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Highlights
Coarse–grained model based on rigid grains interaction for single layer molybdenum disulfide
A.Yu. Panchenko,E. A. Podolskaya,I. E. Berinskii

• Models based on rigid grains are much less time consuming than atom-based models
• The same form of potential of interaction can be used both for grains and atoms
• Rigid grains model correctly simulates elastic properties of SLMoS2 at small strain
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ABSTRACT
Single–layer molybdenum disulfide (SLMoS2) is a promising two–dimensional material with a
wide range of possible applications in NEMS. Traditional molecular dynamics (MD) simulations of
SLMoS2 are very time–consuming and cannot be applied to the real microscopic–level systems. We
develop a coarse–grained model combining the atoms of crystal lattice into rigid ‘grains’. The interac-
tion between the grains is based on Stillinger–Weber potential with parameters recalculated to fulfill
the elastic properties of the original lattice. The model is applied to calculate the phonon spectrum
and for the nanoindentation problem. It is shown that in the case of small strains the model is as ac-
curate as regular MD simulations, but uses much less interatomic interactions; hence, it is much more
time–efficient.

1. Introduction
Single–layer molybdenum disulfide (SLMoS2) has re-

cently emerged as a promising 2D material due to its ex-
ceptional mechanical and piezoelectric properties. Unlike
graphene, the most famous 2D material consisting of carbon
atoms combined in one planar layer, SLMoS2 is a part of
hexagonal close-packed (HCP) structure, having three lay-
ers in the orthogonal direction. The structure leads to the
difference of properties of this two materials, as it is dis-
cussed in the review paper of Jiang [8]; for example, the
Young modulus of SLMoS2 reported to be equal Y = 180
N/mwhich is smaller than that of graphene (Y= 335.0N/m).
However, the bending rigidity of SLMoS2 is much higher
as well as its Q-factor (ability to preserve the oscillations).
Also, whereas graphene has an outstanding electrical con-
ductivity, SLMoS2 is a semiconductor with a direct band
gap which makes it applicable for single–layered nanoelec-
tronic devices such as transistors [14] and memory cells [4].
The combination of these properties gives opportunities for
using the single-layer molybdenum disulfide in nanoelec-
tromechanical systems (NEMS).

NEMS developing is not possible without the accurate
computational simulations. Usually, molecular dynamics sim-
ulations are used to describe large displacements and strains
of SLMoS2 during the stretching [11] ormechanical indenta-
tion [15, 20]. Often, the Stillinger-Webber (SW) potential is
applied for such kind of simulations. This potential allows to
describe the non–linear mechanical effects, but keeps the nu-
merical simulations at a relatively fast level. Unfortunately,
such kind of simulations are still very time-consuming, so
many phenomena of large-sized SLMoS2 usually observed
in nanomechanical experiments cannot be theoretically in-
vestigated using standard MD methods. To overcome these
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issues, the coarse–grained approach was proposed in [18] to
simulate folding of single-layer MoS2 modeled as a chain of
grains. The interactions between the grains were described
using various simplified potentials with the parameters de-
rived from the SW potential for the original MoS2 structure.The advanced 2D model was proposed in [19]. In this work,
the original atomic structure is substituted by the structure
of the bounded grains, such that every grain corresponds to
the specific number of theMo or S atoms and the hexago-
nal structure is maintained. The grains are interacting with
the SW potential as well as in original atomic structure, but
new parameters are determined basing on valence force field
(VFF) model.

We propose another way to simulate the atomistic struc-
ture using the coarse-grained (CG)modeling: we do not sub-
stitute one lattice by another one, instead, we combine atoms
of the lattice into ‘grains’. The grain combines three unit
cells of the SLMoS2 hexagonal close-packed (HCP) struc-
ture, which is infinite in the plane of transverse isotropy and
has only three layers in the orthogonal direction. The top and
bottom layers are occupied by sulfur (S) and the medium
layer consists of molybdenum (Mo). As a result, the grains
form a two-dimensional triangular lattice. Unlike previous
approaches, we consider the grains not as material points,
but as the rigid bodies, taking their rotational degrees of free-
dom into account. In this case, a specific potential has to be
developed to add torques arising between the grains to the
forces of interaction. Such type of potential was used before
for the original SLMoS2 crystal lattice [3], but not for the
CG structure.

The paper is organized as follows. First, the grains in
lattice are introduced and the forces and torques between the
grains are calculated using the potentials of interaction be-
tween the atoms. Then, the parameters of SW potential are
re-calibrated so that new material fulfills the elastic moduli
of the original lattice. Then, the test problems are consid-
ered: phonon dispersion and nanoindentation.
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Figure 1: Crystal lattice of MoS2, visualized using OVITO
software [16]

Figure 2: Pair of interacting grains of MoS2

Figure 3: Grains in MoS2 lattice

2. Grains in MoS2 and their interaction
The structure of SLMoS2 is geometrically imperfect, as

the distance between Mo and S is smaller than distances
Mo − Mo and S − S. Each Mo has twelve neighboring
atoms, i.e. sixMo in the plane of isotropy and six S above
and beneath (Fig. 1). We choose grains in the lattice in such
a manner, so that any of them contain 3 atoms ofMo and 6
atoms of S (Fig. 2). The grains are considered as the rigid
bodies, so atoms are ‘freezed’ inside the grain. As a result,
the center of mass of the grain is located in the center of
the hexagonal prism and the inertia tensor�i has a diagonalform (1):

m = 480.248 u

�i =
⎛⎜⎜⎝

1257.96 0 0
0 1257.96 0
0 0 1525.39

⎞⎟⎟⎠
uÅ2

(1)

Even such small grains approach leads to the reduction

of the number of calculated interactions: the number of in-
teractions per grain decreases from 9 to 6 forMo−Mo, from
18 to 12 for S − S, from 18 to 6 forMo − S, from 27 to 15
forMo−S −S, from 18 to 12 for S −Mo−Mo. It should
be noted that for 12 three-atom interactionsMo−S−S and
12 S −Mo −Mo a pair of atoms belong to the same grain,
and the distance between them remains constant, which also
further reduces the number of calculated values. Thus, on
average, the number of calculated interactions decreases by
the factor of 1.76. When atoms are combined into a grain,
the number of degrees of freedom decreases from 27 to 6 per
grain. However, 70% of the calculation time is consumed by
the calculation of interactions, thus, the calculation acceler-
ation upon transition to grains is approximately 1.7 times. It
should also be noted that the size of the grain can be scaled
so that the shape of the grain will be preserved. For example,
seven grains shown in Fig.3 can be combined into the one,
which will significantly decrease the interactions number.

We are going to determine the potential of interaction be-
tween the grains. First, we will obtain the forces and torques
acting on the grain relative to its center of mass. To do it,
let us consider the interactions between the specific atoms.
First, consider the pair bonding. The potential of interac-
tion can be represented as a function of the position vector
Π��(r��) between two atoms (see (36) in Appendix for the
details). The parameters of the potential B, �, a, and " are
different for three types of interaction: Mo −Mo, S − S,
andMo− S. The distance between two particles � and � is
given by

r�� = |r�� |, r�� = r� − r� (2)
Here and after, vectors and tensors are denoted by the bold
symbols. The force of pair interaction F2ij acting to the grain
i from the grain j can be found as a sum of forces F2� actingto the atoms � from the atoms �, where � = 1, 4, 5, 6, 7 and
� = 2, 3, 8, 9. Consider F2�:

F2� = −
∑
�

)Π��
)r�

=
∑
�

)Π��
)r��

=
∑
�
F2�� , (3)

where it is denoted that F2�� =
)Π��
)r��

. Hence, the total force

F2ij = −F
2
ji = F

2
Mo−S + F

2
Mo−Mo + F

2
S−S , (4)

where
F2Mo−S = F

2
18 + F

2
19, F2Mo−Mo = F

2
12 + F

2
13

F2S−S = F
2
48 + F

2
68 + F

2
59 + F

2
79

(5)

Now let us determine the torques between the grains. Let
us define ri as a vector directed to the center of mass of the
grain i. The torque acting to the grain i from the grain j and
calculated relative to the center of mass of i is

M2
ij =

∑
�,�
ri� × F2�� =

∑
�,�
ri� × F2�� (6)
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For our specific � and �
M2
ij = ri1 × (F

2
18 + F

2
19 + F

2
12 + F

2
13)+

ri8 × (F248 + F
2
68) + ri9 × (F

2
59 + F

2
79)

(7)

Considering a torque acting to the second grain one can ob-
tain

M2
ji = −rj1 × (F

2
18 + F

2
19 + F

2
12 + F

2
13)−

rj8 × (F248 + F
2
68) − rj9 × (F

2
59 + F

2
79)

(8)

One can notice that the distance between the centers ofmasses
of grains can be represented as

rij = ri1 − rj1 = ri8 − rj8 = ri9 − rj9. (9)
Using this one can check that (7) and (8) satisfy to the 3rd
Newton’s law for torques:

M2
ij +M

2
ji = rij × F

2
ij (10)

As a second step the three–body (angle bending) interaction
Π3�� (r�� , r� )was taken into account (see (37) in Appendixfor the details). The interaction energy between two grains
is found as

Π3 = Π3Mo−S−S + Π
3
S−Mo−Mo,

Π3Mo−S−S = Π
3
189 + Π

3
179 + Π

3
159 + Π

3
168 + Π

3
148,

Π3S−Mo−Mo = Π
3
812 + Π

3
813 + Π

3
912 + Π

3
913

(11)

The three–body potentials of interactionΠ3�� (r� , r� , r ) havethe form (37), where
r�� = r� − r� , r� = r − r� ,

cosΘ�� =
r�� ⋅r�
r��r�

, r = |r|. (12)

Next, we calculate the forces acting to the grains i and j
caused by these interactions. Consider the force acting to
the central particle � due to a single interaction Π�� :

F3� = F
3
� + F

3
 , F3� =

)Π3��
)r��

, F3 =
)Π3��
)r�

. (13)

Using this, it is possible to calculate the sum of the forces
acting to the grain i:

F3ij = F
3
1 + F

3
4 + F

3
5 + F

3
6 + F

3
7. (14)

From (13) follows that the contribution from the 3–body in-
teraction to the atoms 4 − 7 is zero because of the fixed
distances between the respective atoms and atom 1. Con-
sequently

F3ij = F
3
1 = F

3
Mo−S−S + F

3
S−Mo−Mo, (15)

where
F3Mo−S−S =

)(Π3148+Π
3
168+Π

3
189)

)r18
+

)(Π3159+Π
3
179+Π

3
189)

)r19

F3S−Mo−Mo =
)(Π3812+Π

3
813)

)r18
+

)(Π3912+Π
3
913)

)r19

(16)

Consideration of the force acting to the second grain gives
F3ji = F

3
2 + F

3
3 + F

3
8 + F

3
9. (17)

It may be noted, that the contribution from the 3–body inter-
action to the atoms 2 and 3 is zero, so finally

F3ji = F
3
8 + F

3
9. (18)

Using this with (13) it is easy to check that
F3ij = −F

3
ji. (19)

Calculation of the torque M3
ij is possible after defining

the direction of the interatomic 3–body forces. It can be
noted, that atom of Mo with index 1 participates in all in-
teractions (see Fig.3). From (13) and (44) it follows, that
any force F1�� can be represented as

F1�� = �r1� + �r1� , (20)
where � and � are the coefficients that can be determined
from (13). The similar relations can be obtained for F�1� .Due to this, the directions of the forces are connected with
the atom 1, hence the torque can be found as
M3
ij = ri1×F

3
1+ri1×F

3
4+ri1×F

3
5+ri1×F

3
6+ri1×F

3
7. (21)

As it was mentioned above, some of these forces are equal
to zero, so

M3
ij = ri1 × F

3
1 = ri1 × F

3
ij (22)

In turn, the three–body torque acting to the other grain
with respect to its center is

M3
ji = rj1 × F

3
2 + rj1 × F

3
3 + rj1 × F

3
8 + rj1 × F

3
9 =

rj1 × F38 + rj1 × F
3
9.

(23)
Taking (19) into account, it is possible to obtain the connec-
tion between the torques:

M3
ij +M

3
ji = (ri1 − rj1) × F

3
ij = rij × F

3
ij . (24)

One can notice that in this case the third Newton’s law for
the torques is also satisfied.

3. Simulation technique
3.1. Dynamics of the grains

The forces and torques defined in the previous section are
applied for the particle dynamics simulations. Themain idea
of the simulations method is close to the discrete [6] and dis-
tinct [12] element methods and other generalizations of clas-
sical molecular dynamics. As it was noted earlier, grains are
simulated as the rigid bodies with the masses and moments
of inertia determined by (1). The position of the center of
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mass of a specific grain i is determined by the solution of
the following equation of motion:

miüi =
∑
i≠j

(
F2ij + F

3
ij

)
, (25)

Rotation of the grain i is described as
�i ⋅ (!i)̇ =

∑
i≠j

(
M2
ij +M

3
ij

)
, (26)

where !i = !iwi is an angular velocity. A unit vectorwi de-termines the axis of rotation at current time step. The com-
ponents of angular velocity vector can be found from inte-
gration of (26). Using it, we apply the quaternions formal-
ism [2] to calculate a new orientation of the grain. Rotation
around the vector wi is calculated at each time step dt using
quaternions qi:

qi(t + dt) = qi(t) ∗ dqi,

dqi = cos
(
!idt
2

)
+ wi sin

(
!idt
2

)
.

(27)

For small rotations, this formula can be simplified:

dqi = 1 −
1
2

(
!idt
2

)2
+ !i

dt
2
. (28)

Additionally, quaternion qi is normalized at every step.
We define vectors ri� as the position vectors connectingthe i grain’s center of mass with theMo and S atoms inside

this grain noted with � index. These vectors can be deter-
mined by the following relation

ri�(t + dt) = qi ∗ ri�(t) ∗ q−1i . (29)
The equations (25) and (26) are integrated at each step

using leap–frog algorithm [1].
3.2. Elasticity of the CG–lattice

In this section, we determine the parameters of interac-
tion. As the grains are rigid, the overall stiffness of the lat-
tice increased and we cannot use the original SW potential.
Instead we need to redefine its parameters. In order to deter-
mine the components of stiffness tensor we need to solve a
set of problems in which the material is subject to homoge-
neous strain field with one non-zero component. We write
the Hooke’s law in the form

Δ�kl
Δ"ij

= 1
2
(
Cklij + Cijkl

)
, i, j, k, l = x, y, z, (30)

where "ij and �kl are the components of strain and Cauchy
stress tensors respectively, and Cijkl are the components of
stiffness tensor. The problems are solved using central dif-
ferences for "ij = ±10−5, and consequently Δ"ij = 2 ⋅ 10−5.The boundary effects in the plane of isotropy are eliminated

by introduction of periodic boundary conditions, whereas
the upper and lower boundaries are free.

Further, Voigt notation is introduced for the stiffness ten-
sor indices: xx is replaced by 1, yy and zz are replaced by 2
and 3 respectively, whereas yz, xz and xy become 4, 5 and
6.

The non-zero components of stiffness tensor are deter-
mined by the appearance of non-zero components of stress
tensor as the result of the imposed strain. Note, that instead
the original complex 3D lattice the coarse-grained lattice of
grains is two–dimensional triangular one. A lattice of such
kind is isotropic, so its tensor of stiffness has only 5 non-zero
components: C11 = C22, C12 = C21, and C66. These com-
ponents were calculated for the original lattice using the SW
proposed in [9](see Tab 1). We use the Cauchy stress tensor
calculated as

� = 1
2V

∑
�

a�F� , (31)

where V is the actual unit cell volume, F� are the respec-
tive interatomic forces, and a� are the vectors connecting
the given atom with its neighbors (see e.g. [3, 7] and the
references therein)

A Simulated Annealing (SA) algorithm [5] was used to
determine the parameters of the SWpotential using the known
values of the stiffness tensor. The idea of the algorithm is the
following. At each time step, the algorithm randomly selects
parameters of SW potential ", a and B close to the current
ones. Then, a sum of absolute values of relative parameters
deviations is calculated:

f (Cij) =
∑
ij

|C1ij − Ccurrentij |
C1ij

, (32)

where C1ij are the components of stiffness tensor for origi-
nal SLMoS2 lattice with parameters of Stillinger-Weber po-
tential [9]. Our goal is to find a minimum of this function.
Based on the new value of the function, the algorithm de-
cides whether to accept the new parameters or to stay with
the current solution. The obtained elastic components and
their relative deviation from the C1ij are shown in Tab. 1.
Here C2ij are the values calculated for the coarse–grained
lattice with the original SW parameters, and C3ij are those
obtained with the parameters optimized using the SA algo-
rithm.

The corrected SWpotential parameters for coarse–grained
model are given in Table 2.

4. Applications
We have developed a CG–model of SLMoS2 and the pa-rameters of interaction between the grains have been deter-

mined. The next step is to check the possible applications
of the model for two test problems: (i) determination of the
phonon spectrum of the lattice, and (ii) nanoindentation ex-
periment.
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C1
ij , GPa C2

ij , GPa Relative error, % C3
ij , GPa Relative error, %

C11 284 644 124 284 0
C12 82.3 168 104 73.2 11
C66 101 238 135 105 4

Table 1
Components of stiffness tensor of the lattice. C1

ij for atomic SLMoS2 with parameters of
SW potential [9], C2

ij for grain–structured SLMoS2 with parameters of SW potential [9],
C3
ij for grain–structured SLMoS2 with new parameters (Tab. 2).

", eV �, Å a B �  cos(Θ0)
Mo −Mo 2.4436 0.6097 7.54817 119.751 0 0 0
S − S 4.1082 0.6501 6.06338 103.629 0 0 0
Mo − S 3.0014 0.7590 4.38728 37.8703 0 0 0

Mo − S − S 3.0014 0.7590 4.38728 37.8703 1.02384 0.872786 0.1525
S −Mo −Mo 3.0014 0.7590 4.38728 37.8703 1.02384 0.872786 0.1525

Table 2
Re-calibrated Stillinger-Weber potential parameters.

4.1. Phonon spectrum
The parameters of the model were determined using the

quasistatic approach based on elastic properties calculations.
A phonon spectrum determination can be used to validate the
system dynamics. Phonon spectrum of the coarse–grained
lattice is measured using an approach based on molecular
dynamics simulations [10]. Note, that the general approach
proposed in [10] can be simplified in our case. Indeed, the
grains in SLMoS2 crystal form a 2D triangular lattice. The
primitive cell of such lattice is simple. As a result, the optical
waves degrade, and the resulting phonon spectrum has only
three acoustic waves.

The displacements in the reciprocal space are defined as
the Fourier transform of displacements in the real space

u(q) = 1√
N

∑
i
ui exp−iq⋅ri (33)

whereN is a number of grains, ui is a displacement of grain
i, q is a wave vector.

The Green’s tensor is calculated as a time average of the
tensor product u(q) with a complex conjugate u∗(q)

G(q) = ⟨u(q)u∗(q)⟩ (34)
Finally, the dynamical tensor D(q) is inverse to G(q)

multiplied by the coefficient:
D(q) = 1

m
kBT

[
G−1(q)

] (35)
where kB is the Boltzmann constant, and T is the tempera-
ture.

Phonon dispersion curves are obtained by solving the
eigenvalues problem for D(q) for different q. The results
are shown in a Fig. 4.

Even though we consider the phonon spectrum of grains
instead of atoms, we obtain a good agreement with the ex-
perimental results. The lower and upper curves give a good

Figure 4: Phonon spectrum for grain–structured SLMoS2 with
the new parameters (Tab. 2)

approximation of experimental data from [17]. The middle
curve varies significantly from the experimental data in case
of long waves, but the difference decreases at higher values
of the wave vector.
4.2. Nanoindentation

Acircular region around central grainwith radius of 100Å
was chosen for indentation procedure on a square plate of
SLMoS2 (see Fig. 5). All grains beyond this radius were
fixed both in terms of translational and rotational degrees
of freedom. Grains, that were within 10Å radius from the
indenter center, were assumed to interact with the indenter
by a repulsive force like Lennard–Jones repulsive term. The
spherical indenter was initially placed 10Å above the upper
border of the plate and was moving with constant velocity of
0.1Å∕ps along z-axis. Temperature of the system was sus-
tained equal to 0.2K . These conditions are similar to those
in calculations made by Wang [20] and Pang [13] for atomic
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(a)

(b)

(c)

(d)
Figure 5: Simulation of nanoindentation in SLMoS2 using CG–
model. Top view (a), isometric view (b), side view (c). The
color corresponds to a �xx stress (d).

Figure 6: Indentation procedure of SLMoS2

SLMoS2 with REBO potential. The only difference lies in
the indenter velocity, that was equal to 0.2Å∕ps in [13].

Figure (6) shows the comparative results of the inden-
tation carried out in this work (black circles), in [20] (blue
triangles) and in [13] (red squares). At the first stage of in-
dentation, the behavior predicted by our simulations is simi-
lar to that of [13]. After the deflection � < 20Å the deviation
between the atomistic and coarse–grained models increases.
The maximum possible deflection given by coarse–grained

model is about 29Å which is lower than the one given by
Wang model (∼ 37Å) or Pang model (∼ 41Å). This effect
has the following explanation. Although the overall stiff-
ness of the CG–lattice and atomic lattice are the same, on
a microscopic level they are different. The grains in CG–
lattice are rigid, so the bonds between them must have larger
elongations than the corresponding bonds in atomic lattice.
This leads to the higher stresses in the bonds and as a re-
sult, decreases the critical deflection of indentation. Thus,
CG–model, proposed in this work, is valid primarily in lin-
ear stain regime.

5. Conclusions
We developed a coarse–grained model of SLMoS2 withthe grains considered as rigid bodies. For this specific study,

the interactions between the grains were based on Stillinger–
Weber potential with the parameters re-calibrated to fulfill
the elastic properties of the original lattice. Note, that the
same approach can be used with any other potential of inter-
action. The phonon spectrum was calculated, and it shows
a good correspondence to the acoustic waves of the original
lattice.

In this work, we considered the minimal possible grains.
In this case, the number of interaction reduces almost twice.
The larger grains with the same geometry can be used for the
higher increase of the calculation speed.

The major advantage of the model is an opportunity to
combine the coarse–grained and the original lattices in one
model. For example, the original lattice can be considered
near the stress concentration points in the tasks of nanoin-
dentation or crack initiation, and the CG–lattice can bemerged
with the original on the relatively far distance from such
points. In this paper, defect–free structure has been consid-
ered. However, the defects can be introduced naturally by
adding or removing some particles from the lattice. It must
be noted that in a coarse–grained structure the minimal size
of the defect is limited by the size of the grain. If the atomic–
size defects are considered, the CG–lattice needs first to be
merged with the original lattice with the defects added to it.

The drawback of the model yields from its main feature:
the rigid grains ‘freeze’ part of the interactions. As a re-
sult, the bonds between the grains are highly elongated in
comparison with the ones in the original lattice at the same
strain, which lead to higher stresses in the CG–lattice. This
effect limits the application of the model for problems with
large deformations. However, in the small strain cases such
as elastic wave propagation, thermal tasks, and others the
model can be used successfully. A possible solution to the
aforementioned disadvantage may be considered by using
elastic grains instead of rigid ones, which is a topic of further
investigation.
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Russian Federation (grant No. MK-1820.2017.1).
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Appendix
Let us calculate the first derivatives of Stillinger-Weber

potential with respect to interparticle distance. The pair (36)
and three-body (37) interaction potentials have the form:

Π��(r��) = "A
(
B�pr��

−p − �qr−q��
)
e

[
�

r��−a�

]

, (36)

Π3�� (r�� , r� ) = "�e

[
�

r��−a�
+ �
r�−a�

]

ΔcosΘ2�� , (37)
where r�� and r� are distances between particles � and �
and � and  , respectively, and r�� ⋅ r� = r��r� cosΘ�� ,
andΔcosΘ�� =

(
cosΘ�� − cosΘ0

), whereas all the other
variables are the potential parameters, which are calibrated
for the particular material.

These functions can be simplified taking the parameters
for SLMoS2 into account, i.e. A = 1.0, q = 0, p = 4:

Π�� = "

(
B
(
�
r��

)4
− 1

)
e

[
�

r��−a�

]

, (38)

Π3�� = "�e

[
�

r��−a�
+ �
r�−a�

]

ΔcosΘ2�� . (39)
First, let us write down several auxiliary derivatives:

)r��
)r��

=
r��
r��

,
)r2��
)r��

= 2r�� ,

)r−4��
)r��

= −4r��r��−6.
(40)

Next, we obtain the following set of equalities:
) �(
r��−a�

)

)r��
= − �(

r�� − a�
)2 r��

r�� ≡ p0��r��

) �(
r�−a�

)

)r�
= − �(

r� − a�
)2 r�

r� ≡ p0�r�

)cosΘ��
)r��

= −
cosΘ��
r��2

r�� +
1

r��r�
r� ≡ n��

)cosΘ��
)r�

= −
cosΘ��
r�2

r� +
1

r�r��
r�� ≡ n�

(41)

As the result, the derivative of (36) has the form:
)Π��
)r��

= −"
[
4B�4

r6��
+ �

r��
(
r��−a�

)2
(
B�4

r4��
− 1

)]

e
�

r��−a� r�� .
(42)

Passing over to three-body potential, we can write down

)Π3��
)r��

= "�e

[
�

r��−a�
+ �
r�−a�

]

ΔcosΘ2��
) �
r��−a�

)r��
+

+2"�e

[
�

r��−a�
+ �
r�−a�

]

ΔcosΘ��
)cosΘ��
)r��

=

= p1��
) �
r��−a�

)r��
+ p2��

)cosΘ��
)r��

(43)

which finally yields to:
)Π3��
)r��

= p1��p
0
��r�� + p

2
��n�� (44)

)Π3��
)r�

= p1��p
0
�r� + p

2
��n� (45)

where

p1�� = "�e

[
�

r��−a�
+ �
r�−a�

]

ΔcosΘ2��

p2�� = 2"�e

[
�

r��−a�
+ �
r�−a�

]

ΔcosΘ��

p0�� = −
�(

r�� − a�
)2 r��

p0� = −
�(

r� − a�
)2 r�

(46)
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