
Chapter 10
Stability and Structural Transitions in Crystal
Lattices

Ekaterina Podolskaya, Artem Panchenko and Anton Krivtsov

Abstract The advance in nanotechnologyhas lead to necessity to determine strength
properties of crystal structures. Stability of a structure under finite deformations is
closely connected with its strength. In this work stability of plane triangular (sin-
gle atomic layer of FCC and HCP) and FCC lattices under finite strain is investi-
gated. Analysis and modeling based on discrete atomistic methods is proposed. The
medium is represented by a set of particles which interact by a pair force central
potential, e.g. Lennard-Jones and Morse. Direct tensor calculus is used. Dynamic
stability criterion is established: frequency of elastic waves is required to be real for
any real wave vector. The considered approach allows to describe structural transi-
tions in solids on the base of stability investigation of pre-strained crystal lattices.
The results of direct MD simulation do not contradict the results of the calculations.

10.1 Introduction

Recent advance in nanotechnology has lead to the necessity of determining me-
chanical properties of the minute objects. Due to being small in size such objects
are often without defects, thus their strength, for instance, is close to ideal. Accord-
ing to [1], ideal strength is the maximum applied stress that an object can endure.
Under this definition it is assumed that the object remains stable under minor strain
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or stress deviations along the loading path. On the other hand, it is crucial to make
sure that the object does not loose stability in terms of arbitrary minor perturbations
at each strain or stress increment. If the object is described within continuum me-
chanics approach, analysis of ellipticity of equilibrium equations is to be carried out
in order to find first failure strains [2]. However, continuum analysis is not always
valid for nanoscale objects [3], because at this level influence of internal structure
cannot be neglected. An ideal crystal lattice is one of the simplest models to consider
within atomistic approach. The theory has been developed since works of M.Born
[4], where a criterion for infinitesimal uniform deformations is established. How-
ever, it was shown in [5] that this criterion does not give adequate results if finite
deformation is imposed. Moreover, further problems appear if the deformation field
is inhomogeneous. For this case in continuum mechanics certain apparatus is devel-
oped, e.g. in [6]. As for atomistic approach, there are at least three ways to find the
solution: homogenization (long-wave approximation etc.) and application of contin-
uum methods, direct investigation of, e.g. corresponding spring system, and com-
puter simulation. There has been a number of works, e.g. [7] for FCC (face-centered
cubic) lattice under triaxial compression, which showed structural transition to BCC
(base-centered cubic). Another series of works [8; 9] is devoted to both 2D (square
lattice) and 3D (cubic lattice) structures, for which macro-(continuum) and micro-
scopic criteria are used to obtain failure surfaces, both in case of homogeneous and
inhomogeneous initial deformation. Recently, there have appeared independent in-
vestigations of graphene stability [10; 11]; its lattice should be described with more
sophisticated interaction forces.

Tensor Notation

Let us introduce the following notation concerning direct tensor calculus [2] used
in this work. Vectors are denoted by lower-case letters in boldface, e.g. a, tensors
are denoted by upper-case letters in boldface with a digit specifying the rank (if the
rank is not equal to two), e.g. 4A, and for scalars italics is used, e.g. A. No special
sign denotes tensor, or dyadic, product, i.e. ab is a dyad, abc is a third-rank tensor
etc. For scalar product symbol · is used, and abc · · · def = (c ·d) (b · e) (a · f). The

notation for the divergence of vector a is ∇ ·a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂ z
, where ∇ is Del

operator. Gradient of vector a is ∇a = ix
∂a
∂x

+ iy
∂a
∂y

+ iz
∂a
∂ z

, where
∂a
∂x

= ix
∂ax
∂x

+

iy
∂ay

∂x
+ iz

∂az
∂x

, x,y,z are Cartesian coordinates and ix, iy, iz form the corresponding
basis of unit vectors. Transposed gradient of vector a is denoted by a∇.
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10.2 Statement of the Problem

In this work mixed approach is proposed, which includes homogenization and is
similar to [10], but regards simpler objects in order to diminish computational diffi-
culty and obtain as much as possible analytically. Firstly, only simple lattices are
considered not to be distracted by sublattices-induced instabilities. Secondly, as
shown in [12], central pair force interaction is applicable for stability analysis of
close-packed lattices. Following the works mentioned in the previous section, we
do one more simplification, which is consideration of periodic, i.e. infinite, struc-
tures, thus no surface effects will be observed. We use Lennard-Jones and Morse
potentials (10.1), because they depend only on interatomic distance, they have only
2 and 3 parameters respectively and also they provide repulsion upon compression
and attraction upon stretching. For 2D case triangular lattice is regarded, which is an
atomic layer of FCC and HCP (hexagonal close-packed) lattices. For 3D case FCC
is considered, as BCC is non-close-packed, HCP is complex and others are not so
widespread as these three.

ΠM(r) = D
[
e−2θ( r

a−1)− 2e−θ( r
a−1)

]
, ΠLJ(r) = D

[(a
r

)12
− 2

(a
r

)6
]
. (10.1)

Parameters D and θ are responsible for the potential well depth and width. Near the
equilibrium position if θ = 6 Morse potential is equivalent to Lennard-Jones poten-
tial with the same values of the potential well depth and equilibrium distance a [13].
An important distinction of Morse potential from Lennard-Jones potential is that
during the compression of the material towards r = 0 the interaction force remains
finite, e.g. if θ = 6, the repulsion force has the order of 106D/a, which is preferable
for computer simulations under strong compression. In addition, rapid attenuation
of exponents in Morse potential allows us to take into account the smaller number
of coordination spheres.

The procedure of stability criterion derivation and explicit results for 2D case
can be found in [14; 15]. The main idea is as follows. Let us consider a lattice
which is infinite and without defects, not to account for boundary conditions and
inhomogeneities. Using long-wave approximation [4]

akek ≈ a0
ke0

k·
◦
∇r, (10.2)

we can write equilibrium equations in Piola form [13]

ρ0ü =
◦
∇ ·P, P =− 1

2V0
∑
k

Fka0
ke0

kek, (10.3)

where u is displacement vector, P is Piola stress tensor, a0
k and e0

k are the refer-
ence bond lengths and directions respectively, Fk, ak and ek are the current forces,
the current bond lengths and directions, ρ0 is density and

◦
∇ is Del operator, both

in the reference configuration, and
◦
∇ r is transposed deformation gradient. Then,
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let us find the first variation of (10.3) which takes the form of the following wave
equation (10.4) for arbitrary homogeneous deformation field

v̈ = 4Q · · ·∇∇v, (10.4)

where v = δu is the first variation of the displacement vector, ∇ is Del operator
in current configuration. 4Q is a fourth-rank tensor that depends on the first and
second derivatives of the interaction potential (current forces in bonds Fk and bonds’
stiffness Ck) as well as on the geometry of particle surroundings (10.5)

4Q =
1

ρ0V0

(
EΦ+4B

)
,

Φ =−1
2 ∑

k
Fkakekek,

4B =
1
2 ∑

k
a2

k

(
Ck +

Fk
ak

)
ekekekek. (10.5)

Here V0 is the unit cell volume in reference configuration, E is second rank unit
tensor.

The solution of (10.4) in the wave form is

v = v0eiωt eik·r, (10.6)

where k is wave vector and ω is frequency. Thus, for any real wave vector frequency
has to be real, i.e. ω2 > 0, so that additional minor solution v does not contain
exponential growth. This demand leads to positive definiteness of tensor D = 4Q ·
·kk which looks similar to acoustic tensor that is to be positive definite to provide
ellipticity [2], but it is not, because 4Q is not in fact equal to ∂P/∂

◦
∇r. If they were

equal, wave equation (10.5) would contain
◦
∇, not ∇. Hence, instability is associated

with exponential growth of the solution for perturbed state.

10.3 Triangular Lattice

For biaxial strain along the axes, shown in the bottom of fig.10.1, it is possible to
obtain analytical solution [14; 15] in terms of components of 4Q

Q11 > 0, Q21 > 0, Q12 > 0, Q12 > 0, B >−
√

AC,
A = Q11Q21, C = Q12Q22, 2B = Q11Q22 +Q12Q21− 4Q2

44, (10.7)

where two indices instead of four are used due to symmetry. All vectors and ten-
sors introduced in the previous section are two-dimensional. In the Fig. 10.1 the
stability regions of the 2D triangular lattice are plotted gray, ε1 and ε2 are the linear
parts of the Cauchy-Green deformation tensor, the interaction is described by Morse
potential (10.1) with θ = 6.

Page:134 job:SE_Main_file macro:svmult.cls date/time:20-Oct-2012/18:02



10 Stability and Structural Transitions in Crystal Lattices 135

Fig. 10.1 Top — stability
regions of the triangular
lattice in deformation space
ε1, ε2, Morse potential with
θ = 6. On the boundaries
positivity is lost (10.7) by:
1) Q11, 2) Q22, 3) Q21, 4)
Q12, 5) B+

√
AC, also 1), 2),

5) by Young modulae, 3), 4)
by shear modulae. Bottom
— transition from vertical
to horizontal orientation of
the triangular lattice. Digits
denote the coordinate axes.
The unit cell is gray, the
reference atom is marked by
a circle, the atoms of the 1st
coordination sphere — by
circles of a smaller radius, the
atoms of the 2nd coordination
sphere — by empty circles

To check the adequacy of these results for all configurations elastic modulae are
calculated using the formula for Cauchy stress tensor [13]

σσσ =− 1
2V ∑

k
akFkekek, (10.8)

where V =
√

3a2/2(1+ ε1)(1+ ε2) is current volume of the unit cell. It turns out
that the boundaries of stability regions correspond to the loss of positivity of Young
modulae and shear modulae (plural is due to anisotropy). Note that during the anal-
ysis it is crucial to take at least two coordinational spheres into account, despite the
cliche that if you deal with a close-packed lattice only first sphere is sufficient. As
shown in the bottom of the fig.10.1, structural transition from vertical to horizon-
tal orientation of the lattice is described within stability analysis. Consideration of
larger amount of atoms does not lead to major alterations.

Analysis similar to macroscopic [8] was carried out which showed that real ellip-
ticity condition is necessary but not sufficient (at least less sufficient, than this) for
2D case. Nearly the same results were achieved with Lennard-Jones potential. The
main difference is that this interaction provides stability during compression right
up to deformations arbitrarily close to point ε1 = ε2 = −1. This effect contradicts
the results for FCC lattice, achieved in [7].

In addition, an MD (molecular dynamical) simulation is carried out. The sim-
ulation technique is described in [13]. For a series of deformed configurations we
perform the following computational experiment. As the initial condition, we con-
struct a triangular lattice in the deformed state with periodic boundary conditions,
that account for infinite lattice. The interaction is described by means of the same
Morse potential. The initial kinetic energy of the particles does not exceed 0.0002D.
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The system evolution is described by the solution of the Cauchy problem for the set
of ordinary differential equations

mr̈k =
N

∑
n=1

F (|rk− rn|) rk− rn
|rk− rn| , (10.9)

where N is the number of particles, m is the particle mass, and rk is the radius-
vector of the kth particle. If further we observe oscillations of the kinetic energy
around a certain value not exceeding 0.0002D, we conclude that this configuration
is stable. If we observe a sudden growth of the kinetic energy, the deformed con-
figuration is considered unstable. A very good agreement with analytical results is
observed. However, in MD one can only distinguish between 100% unstable cases
and cases, when instability has not been reached. In addition, the more accurate re-
gions’ borders are needed, the longer lasts the calculation. Stable regions endured
3 ·105 integration steps, whereas others — not more than 105 steps, excluding bor-
der zones. MD experiment shows, what exactly happens after stability is lost: either
the material may become liquid, or a crack may appear (see Fig. 10.2).

Similar results were achieved for deformation including shear [15], described by
deformation gradient with the following affine transformation

r
◦
∇∼

(
1+ ε1 tgϕ21

0 1+ ε2

)
. (10.10)

There are only three elements in the tensor (10.10) in order to exclude solid-body
rotations from consideration.

Fig. 10.2 Unstable configura-
tion after 105 (left) and 3 ·105

(right) integration steps. Black
ovals mark “crack” initiation
zones

10.4 FCC Lattice

In 3D case more or less analytical results can be obtained only for diagonal affine
transformation, whose eigenvectors coincide with axes of cubic symmetry, and are
partially presented in [16]

r
◦
∇∼

⎛
⎝1+ ε1 0 0

0 1+ ε2 0
0 0 1+ ε3

⎞
⎠ . (10.11)
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10 Stability and Structural Transitions in Crystal Lattices 137

We use Morse potential, because Lennard-Jones allows infinite compression
which contradicts [7]. Three coordinational spheres are considered, because the dis-
tance between the reference atom and the atoms of the third sphere is the same
as the distance between the reference atom and the atoms of the second sphere in
triangular lattice. Positive definiteness of tensor D, i.e. stability, is ensured if

D11 > 0, D11D22−D12D21 > 0, detD > 0. (10.12)

Left parts of (10.12) are homogeneous functions of wave vector components of
degree two, four and six respectively, and contain only even degrees. Inequalities
(10.12) should hold for any real wave vector. In this case we cannot fully exclude
wave vector components from consideration and obtain stability criterion only in
terms of components of 4Q. However, first of all, we have a necessary condition of
I1 positive definiteness. Moreover, we can write a series of sufficient conditions by
extracting quadratic forms from left parts of inequalities (10.12). Then, for those
cases, when only necessary condition shows stability, Monte-Carlo method is used.

Proposition 10.1. Suppose a homogeneous polynomial P(x,y,z) is positive for x > 0,
y > 0, z > 0. Then substitution z = 1− x− y leads to positivity of P̃(x,y) for
x > 0, y > 0, x+ y < 1.

This proposition is used to speed up the Monte-Carlo calculations, as inequalities
(10.12) contain only even degrees of wave vector components. In the Fig. 10.3 we
can observe a major stable area, which resembles 2D case, and three additional
zones, which make the region non-convex. After calculating coordinational num-

Fig. 10.3 Stability region of FCC lattice in deformation space ε1, ε2, ε3, Morse potential with
θ = 6, three coordinational spheres. Grey points — theoretical result, black points — MD result

bers of deformed lattices that form additional zones, we can conclude that they are
compressed BCC lattices.

Using Bain method [17] we can write an affine transformation from equilibrium
FCC to equilibrium BCC (see Fig. 10.4a)
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Fig. 10.4 Transitions: a from
FCC (left) to BCC (right), b
from FCC to FCC

ε1 = ε2 =
2√
3

ρBCC
ρFCC

− 1, ε3 =

√
2√
3

ρBCC
ρFCC

− 1 (10.13)

Here we need to take into account so-called “bond compression” which occurs when
more than one coordinational sphere is regarded: equilibrium distance ρ between
neighboring atoms is smaller than that of the potential.

Due to topological differences between FCC and BCC, two spheres of FCC con-
tain 18 atoms, and two spheres of BCC have only 12. Hence, if initial FCC has
equilibrium with, e.g. two spheres, stress tensor for obtained BCC will be non-zero.
This problem can be solved by cut-off interaction, e.g. [13]

F̃(r) = k(r)F(r), (10.14)

where k(r) is shape function

k(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, r ≤ b,(
1−

(
r2− b2

a2
cut − b2

)2)2

, b < r ≤ acut ,

0, r > acut

(10.15)

Here acut is the cut-off distance, b is the critical bond length, i.e. F ′(b) = 0.
Now, if we plot stress-strain diagram for cut-off smooth potential (10.14) on the

base of Morse potential, we will see, that equilibrium BCC may be gained from
equilibrium FCC by simple uniaxial compression, e.g. σ1 �= 0,σ2 = σ3 = 0 (see
Fig. 10.5 for θ = 4). Due to symmetry there are all in all three equilibrium BCC
lattices. Moreover, equilibrium BCC is unstable if θ = 6, and Lennard-Jones does
not describe BCC-zones at all, and these results correspond to [7; 18]. If we make the
potential well wider, BCC will be stable, though more spheres should be accounted
for (see Fig. 10.5). Unfortunately, BCC zones do not separate from FCC, leaving
the possibility of stable FCC-BCC transition. On the other hand, stability region
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10 Stability and Structural Transitions in Crystal Lattices 139

is non-convex (Fig. 10.5), so “Bain deformation” [17], which is accomplished by
strain, not stress, will provide an unstable zone between FCC and BCC equilibria.

Fig. 10.5 Le f t — uniaxial loading, hatching indicate stability region. Right — stability region of
FCC lattice in deformation space ε1, ε2, ε3, smooth cut-off Morse potential with θ = 4, acut = 10a.

The next step is to include shear into consideration. To get rid of as many solid-
body rotations as possible, the following transformation is used

r
◦
∇∼

⎛
⎝1+ ε1 tgϕ21 0

0 1+ ε2 tgϕ32
tgϕ13 0 1+ ε3

⎞
⎠ . (10.16)

Using Bain method [17] again, we can find six FCC lattices of the following origin
(see Fig. 10.4b)

ε1 =

√
3√
2
− 1, ε2 =

2√
3
− 1, ε3 =

1√
2
− 1, tgϕ21 =± 1√

6
, (10.17)

which may look as if we just turned one of the axis of cubic symmetry to [1,1,1]
axis.

MD simulation was carried out for triaxial strain and showed again a good agree-
ment except for the “tail” zone (see Fig. 10.3), which is due to different number of
coordinational spheres considered: the more atoms, the longer the “tail”, i.e. max-
imum compression for uncut Morse potential varies from 60% for three coordina-
tional spheres to 75%. As stated before, Lennard-Jones potential is not suitable for
MD under high compression, because of infinite forces upon infinite compression.

In addition, analysis for FCC in different axes is performed, so that triangular
lattice plane problem could be accounted for. Again, two major regions in triaxial
strain space are obtained, but their cross-sections differ from 2D results, since in 2D
study only 2D wave vectors are considered (see Fig. 10.6). Thus, we can conclude,
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Fig. 10.6 Stability region of
triangular lattice for 2D (light
gray) and 3D (dark gray)
wave vector.

that vast stability region at compression vanishes, if minor perturbations in third
direction occur.

10.5 Concluding Remarks

In this work stability analysis of infinite triangular and FCC lattices without defects
is carried out. Instability is associated with exponential growth of the solution for
perturbed state. The considered approach allows to describe structural transitions on
the base of stability investigation of pre-strained crystal lattices (see Figs. 10.1 and
10.4). FCC-BCC transition is examined, and several conclusions can be drawn. Due
to topological differences between the lattices smooth cut-off interaction force is
to be used. Lennard-Jones potential does not describe BCC zones, whereas Morse
potential is applicable if the potential well is wide enough, but this demand leads
to consideration of additional coordinational spheres. Equilibrium BCC may be ob-
tained from equilibrium FCC by simple uniaxial compression, though the whole
loading path is stable, as BCC stability zones do not separate from FCC one. On the
other hand, stability region is non-convex (fig.10.5), so “Bain deformation” [17],
which is accomplished by strain will provide an unstable zone between FCC and
BCC equilibria. Furthermore, it is shown that stability region for triangular lattice
diminishes, especially in compression zone, if 3D perturbations are imposed (Fig.
10.6). MD simulation is carried out for verification of theoretical results, and they
prove to be in good agreement.
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