal degrees of freedom and the influence of dynamics of the material.
The presence of these degrees of freedom can result in change of the basic
macroparameters which are usually used for description of the material by
means of the classical equations of continuum mechanics.

As shown by Sobolev (1991); Sobolev (1997), one of the approaches to
description of the continuous media behaviour is to introduce two-component
models. These models allow one to explain some physical phenomena which
have not been properly understood. In particular, these are the question a
fluid flow behaviour in nanochanels, problem of hydrogen diffusion in met-
als.

The classical approaches usually introduce additional parameters in the
constitutive equations. In this case the required phenomenological relations
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Figure 2. A schematics of the two-component model.

allow determining these new variables. The basic equations for the two-
component model introduced in the present paper emphasize the essential
role of the internal structure of the material and enable description of the
above-mentioned physical phenomena.

2.1 The basic assumptions and equations

We postulate a model of the material with a carrying medium whose
components are particles described by the displacement vector u1(x, t). An
additional set of particles interacting with each other and with the carrying
medium is attached to the carrying medium. The absolute displacement
of particles of this additional medium is given by vector u2(x, t). Both
sets are supposed to be mutually penetrating continuous media. In other
words, we introduce the concept of the material point that has a complex
structure and consists of two components. In the expressions for displace-
ments the argument x is the position vector of the material point in actual
configuration, i.e. Euler’s description is taken, see Figure 2.

Physically, the different components of the material occupy different
spatial volumes. In this regard there arises a question of the conditions
of interaction of parts of the introduced solid on their internal boundaries.
An axiomatic construction of the model reduces to assignment of interaction
force R and the mass exchange J between the components. Realization of
these representation results in a two-component model.

The law of mass conservation in the local form for each component and
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for the overall material is supposed to hold:

∂ρ1
∂t

+∇ · (ρ1 v1) = J, (24)

∂ρ2
∂t

+∇ · (ρ2 v2) = −J, (25)

∂ρ

∂t
+∇ · (ρv) = 0.

Here ρ1, ρ2, ρ are densities of components and the overall material, respec-
tively. The right hand side of equations in (24), (25) have the source terms
J which point out the possibility of exchange of particles between the com-
ponents.

By virtue of the law of momentum conservation we have

ρv(x, t) = ρ1v1(x, t) + ρ2v2(x, t)

Here and in what follows we assume the following expression for the density
of the overall material: ρ = ρ1 + ρ2.

Velocities of the components and the center of mass of the material point
are expressed as follows:

vi(x, t) =
diui(x, t)

dt
, i = 1, 2, v(x, t) =

du(x, t)

dt
.

Here
di
dt

=
∂

∂t
+ vi(x, t) · ∇,

d

dt
=

∂

∂t
+ v(x, t) · ∇

denote the material derivatives.
The motion of the overall material point is governed by the law of dy-

namics in the local form

∇ · τ + ρF − J
(
v1 − v2

)
= ρ

dv

dt
.

The mass external force F can be given by

ρF = ρ1F 1 + ρ2F 2.

The equation of dynamics is convenient to rewrite in the form of two equa-
tions

∇·τ 1+ρ1F 1+R−Jv1 = ρ1
dv1

dt
, ∇·τ 2+ρ2F 2−R+Jv2 = ρ2

dv2

dt
(26)

whereR is the force of interaction of two components of the material of com-
plex structure. The interaction force R has an expression which is explicitly
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determined by the specific structure of the medium under consideration. In
addition to this, the overall stress tensor of the material point is supposed
to be the sum of the stress tensors of separate components

τ = τ 1 + τ 2

Let us note that the above equations for the two-component body (the
two-component medium) are in agreement with the equations of mechanics
of continuous heterogeneous media developed for modeling diverse mixtures
(see Nigmatulin (1990)).

The basic equations of moment and mass balance can be complemented
by the equations of energy balance and the second law of thermodynamics
for the each component. These equations are given in Indeitsev and Naumov
(2009), where the problem of propagation of mechanical and temperature
pulses in solids are studied. In the present paper we do not consider a heat
exchange between the components.

Now we construct two-component model for the fluid flows in nanochan-
nels.

3 Features of fluid behaviour in nanochannels

New equations that describe the behavior of fluids in nanochannels and take
into account the molecular structure of the fluid and results of real and nu-
merical experiments are presented. The Poiseuille flows are considered. The
obtained results show that it is possible to describe the structural transfor-
mations in thin layers by using the continuum mechanics methods. New
degrees of freedom of the material are introduced via the second continuum
that makes up for the role of the forming new phase of a state. In the
models considered here, the properties of the new phase are determined by
the influence of rigid boundaries with a different structure.

3.1 Introduction

Fluid flows in micro- and nanochannels are of great interest from both
the viewpoint of fundamental science and practical applications (Drummond
and Israelachvili (2001)). By virtue of this, modeling of such a flow became
one of most quickly developing trends in hydrodynamics. The topicality
of this modeling is also supported by the results of numerous experiments
that have been conducted during last two decades (see, for example Gour-
don and Israelachvili (2003); Thomson and Robbins (1990)) and revealed
great differences between the behavior of fluids in volumes with a size of 50
molecular diameters or smaller and the predictions of classical continuum
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theories. These experiments showed a substantial increase of the effective
viscosity of the fluid in such volumes as compared with its macroscopic
value. Classical hydrodynamics, that does not allow for atomic (molecular)
structure of fluid, does not present adequate description of fluid flows in
nanochannels with a width of 50 molecular diameters or smaller. It is well
known that the classical Poiseuille flow is described by the Navier–Stokes
equations and the velocity profile in this case has a parabolic shape. Nev-
ertheless, the fact that some fluids flowing in rather narrows gaps begin to
feel the boundaries, which leads to restructuring of the profile, have long
attracted the attention of researchers. Moreover, in their numerous studies
Deryagin et al. found that fluids at the boundary with a solid body form
layers with an ordered structure that determines special features of fluids
in these layers (Deryagin and Zheleznyi (1974)).

To describe this flow, we suggest new equations that describe the be-
havior of fluids and take into account the molecular structure of the fluid
and results of real and numerical experiments. Numerical experiments were
conducted by computer modeling and by the molecular dynamics (MD)
method formulated by Allen and Tilesly (1989).

3.2 Proposed model and main equations

To describe the fluid flow in the channel, we use the two-component
model (see Abramyan (2010)). We assume that the fluid in the channel is
affected by the walls, i.e., has a possibility to be structured. The medium
outside the channel is a usual molecular viscous fluid. The motion of the
latter in the interior of the channel filled with a certain structured medium
is similar to the flow through a ‘sieve’ whose ‘feed through’ cell dimensions
significantly depends on the density of the ordered phase. We assume that,
in the process of the fluid flow, the main resistance force is the reaction
of fluid particle interaction with the structure cells, which is proportional
to the difference of velocities of particles of the interacting components. At
rest, without any applied external loads, the channel is filled with a medium
which is ordered under the action of the channel walls. It is natural to
assume that this phenomenon is inhomogeneous over the layer thickness,
namely, the medium particles in the central part of the layer experience
lesser influence of the walls than the particles on the boundary with the
surfaces. We consider some specific cases in which the influence of the walls
is such that, as a rule, the structures near the walls are more concentrated
than those in the middle. The stressed state of the ordered medium is
modeled as the pure shear stress.

The so-called molecular liquid is fed into the channel, and this liquid
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interacts with the structure. This interaction force mainly depends on the
density of the ordered structure, and hence on the so-called flow section (the
distance between particles of the ordered medium). The larger the particle
density, the lesser the flow section through which the incoming particles can
pass, and hence the force of the two media interaction is the largest. Thus,
this interaction of two media, like the viscous friction force, depends on the
difference of their particle velocities: it is the larger the higher the velocity
of motion of one component relative to the other. In this case, it is assumed
that this dependence is linear.

Obviously, as the incoming particles of the molecular liquid move with
an input velocity greater than a certain value, the liquid has the tendency
to pass freely through the immovable structured medium with possible sep-
aration of particles of the latter. This means that if the input pressure is
sufficiently high, then the liquid medium can ‘destroy’ the structure where
it exists. Otherwise, if the pressure is insufficient, then the velocities of
the applied particles are small, the structure density increases, and the flow
rate of the constantly incoming liquid decreases. If the incoming liquid
particles are sufficiently slow, then the structuring continues until complete
sedimentation of liquid particles, i.e., the channel is ‘choked up’ and the
liquid cannot pass through it anymore.

It is important to note that, in the equations of mass balance, there arise
source terms determining the rate of transformation of liquid-like particles
into solid-like particles and conversely. We assume that the sedimentation
rate must be proportional to the particle concentration in the liquid, and
the separation rate must be proportional to the structured medium con-
centration. Obviously, as the number of the liquid particles decreases, the
number of solid-like particles increases, and hence the inverse process may
occur.

Since an ordered structure is formed for certain pressure and velocities,
the frow rate through each cross-section of the channel decreases in time.
The main effect considered in this problem is the phenomenon of molecular
liquid sedimentation on the structure, which may result in the so-called
‘choking’ effect.

Let us denote the number density of fluid particles per unit volume by
nf , the number density of solid (structured, precipitated) particles per unit
volume by ns, and nf + ns = 1 Then ρs = mns and ρf = mnf are the
density of the solid and fluid particles, m is the mass of particle. Assuming
that the rate of solid particles are close to zero, we write the basic equations
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of moment and mass balance in the form

∇ ·
[
− Ip+ µ

(
∇v + (∇v)T

)]
= ρf

dv

dt
+ Jv +R, (27)

∂ρf
∂t

+∇ ·
(
ρfv

)
= J,

∂ρs
∂t

= −J. (28)

Here p is the pressure of fluid fraction (liquid phase), I is the unit tensor,
v = vf is the velocity vector of the fluid particles, µ is the equivalent
viscosity of fluid fraction, J is the rate of sedimentation (adhesion) and
separation of liquid particles at the checkpoint of the reference system, R
is the force of interaction between the fractions. Using ns = 1 − nf , the
equations (28) can be rewritten as

∂nf

∂t
= J/m,

∇ ·
(
nfv

)
= 0.

The source terms J has the following form

J =

{
−k1nf , |v| < v∗,
k2(n− nf ), |v| > v∗,

where k1 and k2 are constants obtained experimentally, v∗ is a certain crit-
ical velocity. The source term is defined by to the above-described scenario
of the events. The forces of interaction between the particles have the fol-
lowing form:

R =
knf

D(ns)
v, (29)

where k is the constant obtained from experimental data, D(ns) is the cell
characteristic open area dimension. Taylor series expansion of D(ns) about
the equilibrium point is given by D(ns) = D0 −D1ns. Then equation (29)
has the form

R = k g(nf )v, g(nf ) =
nf

D0 −D1(1− nf )
(30)

where D0 is the characteristic open area dimension of the structured cell.
The conditions at the initial time moment are chosen as follows (see

Figure 3):
ns(0, y) = ns0(y), nf (0, y) = nf0(y)

For the problem of the Poiseuille flow we take the following initial and
boundary conditions

p
∣∣
x=0

= p0, p
∣∣
x=L

= 0, v
∣∣
x=0

= v
∣∣
x=L

= 0.
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They correspond to the assumption that the structure is more ordered near
the walls and less ordered near the channel center. As follows from expres-
sion (30), the quantity g(nf ) depends on the molecular liquid fraction in
the entire volume nf and on the values of the coefficients D0 and D1. As
nf → 1, the quantity g → 1/D0 and the value of the characteristic open
area dimension of the structured cell D0 increases. In this case, the quan-
tity R contained in the equation (27) tends to zero, and the equation itself
tends to the classical form.

The solution of the above-posed problem for different sets of parame-
ters confirms the qualitative applicability of the two-component model for
describing the effect under study. The choking effect was investigated for
different types of initial ordering of the medium, i.e., for different characters
of the wall action and for two types of the source term.

Now we consider the obtained diagrams using the mathematical and
computer models. The results given below show that the wall material
structure itself significantly affects the liquid flow.

In the first computer experiment, we considered a channel whose walls
affected by the incoming liquid so that the medium was structured mainly
near the walls and significantly less near the center of the channel. Prescrib-
ing a certain initial pressure at which the liquid particles were incoming and
the other necessary parameters, we observed a regime in which the velocity
profiles and the concentration of each of the media had the form shown in
Figure 4a and Figure 4b.

In the second computer experiment, we considered a channel whose
walls affected the incoming liquid so that the medium was structured very
strongly near the input and the walls and significantly less near the center
of the channel. The character of the observed regime is shown in Figure 5a
for H = 100 nm and L = 200 nm. The diagrams for the two above-
described experiments clearly illustrate the choking regime and show that
the input pressure was insufficient in these experiments, which is testified

y

ns0

y

nf0

Figure 3. Distribution of particles of the structure and molecular fluid.
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by the decrease in the flow rate of the incoming media (see Figure 5b). The
computations showed that by increasing the excess pressure in the channel,
one can obtain the converse effect, namely, the structured media becomes
disordered. We did not calculate how the characteristic open area dimension
affects the flow rate.

In the third computer experiment, we considered a channel in which the
structured medium distribution was similar to the preceding distribution
but the source term in the mass balance equation had the form

J = −k1ρf (A− ρs)H(v∗ − v) + k2ρs(B − ρf )H(v − v∗) (31)

The first term describes the sedimentation (ordering) at a rate proportional
to the quantity of the matter in the liquid and bounded by the quantity of
the already ordered medium till the saturation A. The second term describes
the converse transition. The simulation results are shown in Figure 6. The
results obtained confirm that there is a blocking effect, which is illustrated
by an increase in solid-like phase concentration and a decrease in liquid
flow rate for a certain pressure regime. We note that, under the assumption
of strong effect of the walls strongly on the medium in the channel, this
model more clearly illustrates the action of these forces on the process of
structurization (see Figure 6a).

(a)

(b)

Figure 4. The first experiment. Profiles of velocity and concentration of
particles in each component (a), Concentration of particles of each compo-
nent at different instants of time (b).
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(a)

(b)

Figure 5. The second experiment. Profiles of velocity and concentration of
particles in each component(a), flow rate of molecular fluid in the channel
(b).

All the above experiments describe the choking effect in a plane channel.
This phenomenon, under the assumption that the medium structurization
(sedimentation) must decrease from the walls towards the center of the
channel, is most precisely described by using the source term in the form
(31). The third experiment clearly shows that the particles begin to settle
near the already structured medium. Thus, generalizing all the diagrams
obtained by using the mathematical and computer models, we see that
the claim of this model to describe the choking effect in the channel with
significant influence of its walls taken into account is justified completely.

3.3 Conclusion to section 3

We propose a mathematical model of a fluid flow in a plane nanochan-
nel, that is caused by the motion of one of the confining walls parallel to
the other, immovable wall. The values of the resistance forces acting on
the walls when the distances between them are less than 50 nm, obtained
using the above model, are in good agreement with the experimental results
and predictions by the MD modeling. The obtained results show that it is
possible to describe the structural transformations in thin layers by using
the continuum mechanics methods. We introduce new degrees of freedom
of the material by using the second continuum, which plays the role of the
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(a)

(b)

Figure 6. The third experiment. Profiles of velocity and concentration of
particles in each component (a), flow rate of molecular fluid in the channel
(b).

arising new phase of state. In the models considered above, the properties
of the new phase are determined by the influence of rigid boundaries with a
different structure. The solutions thus obtained depend on macroparame-
ters, which can be determined using experimental data. This is a significant
distinction of this approach from the earlier approaches, where numerous
parameters, which are hard to determine, were introduced in the equations
of state.

We note that the two-component model can describe quite well such
effects as the flow ‘choking’ and the ‘destroyed’ layer reconstruction. This
is because the source terms are introduced in the equation of the particle
number balance of one or the other component. Depending on the scenario
of the events in the material, it is quite possible to control and describe its
state by using a suitable source term.

4 Hydrogen diffusion in the crystal structures

Hydrogen embrittlement of materials under load is one of the most im-
portant problems of the physics and mechanics of materials. Though the
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hydrogen concentration in metals can be very low (about 1 atom of hydro-
gen in 100,000 atoms of the metal matrix), nevertheless its influence on the
mechanical properties of the metals can be of crucial importance. The prob-
lem of the effect of low hydrogen concentrations in metals on the strength
of material nowadays attracts a lot of attention. As a rule, the hydrogen is
accumulated in metals during their exploitation. One of the main sources
for hydrogen appearance in metals is water (or steam); however, hydrogen
diffusion from gas and oil is feasible as well. The problem of the effect of
low hydrogen concentrations in metals on the strength of material nowa-
days attracts a lot of attention. In metals, the hydrogen is contained in
traps with various bonding energies. It has been established (see Polyan-
skiy (2005) and references therein) that thermo-mechanical loading results
in the hydrogen redistribution over the traps. A number of papers were de-
voted to the influence of hydrogen on the mechanical properties of metals,
see e.g. Ahn (2007). The majority of the papers addressing the effect of
hydrogen on the strength of materials utilize primarily phenomenological
models and do not discuss the problem of redistribution of hydrogen over
the traps. The degradation of mechanical properties in these papers is mod-
elled by means of some empirical dependencies. However, there is an open
question: how kinetic processes in the material (such as the redistribution
of hydrogen) affect its basic strength properties under static and dynamic
loads? The aim of our study is to describe the dynamics of the hydrogenated
metal and the influence of internal kinetics on metal macroparameters using
the fundamental principles of rational mechanics. The hydrogen diluted in
structural materials can be conditionally divided into that with low bonding
energy and that with high bonding energy. The hydrogen with low bond-
ing energy is diffuse, and its interaction with material is very weak (mobil
hydrogen). The high bonded hydrogen interacts with material very inten-
sively. The mechanical material properties degrade owing to this strong
interaction. We suggest a one-dimensional model of two-component con-
tinuum, which allows us to describe both the hydrogen diffusion and its
interaction with the material and, therefore, to find the equation of state
for hydrogen-containing media. The first component is represented by the
crystal lattice of the initial material including stationary hydrogen atoms
embedded (attached) in chemical bonds between atoms (which significantly
reduce the strength of the bonds), the second component is represented by
free mobile hydrogen atoms dissolved in the material.
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Figure 7. One-dimensional chain of atoms.

4.1 Two-component model

Let us consider the simplest one-dimensional model of a metal rod, in
which atomic hydrogen is dissolved. Let N be the total number of particles
per unit volume, N0 be the number of the particles connected by undamaged
bonds per unit volume, N+

H be the number of hydrogen particles attached
to a lattice per unit volume, N−

H be the number of mobil hydrogen parti-
cles per unit volume. Furthermore, n0, n

+
H and n−H are the corresponding

concentrations of the above-mentioned particles, respectively.
The first component is a lattice structure with bonded hydrogen (in the

frame of elastic theory). The relation between the strain ε and the stress
σ can be represented as σ = Eε, where E is the equivalent module of the
lattice defined below. We denote the velocity and the density of the first
component by v1 and ρ1 = ρ0 + ρ+H . Here ρ0 = m0n0, ρ

+
H = mHn

+
H , m0,

mH are the mass of lattice atoms and bounded hydrogen atom.
The second component is flow of mobile hydrogen particles of the internal

structure of a material (inviscid compressible liquid) and p is the pressure of
flow, v2, ρ2 = ρ−H is the velocity and the density of the second component,
ρ−H = mHn

−
H .

Equation of state (rheological model). We consider the lattice as a
one-dimensional chain consisting of identical particles with a mass of m0

(mass of atom in a crystal lattice of a material) which are connected with
each other by identical nonlinear springs with the lengths a, Fig. 1. The
equation of movement in the long-wave approximation is as follows (Zhilin
(2006))

m0ü = −a[f(a(1 + u′))]′. (32)

For small strains ε = ∂u/∂x we have the following equation

ü− ϑ20u
′′ = 0, ϑ20 =

√
C

m0
a,

because f [a(1 + ε)] ≈ −Caε.
It is known that, when hydrogen dissolves in materials, some of the

hydrogen atoms are embedded in existing atomic bonds, breaking them and
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Figure 8. Model of a chain with hydrogen atoms planted on the bonds.

creating new bonds, its stiffness is much smaller than the initial stiffness (see
Indeitsev and Semenov (2008)). This effect also takes place for a congestion
of lattice defects: dislocations, vacancies, etc. By combining the elements
with the old and new bonds in series one obtains the model of the lattice
with bonded hydrogen (see Figure 7). It is possible at the assumption
m0 ≫ mH . Then the equivalent rigidity of the new bond C can be found
from the equation

N

C
=
N0

C0
+
N+

H

CH
, N = N0 +N+

H ,

where C0 is the rigidity of pure material in the absence of hydrogen, CH of
the material with all bonds occupied by hydrogen. The nonlinear force f in
(32) can be accepted for small strains as

f = −Caε = −Eε.

Then using n0 = N0/N and n+H = N+
H/N we obtain the constitutive equa-

tion for the lattice structure with bonded hydrogen

σ = Eε, E =
E0EH

n0EH + n+HE0

. (33)

The equivalent elastic modulus for the lattice E can decrease essentially,
since EH ≪ E0 (CH ≪ C0) and depends strongly on the concentration of
the attached (bonded hydrogen) particles n+H . The number of the lattice-
settled hydrogen particles depends on the stress state of the lattice at every
point and, generally, on time. The unknown functional dependence of E
on n+H(ε, x, t) should be determined from the model of the two-component
continuum.
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Main equations. Substantive provisions of the theory of two-component
continuum can be found in the second section (Krivtsov and N.F. Morozov
(2001)); therefore, we are presenting only final equations. The equation of
dynamics for the lattice structure (the first continuum) is given by

∂σ

∂x
= ρ1

∂v1
∂t

+ Jv1 +R. (34)

The equation (34) has new force terms in the right part. Capturing of
hydrogen mobile particles in the lattice practically does not influence the
change of inertial characteristics of the lattice structure, i.e. ρ+H = mHn

+
H ≪

ρ0, but the velocity of the change of those characteristics J results in the
occurrence of jet force Jv1, whose neglecting is impossible. The term R
determines the force of interaction between the first and second components
and depends on internal processes in the material.

The dynamic equation for the second component (mobile hydrogen par-
ticles) is as follows:

−∂p
∂x

= ρ2
∂v2
∂t

− Jv2 −R, ρ2 = ρ−H = mHn
−
H . (35)

Similarly to a case of compressed liquid, the state equation determining a
connection between pressure p and density ρ−H takes the form

p− p0 ∼= c2Hρ
−
H . (36)

The equation of mass balance for the first component is

∂ρ1
∂t

+
∂
(
ρ1v1

)
∂x

= J,

or taking into account an invariance of ρ0 for ρ+H we have

∂ρ+H
∂t

+
∂
(
ρ+Hv1

)
∂x

= J.

In terms of the concentration of bonded hydrogen the equation for the mass
balance has the form

∂n+
H

∂t
+
∂
(
n+Hv1

)
∂x

= J/mH . (37)

Mobil hydrogen obeys a similar equation of mass balance:

∂ρ−H
∂t

+
∂
(
ρ−Hv2

)
∂x

= −J or
∂n−

H

∂t
+
∂
(
n−Hv2

)
∂x

= −J/mH . (38)
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Figure 9. Dependencies of n−H and n+H on time.

Interaction between the components. Interaction between the sta-
tionary lattice and flow of mobile hydrogen, that has not been attached
yet, is described similarly to the flow of compressed liquid, see Loitsyan-
sky (1987). Since the velocity of the hydrogen particles is very low and
the suggested approach is linear, we assume that the interaction force is
proportional to the difference in the continuum particles velocities:

R = k
ρ−H
D(ε)

[
v2 − v1

]
. (39)

Here k is determined in terms of the material properties,D(ε) is the effective
cross section of the flow of the second component Indeitsev and Osipova
(2011) (it is the size of through passage section, which depends on strain
ε is introduced in (39).) The larger is the deformation, the smaller is the
quantity D, since it is more difficult for mobile hydrogen to move in strained
media.

Since the concentrations are low, the source terms J has the following
form

J = αn−
H − βn+

H (40)

where α and β are positive parameters determined by interaction between
bonded and mobile particles of hydrogen. The physical meanings of the
coefficients α and β can be defined as follows. For the small velocities
v1 and v2 the terms ∂

(
n+Hv1

)
/∂x and ∂

(
n−Hv2

)
/∂x in (37), (38) can be

neglected. Than the problem for n−H and n+H takes form

dn+H
dt

= αn−
H − βn+H ,

dn−H
dt

= −αn−H + βn+
H (41)

with the initial conditions

n+H
∣∣
t=0

= 0, n−
H

∣∣
t=0

= ψ.
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The solution of (41) is

n+H =
αψ

α+ β

(
1− e−(α+β)t

)
, n−

H = ψ
[
1− α

α+ β

(
1− e−(α+β)t

)]
. (42)

The parameters α and β define the rate of hydrogenation of the lattice
(and its rate of hydrogen loss) and they should be prescribed, e.g. by using
experimental data. The problem (41) describes interchange of hydrogen
particles between the components under the condition that the velocity of
diffuse hydrogen is small. In this case almost all mobile hydrogen is built
in the lattice; hence α≫ β (see Figure 9).

The complete set of equations. In this section we summarize the equa-
tions derived in previous sections to represent the motion of the metal rod
containing dissolved hydrogen. We have

∂σ

∂x
=

(
ρ0 +mH n+H

)∂v1
∂t

+ Jv1 +R, σ =
κE0

n+H + κn0
ε, (43)

−∂p
∂x

= mH n−H
∂v2
∂t

− Jv2 −R, p− p0 = mHc
2
Hn

−
H , (44)

∂ρ0
∂t

+
∂
(
ρ0v1

)
∂x

= 0, (45)

∂n+
H

∂t
+
∂
(
n+Hv1

)
∂x

= J/mH ,
∂n−

H

∂t
+
∂
(
n−Hv2

)
∂x

= J/mH , (46)

R = k
mH n−H
D(ε)

[
v2 − v1

]
, J/mH = αn−

H − βn+
H . (47)

Here κ = EH/E0. The set of governing equations (43)–(47) is much too
complicated for a direct mathematical analysis and we will restrict our at-
tention by the simplest case – static stress state of the hydrogenated metal
rod under the uniaxial tension/compression.

4.2 Static stress state

We suppose that the first material component (lattice with bonded hy-
drogen) is initially at the static stress state, so that the strain ε0 and the
stress σ0 are related by σ0 = Eε0. The initial static stage is then disturbed
slightly, and we suppose that the perturbation quantities σ̃, ε̃, ṽ1, ñ

+
H ; ñ−H

and ṽ2 are small in magnitude. Then we find the solution of the problem
in the following form

ε = ε0 + ε̃(x, t), σ = σ0 + σ̃(x, t), v1 = 0 + ṽ1, v2 = v20 + ṽ2 (48)

n+H = n+H0 + ñ+H(x, t), n−
H = n−H0 + ñ−H(x, t) (49)
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Figure 10. Extraction curve: (a) the theoretical one by Eq.(54), (b) ex-
perimental curve for titanium alloy PT-7M indicating the binding energies
that correspond to separate peaks of the curve.

Substituting (48), (49) into (43)–(47) we obtain the linear approximation
for the first component

∂σ0
∂x

= 0, σ0 = E0ε0

[
1− nH0

+

nH0
+ + κ n0

]
, (50)

∂n+
H0

∂t
= αn−

H0 − βn+
H0, (51)

for the second component

c2H
∂nH0

−

∂x
= −k nH0

−

D(ε0)
v20, (52)

∂n−
H0

∂t
+
∂
(
n−H0 v20

)
∂x

= −αn−
H0 + βn+

H0 (53)

Bounded hydrogen. Equations (51) –(53) can be reduced to the equa-
tion for concentration of bonded hydrogen nH

+
0 that takes form

∂2n+H0

∂t2
+ (α+ β)

∂n+
H0

∂t
− c2HD(ε0)

k

[
β
∂2n+H0

∂x2
+
∂3n+H0

∂x2∂t

]
= 0. (54)

Equation (54) is the equation of the mixed type, it contains terms inherent
in the hyperbolic equation and terms of a parabolic kind. It means that at
the assignment of the finite initial perturbation one should expect a char-
acteristic front of movement of increase (or decrease) in a bonded hydrogen
number density, i.e. an exposed strong dispersion.

Numerically solving the equation (54), we shall receive the charge of
hydrogen from the free end of a core. Experimental dependencies of the
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Figure 11. Model of closing of channels and places of a congestion of
hydrogen.

charge of the hydrogen (Figure 10b), obtained on the precision hydrogen
analyzer AV-1 (see Polyanskiy (2005)) qualitatively coincide with theoretical
curves (Figure 10a). Here q(t) is the change rate of the concentration of
bonded hydrogen in the cross section.

Example: approximate analytical solution. Suppose that the lattice
structure does not initially contain bonded hydrogen and mobil hydrogen is
distributed in the material as follows

nH0
−∣∣

t=0
=

Ψ

2

(
1 + cos

2πx

λ

)
,

where λ is the characteristic size of internal structure (such as the distance
between the lattice atoms). Then we can analyze (54) following the initial
conditions

nH0
+
∣∣
t=0

= 0,
∂nH0

+

∂t

∣∣∣
t=0

=
αΨ

2

(
1 + cos

2πx

λ

)
. (55)

Here Ψ is the limit value of the bonded hydrogen density. We seek a solution
in the form

nH0
+ =

Ψ

2

(
1 + cos

2πx

λ

)
q(t), (56)

and q(t) satisfies the equation:

q̈ +
[
α+ β + γD(ε0)

]
q̇ + βγD(ε0) q = 0, q

∣∣
t=0

= 0, q̇
∣∣
t=0

= α (57)

where γ = (2πcH)2/3kλ2. Solving equation (57) by assuming that β ≪ α
and α≪ γD(ε0), we obtain

nH0
+(x, t) =

αΨ

2
(
α+ γD(ε0)

)(1 + cos
2πx

λ

)[
1− exp

{
− (α+ γD(ε0))t

}]
.

(58)
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Figure 12. Behavior of concentration of the bonded hydrogen at a tension
of a sample depending on the enclosed strain (a), the diagram of strain-stress
in view of influence of the bounded hydrogen (b).

Averaging with respect to x, we find the simplified expression of N+
H0

nH0
+ ≈ αΨ

α+ γD(ε0)
. (59)

For the small deformations we can assume that the value of the flow cross
section D is linearly dependent on ε0 and

D(ε0) = D0 −D1ε0, D1 > 0. (60)

Then the larger is the deformation, the smaller is the value of D. When
ε∗0 = D1/D0 we have D = 0 and any diffusion of mobile hydrogen becomes
impossible, so it goes into a bonded state. The behavior of concentration
of the bonded hydrogen at a tension of a sample depending on the enclosed
strain ε0 (ε10 < ε20 < ... < ε∗0) is shown in Figure 12a.

Stress-strain diagram. Suppose that we have a limiting concentration
of the bounded hydrogen Ψ ≫ κ, where κ = EH/E0 (in particular, for steel
Ψ ≈ 10−6, κ ≈ 10−7 ÷ 10−8). Substituting (59) and (60) into (50) yields

σ0 ≈ κE0ε0

κ + αΨ/
[
α+ γ(D0 −D1ε0)

]
.

(61)

Defining the extrema of the function σ0(ε0) we get the critical points of the
stress–strain diagram

εcr0 ≈ ε∗0

[
1−

√
αΨ

κγD0

]
, ε∗0 = D0/D1.

28



It should be noted that we obtain the equation of state (61) assuming that
the induced strains connected to reorganization of internal structure can be
neglected compared with the homogeneous static field of the strains ε0.

Figure 12b shows the qualitative representation of the stress–strain di-
agram, calculated by (61), corresponding to steel and titanium. The part
of σ0(ε0) dependence with dσ0/dε0 < 0 can not be realized. The growth of
ε0 > εcr0 results in hydrogen embrittlement and destruction. However the
hydrogen saturation leads to decreasing of the breaking point σc

0r. Similar
σ(ε) curves were observed in the experiments with titanium alloys having
large hydrogen concentration and in high-strength steels under various im-
mersion times in NH4SCN solution (see Takai and Watanuki (2003)).

It should be mention that the dependence (61) is looplike and thereby
predicts the first-order phase transition into hydride phase under the load.
The stress–strain equation of state (61) agrees well with the corresponding
results of the model developed on the basis of statistical mechanics Indeitsev
and Osipova (2011).

4.3 Conclusion to section 4

The two-component model of the material, in which atomic hydrogen
dissolved, has been constructed. It has been shown that the stress-strain
equation of state of the hydrogenated metal is shaped like the Van der
Waals loop; therefor, brittle hydride regions are nucleated in metal by the
mechanism of the first-order phase transition. This allows us to describe
the kinetics of hydrogen in metals, to estimate hydrogen transition from the
mobile into the bonded state depending on the stress state.

5 Conclusion

Dynamics of the material with complex internal structure has been inves-
tigated within a two-component continuum model. The approach which
allows us to describe internal evolution processes in materials basing on the
Euler equations and the mass balance equations containing source terms
has been proposed. The influence of exchange mass between the compo-
nents on the internal structure of the materials has been investigated. The
source terms determining the mass transfer between material components
have been defined. Examples – structured liquids in nanochannels, metals
with dissolved hydrogen – have been considered.

Acknowledgements. This work is supported by the Russian Foundation
of Basic Research (grant number 13-01-00349).

29



Bibliography

G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York, 1974.
M. Reiner, Rheology, Springer-Verlag, Gottingen Heidelberg, 1958.
V.A.Palmov, Vibrations of elastoplastic bodies, Heidelberg: Springer, 1998.
L.G. Loitsyansky, Mechanika zidkosti i gaza (Fluid and gas mechanics),

Moskva, Nauka, 1987.
G. K. Batchelor Introduce to fluid dynamics, Cambridge University Press.

1967
S.L. Sobolev, Transport processes and traveling waves in systems with local

nonequilibrium, In Sov. Phys. Usp., pages 217–229, 1991.
S.L. Sobolev, Local non-equilibrium transport models, Phys. Usp., pages

1043–1053, 1997.
R.I. Nigmatulin, Dynamics of Multiphase Media, Hemisphere, N.Y., 1990.
D.A. Indeitsev, V.N. Naumov, B.N. Semenov and A.K. Belyaev, Indeit-

sev D.A. Thermoelastic waves in a continuum with complex structure,
InZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, page
279–287, 2009.

C. Drummond and J. Israelachvili, Dynamic Phase Transitions in Confined
Lubricant Fluids under Shear, Phys. Rev., 041506, 2001.

D. Gourdon and J. Israelachvili, Transitions between Smooth and Complex
Stick Slip Sliding of Surfaces, Phys. Rev., 021602 2003.

P. Thomson and M. O. Robbins, Shear Flow near Solids: Epitaxial Order
and Flow Boundary Conditions, Phys. Rev., 6830–6837 1990.

B.V. Deryagin, B. V. Zheleznyi, Z.M. Zorin, et al., Properties of Fluids
in ThinQuartz Capillaries, Surface Forces in Thin Films and Colloid
Stability (Nauka, Moscow), pages 90–94, 1974 (in Russian).

M. P. Allen and D. J. Tilesly, Computer Simulations of Liquids, C larendon
Press, Oxford, 1989.

A.K. Abramyan, N.M. Bessonov, D.A. Indeitsev, L.V. Mirantsev Influence
of the confining wall structure on the fluid flow in nanochannels, Me-
chanics of Solids, pages 379–389, 2010.

A.M. Polyanskiy, V.A. Polyanskiy and D.B. Popov-Diumin Diagnostics
of mechanical condition of structural material by method of high-
temperature hydrogen vacuum-extraction, In Proceedings of the Sixth
International Congress on Thermal Stresses, Vienna, Austria, pages 589–
592, 2005.

D.C. Ahn, P. Sofronis, R.Jr. Dodds Modeling of hydrogen-assisted ductile
crack propagation in metals and alloys, Int. J. Fract., pages 135–157,
2007.

P.A. Zhilin, Advanced problems in machanics, Petersburg: Edition of the
Institute For Problems in Mechanical Engineering of Russian Academy
of Siences, 2006.

30



D.A. Indeitsev, B.N. Semenov About a model of structural-phase transfor-
mations under hydrogen influence, Acta Mech., pages 295–304, 2008.

A.M. Krivtsov and N.F. Morozov, Anomalies in mechanical characteristics
of nanometer-size objects, Doklady Physics, pages 825–827, 2001.

D.A. Indeitsev and E.V. Osipova, A statistical model of hydride phase for-
mation in hydrogenated metals under loading, Doclady Physics, pages
523–526, 2011.

K. Takai, R. Watanuki Hydrogen in trapping ttates innocuous to environ-
mental degradation of high-strength steels, ISIJ International, pages 520–
526, 2003.

31


