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a b s t r a c t 

In the recent paper by Sokolov et al. (Int. J. of Heat and Mass Transfer 176 (2021) 121442) ballistic heat 

propagation in a 1D harmonic crystal is considered and the properties of the exact discrete solution and 

the continuum solution of the ballistic heat equation are numerically compared. The aim of this note 

is to demonstrate that the continuum fundamental solution can be formally obtained as the slow time- 

varying component of the large-time asymptotics for the exact discrete solution on a moving point of 

observation. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

In recent paper [1] ballistic heat propagation in a 1D harmonic 

rystal is considered, and the properties of the exact discrete so- 

ution for the kinetic temperature and the approximate continuum 

olution are numerically compared. The discrete solution and the 

ontinuum one can be obtained as the convolutions (see Section 2 ) 

f the initial conditions with the corresponding fundamental solu- 

ions. The exact discrete fundamental solution is [2–4] 

˜ 
 n (t) 

def = 2 J 2 2 n (2 t) . (1) 

he continuum fundamental solution [5–7] 

˜ 
 (x, t) 

def = 

H(t − | x | ) 
π

√ 

t 2 − x 2 
(2) 

atisfies a partial differential equation called the ballistic heat 

quation [6] . Here J 2 n (·) is the Bessel function of the first kind

f integer order 2 n , n is a particle number, H(·) is the Heaviside

unction, t is the dimensionless time, x is the dimensionless spa- 

ial co-ordinate ( x = n for any integer x ). The ballistic heat equa-

ion was introduced by Krivstov [5] , who considered the infinite 

ystem of differential-difference equations for covariance variables 

nd applied the procedure of continualization. 

The aim of this note is to demonstrate that the continuum fun- 

amental solution (2) can be formally obtained as the slow time- 
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arying component of the large-time asymptotics for the exact dis- 

rete solution (1) on a moving point of observation. 

. Mathematical formulation 

In this section we briefly formulate the problem concerning an 

nitial random excitation for a 1D harmonic crystal in the frame- 

ork of the two approaches to introduce the fundamental solu- 

ions, which we plan to compare. 

.1. The discrete (exact) approach 

Both solutions (1) and (2) describe the propagation of the ki- 

etic temperature in the same infinite mechanical system, gov- 

rned by the following equations and initial conditions: 

¨
 n = u n +1 − 2 u n + u n −1 , (3) 

 n (0) = 0 , ˙ u n (0) = ρn . (4) 

ere n ∈ Z , ρn are uncorrelated random quantities such that 

 ρn 〉 = 0 , 〈 ρn ρk 〉 = σn δnk ; (5) 

verdot denotes the derivative with respect to dimensionless time 

, δnk is the Kronecker delta, the angle brackets denote the math- 

matical expectation. The kinetic temperature is conventionally in- 

roduced by the following formula 

 n 
def = 2 k −1 〈 K n 〉 , (6) 
B 
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1 The question what is the best continuum approximation for a solution defined 

only at integer values of a spatial co-ordinate is discussed in book by Kunin [10] . 
here K n (t) = 

˙ u 2 n (t) 
2 is the kinetic energy of the particle with num- 

er n , k B is the (dimensionless) Boltzmann constant. 

emark 1. In this paper we discuss mostly the fundamental solu- 

ions and consider a slightly different and simpler problem formu- 

ation than the one used in [1] . In [1] , following to [4] , both the

inetic and the potential energy were initially equally excited, and, 

herefore, both initial conditions (4) were non-zero. 

Consider the particular case for ρn , namely, a random point ex- 

itation: 

n = ρ0 δn 0 . (7) 

he exact expression for the particle velocity is [2–4] 

˙ 
 n = ρ0 J 2 n (2 t) . (8) 

ccordingly, the exact expression for the mathematical expectation 

f the kinetic energy is 

 K n (t) 〉 = 

1 

2 

〈 ̇ u 

2 
n 〉 = E 0 J 

2 
2 n (2 t) , (9)

here 

 0 
def = 

∞ ∑ 

n = −∞ 

〈 K n ( 0 ) 〉 = 

σ0 

2 

(10) 

s the mathematical expectation for the initial kinetic (as well as 

he total) energy for the whole crystal in the case of point excita- 

ion. Thus, since 

 

2 
2 n (0) = δn 0 , (11) 

ormulas (6) and (9) result in 

 n (t) = k −1 
B E 0 ̃  T n (t) , (12) 

here ˜ T n (t) (the discrete fundamental solution) is defined by 

q. (1) . For t = 0 the last formula reads 

 n (0) = 2 k −1 
B E 0 δn 0 = k −1 

B σ0 δn 0 . (13) 

In more general case (5) , the solution of problem (3) –(5) can be

xpressed in the form of the discrete spatial convolution: 

 n ( t ) = 

k −1 
B 

2 

σn � ˜ T n ( t ) 
def = 

k −1 
B 

2 

∞ ∑ 

k = −∞ 

σk ̃
 T n −k ( t ) . (14) 

t is known [3,8,9] that in the case σn = const exact solution (14) of 

roblem (3) –(5) describes the process of thermal equilibration of 

he kinetic energy K ≡ K n and the potential one 

≡ �n = 

1 

2 

〈
(u n +1 − u n ) 

2 
〉
. (15) 

amely, in the last case, according to (14) one has [3,8,9] 

 = K − � = O 

(
t −1 / 2 

)
, (16) 

here L is the Lagrangian. 

.2. The continuum (approximate) approach 

The kinetic temperature propagation in the system described by 

qs. (3) –(4) can be approximately described by the ballistic heat 

quation [5,6] : 

 ̈(x, t) + 

1 

t 
˙ T (x, t) = T ′′ (x, t) . (17) 

ere T (x, t) is the kinetic temperature per unit length (a contin- 

um quantity), prime denotes the spatial derivative with respect 

o x . The corresponding initial conditions are 

 (x, 0) = T 0 (x ) , ˙ T (x, 0) = 0 . (18)
2 
he initial temperature T 0 (x ) is assumed to be a slowly varying 

unction. The solution of Eqs. (17) –(18) can be expressed in the 

orm of a spatial convolution [5,6] : 

 (x, t) = T 0 (x ) ∗ ˜ T (x, t) 
def = 

∫ + ∞ 

−∞ 

T 0 (ξ ) ̃  T (x − ξ , t) d ξ , (19)

here ˜ T is the continuum fundamental solution. Consider the case 

f a point excitation, i.e., the solution of the ballistic heat equation 

ith initial conditions 

 (x, 0) = T 0 0 δ(x ) , ˙ T (x, 0) = 0 . (20) 

he mathematical expectation for the initial kinetic energy of the 

hole crystal in the framework of the continuum approach is 

k B 
2 

∫ ∞ 

−∞ 

T 0 (x ) d x = 

k B T 
0 

0 

2 

. (21) 

he value of T 0 
0 

should be chosen in order to make problem (17) –

18) physically equivalent to (3), (4), (7) . This requirement is essen- 

ial to get the approximate continuum solution (19) close to the 

xact solution (14) . The continuum approach implicitly assumes 

hat 

• process of thermal equilibration in the case of slowly varying 

T 0 (x ) is close to one observed in the case of constant T 0 (x ) (see

(16) ); 
• the ballistic heat equation (17) becomes valid only for large 

times after equilibration, when L 
 0 . 

ccordingly, for the same physical problem the initial kinetic en- 

rgy for the whole crystal, calculated in the framework of the contin- 

um approach should be equal to a half of the initial kinetic energy 

f the whole crystal observed in the framework of the exact discrete 

pproach. In particular, considering the case of a random point ex- 

itation (7) in the framework of the continuum approach, we need 

o take initial conditions in the form of (20) , where T 0 
0 

is such that
k B T 

0 
0 

2 = 

E 0 
2 . Thus, the continuum solution, which corresponds to the 

iscrete solution (12) , is 

 (x, t) = T 0 0 
˜ T (x, t) = k −1 

B E 0 ̃  T (x, t) . (22) 

Looking at Eqs. (12) and (22) one can see that to compare the 

olutions obtained in the frameworks of the discrete and contin- 

um approaches one needs to compare the fundamental solutions 

1) and (2) . Note that since the initial temperature in the form of 

he first equation in (20) is not a slowly varying function, the con- 

inuum approach is not applicable for a point source, and the so- 

utions, generally speaking, are not close to each other. Indeed, in 

he case of point excitation, the local energy equilibration co-exists 

ith energy transport, and we can speak about the energy equili- 

ration for the whole crystal only. 

. Asymptotics 

Now we want to show that ˜ T (x, t) can be formally obtained as 

 slow component of large-time asymptotics of the corresponding 

xact discrete solution on a moving point of observation, and looks 

n some sense like a spatial average of ˜ T n (t) . The discrete solution 

1) has a physical meaning only for n ∈ Z . Thus, we can express

1) in terms of the Anger function J n (t) 1 [11] : 

 n (t) = J n (t) , n ∈ Z , (23) 

 n (t) 
def = 

1 

2 π

∫ π

−π
exp i(t sin ω − nω ) d ω , n ∈ R . (24) 
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Fig. 1. Comparing the ˜ T n (t) , ˜ T slow 
n (t) + ̃

 T fast 
n (t) and ˜ T slow 

n (t) . (a) The kinetic temperature versus the spatial co-ordinate n , (b) the kinetic temperature versus the time t . 
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ormula (1) defines an even function of n . Taking into account 

q. (23) , we can rewrite formula (1) as follows: 

˜ 
 n (t) = 2 J 2 2 | n | (2 t) . (25) 

Let us calculate the large-time asymptotics of the right-hand 

ide of (25) on the moving front 2 

 n | = V t, V = const , t → ∞ , t ∈ R , n ∈ R (26)

onsidering n as a continuum spatial variable. Here the meaning 

f the quantity V ≥ 0 is the velocity for the observation point. To 
2 This approach [12] allows one to describe running waves, wave-fronts, and to 

escribe the wave-field as a whole. 

c

c

ω

3 
stimate the right-hand side of (24) we now use the method of 

tationary phase [13] . One has 

 V t (t ) = 

1 

2 π

∫ π

−π
exp i t φ(ω ) d ω , t → ∞; (27) 

(ω ) 
def = sin ω − V ω . (28) 

he stationary points for the phase function φ(ω) are defined by 

he condition φ′ = 0 . There are no stationary points in the case V >

 , therefore integral (27) can be roughly estimated as O (t −1 ) . In the

ase 0 ≤ V < 1 the stationary points are solutions of the equation 

os ω = V, or, in the explicit form, 

 ± = ± arccos V. (29) 
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ne gets 

(ω ±) = sin ω ± − ω ± = ±
√ 

1 − V 

2 − V arccos V, (30) 

′′ = − sin ω, (31) 

′′ (ω ±) = ∓
√ 

1 − V 

2 . (32) 

ow using the formula for contribution from a stationary point 

13] , in the case 0 < V < 1 we obtain: 

 V t (t) = 

1 

2 π

∑ 

(±) 

√ 

2 π

tφ′′ (ω ±) 
exp i 

(
φ(ω ±) t + 

π

4 
sign φ′′ (ω ±) 

)
+ O (t −1 ) 

= 

√ 

2 

πt 
√ 

1 − V 2 
cos 

(
( 
√ 

1 − V 2 − V arccos V ) t − π

4 

)
+ O (t −1 ) . (33) 

hus, according to (25) , and provided that (26) is true, one has 

˜ 
 n (t) = 

2 

πt 
√ 

1 − V 2 
cos 2 

((√ 

1 − V 2 − V arccos V 

)
2 t − π

4 

)
+ O (t −3 / 2 ) 

= 

1 

πt 
√ 

1 − V 2 

(
1 + sin 

((√ 

1 − V 2 − V arccos V 
)
4 t 

))
+ O (t −3 / 2 ) . (34) 

ow we return to variables n , t , and substitute V = | n | /t into the

ast expression. This yields 

˜ 
 n (t) 
 

˜ T slow 

n (t) + 

˜ T fast 
n (t) , | n | < t; (35) 

˜ 
 

slow 

n (t ) = 

1 

π
√ 

t 2 − n 

2 
, (36) 

˜ 
 

fast 
n (t) = 

˜ T slow 

n (t ) sin 

((√ 

t 2 − n 

2 

t 
− | n | 

t 
arccos 

| n | 
t 

)
4 t 

)
. (37) 

ormula (35) yields the asymptotic decoupling of thermal motions 

s the sum of the slow and the fast motions. The right-hand side of 

q. (36) coincides with Eq. (2) provided that n = x . The comparison

etween 

˜ T n (t) , ˜ T slow 

n (t) + 

˜ T fast 
n (t) and 

˜ T slow 

n (t) is given in Fig. 1 . 

. Conclusion 

Up to nowadays it was unclear how to analytically derive the 

xpression (2) for the fundamental solution of the ballistic heat 

q. (17) basing on the fundamental solution (1) of the discrete 

roblem. In the paper we have demonstrated that Eq. (2) can 

e formally obtained as the slow time-varying component of the 

arge-time asymptotics for the exact discrete solution (1) on a 

oving point of observation. We also provide the direct procedure 

o uncouple the slow and the fast thermal motions caused by a 

oint heat source in a 1D harmonic crystal. 

We expect that the similar approach can be applied to more 

omplicated and physically significant systems, e.g., to obtain the 
4 
xpression for the slow motion related to unsteady ballistic ther- 

al transport in a 1D harmonic crystal with an isotopic defect 

such a model has been used in [ 14 ] to describe the Kapitza ther-

al resistance). 
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