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Abstract—The method of particle dynamics is used for both analytical and numerical investigation of tensor
properties of the Mie–Grüneisen equation of state for two-dimensional solids with crystalline structure. It is
demonstrated analytically that the Grüneisen function essentially depends on the ratio between the eigenval-
ues of the deformation temperature tensor, which, in this work, is determined numerically.
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Advances in nanotechnology have led to the neces-
sity of determining mechanical properties of solids
with a microstructure in a wide range of temperatures
and stress-strain states [1]. For this purpose, the Mie–
Grüneisen equation of state can be used in the case of
high pressures and temperatures. Herein, the material
parameter, i.e., the Grüneisen coefficient that rep-
resents the relationship between pressure, volume, and
internal energy, is scalar [2]. Generally, the scalar
Grüneisen coefficient may not account for the tensor
nature of the thermal stresses in crystals. The latter
becomes possible if one introduces (i) the tensor
Grüneisen function [3, 4] or (ii) the tensor tempera-
ture [5, 6]. The equations of state for crystalline solids
regarding the first concept are considered in [3], and
the second one is taken into account in [7]. The aim of
the present paper is to obtain an asymptotically exact
equation of state taking both ideas into consideration.

DERIVATION OF THE EQUATION OF STATE

The generalization of the classical Mie–Grüneisen
equation for ideal crystals of any dimension is derived
in [3]:

(1)
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where  is the unit cell’s volume,  is the stress tensor,
induced by thermal motion,  is the Grüneisen func-
tion, which is also a tensor, and  is the internal
energy of the system, calculated as the sum of the
kinetic  and potential  energies:

(2)

Here the motion of the particles is divided into
“fast” (oscillatory) and “slow” (“cold”) parts [8] and
the corresponding values are denoted by  and ;  is
the particle mass,  is the length of the velocity vector
(calculated with respect to the system’s center of
mass), and  is the interaction potential. Operator 
denotes averaging, first, over space, then, by time, and
afterwards, over the ensemble; vector ,

 connects the reference particle and the
particle with the number k, and . The zero
point of the potential energy corresponds to the sta-
tionary state, and the total momentum of the system
remains zero as the temperature increases.

The expression for the Cauchy stress tensor (3) in a
discrete system in the presence of thermal motion is
derived in [3]:

(3)

where  is the force acting on the reference particle.

For pair force interaction , where
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, and there is no summation over
repeated indices. If a lattice is stress-free before heat-
ing, then . Derivation of the equation of state [3]
is based on the Taylor expansion of expressions (2) and
(3) in the vector  and their subsequent averaging.
We restrict ourselves to the first nonzero term in the
expansion after averaging. Hence, the equations for
the thermal parts of the stress tensor and the internal
energy can be written in the following form:

(4)

(5)

where

Thus, for a simple crystal lattice in thermodynamic
equilibrium, the only unknown variable is tensor

, which will be further referred to as the defor-
mation temperature tensor.

THE DEFORMATION TEMPERATURE
AND THE GRÜNEISEN FUNCTION

Let us introduce the unit vectors of the 2-D Carte-
sian coordinate system for each bond:  is directed
along the bond,  is orthogonal to it; let us also
restrict ourselves to the interaction of nearest neigh-
bors. Then, the components of the deformation tem-
perature tensor will have a simple physical meaning,
i.e., the square of thermal deformation of the bond
along its initial direction is equal to  and

that in the orthogonal direction is . It is
obvious that due to the symmetry of the tensor

, its components in these axes are the same for
all bonds. Let

(6)

The generalized expression of the scalar Grüneisen
coefficient, which contains a variable f = Θ + 1, can
be written for the three-dimensional problem [2]. If
the tensor function [3] is used, the trace of which cor-
responds to the Zubarev–Vashchenko formula [2, 9],
the values of the internal energy and the stress tensor
components are 20 and 24% larger than those
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obtained in the present work as a result of the numer-
ical simulation, respectively. However, as the correc-
tions to these values have the same sign, the error in
the Grüneisen coefficient totals only 3%. In [7] the
coefficient f was determined using molecular dynam-
ics simulation for several values of temperature at
hydrostatic compression of the FCC lattice. Further, f
was considered only as a fitting parameter without tak-
ing into account its physical sense [10]; investigation
of the influence of deformation and temperature on f
is carried out for the problems of the Earth’s core and
mantle (at high pressure) [11].

In the present work, the method of particle dynam-
ics [12] is used to determine the coefficient Θ. We
study a square sample with a triangular lattice (11500
particles), and periodic boundary conditions1 are
used. The interaction between the particles is
described by the Morse potential:

(7)

where  is the depth of the potential well,  is the
equilibrium bond distance, and  is responsible for
the well width. Initially, the particles are placed in lat-
tice nodes, random velocities are set so that the aver-
age kinetic energy per particle is equal to ,
and the system’s center of mass remains fixed. Then,
the equations of motion are integrated using the Verlet
algorithm and the calculation step is , where 
is the period of small oscillations of an isolated pair of
particles. The cutoff radius is located between the first
and second coordination spheres, and it is equal to

.
Simulation results after averaging over space and

over 250 realizations with the same initial energy level
demonstrate that the components of the deformation
temperature tensor converge to the equilibrium value
quite rapidly (within a few periods ) with a standard
deviation of 1.1%. The off-diagonal components are
approximately three orders of magnitude smaller than
the diagonal ones; hence,  and  can be regarded as
eigenvectors of the deformation temperature tensor.
The high-frequency nature of the principal mode
allows us to limit the averaging time by several dozen

. Substituting tensor  in diagonal form into
(4) and (5) and, again, taking into account only the
nearest neighbor interaction (in this case  and 
do not depend on ), we obtain

(8)

where  is the number of particles that belong to the
first coordination sphere.

1 The sample’s volume and shape are fixed, which blocks thermal
expansion and causes thermal stresses.
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Hereinafter, let us denote the Grüneisen function,
calculated by formula (1) using the values of the inter-
nal energy (2) and the stress tensor (3) obtained during
the numerical simulation, as .

INFLUENCE OF THE THERMAL MOTION 
RATE AND STRAIN ON THE GRÜNEISEN 

FUNCTION

As a result of simulation for a stress-free triangular
lattice, the ratio between the diagonal components of
the deformation temperature tensor Θ = Θ0 =

 is obtained. It is also shown that neither
the size of the system, nor the type of the pair central
potential (the Morse potential, the harmonic poten-
tial, and the Lennard-Jones potential were consid-
ered), nor the account for the interaction with the next
coordination spheres has any influence on the value of
Θ. An increase of ten times in the thermal motion rate
leads to an increase in Θ by 4.5% (see Fig. 1). It is
demonstrated that the deviation of the spherical part 
of the Grüneisen function (8) from , obtained as a
result of the numerical simulation, also does not
exceed 4.5%; consideration of the next members in the
expansion of the deformation temperature is required
to reduce this error.

It has been discovered that a significant change in
the ratio between the diagonal components of the
deformation temperature and the Grüneisen function
is only possible at a finite uniform strain. The depen-

eΓ
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dence of these values on  for the volumetric strain
and distortion are shown in Figs. 2 and 3;  and  are
the linear parts of the right Cauchy–Green strain ten-
sor; the axes  and  correspond to the direction along
the bond of the reference particle with its the nearest
neighbor and the orthogonal direction. Tension along
the hydrostatic line (Fig. 2) leads to a decrease in coef-
ficient Θ, and the loss of stability happens due to the
strain in the longitudinal bonds; i.e., some bonds get
broken. At 80% volumetric compression, the value of
Θ doubles. This means that the deformation in the
direction orthogonal to the bonds is significantly
higher than the longitudinal deformation, i.e., shear
buckling takes place.

At the same time, due to the lattice symmetry, the
Grüneisen function is a spherical tensor.

When approaching the boundaries of the stability
region in the strain space2 along the constant volume
lines (Fig. 3), Θ tends to infinity, which also indicates
the shearing mechanism of the stability loss. Further-
more, the ratio between the diagonal components of
the Grüneisen function essentially depends not only

2 See [13, 14] on determination of the triangular lattice stability
regions in the strain space and the physical sense of their bound-
aries.
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Fig. 1. Dependence of the ratios between (1) diagonal
components of the deformation temperature Θ (in terms
of Θ0), (2) spherical parts of the Grüneisen functions 
(1)–(3) and  (8), (3) diagonal components of the
Grüneisen function  on the initial average kinetic energy
per particle (in terms of ). Here and in Figs. 2 and 3:

(1) , (2) , (3) .
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Fig. 2. Dependence of the ratios between (1) diagonal
components of the deformation temperature Θ (in terms
of Θ0), (2) spherical parts of the Grüneisen functions 
(1)–(3) and  (8), and (3) diagonal components of the
Grüneisen function  on volumetric strain. The strain
tensor eigenvectors, lattice structure with respect to the
stress-free configuration (in the center), the unit cell, and
the relation between the components of the strain tensor
are shown above the graph.
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on the strain tensor deviator but also on the stability
boundary considered. This fact demonstrates the need
for use of the Mie–Grüneisen equation of state in ten-
sor form.

CONCLUSIONS

To sum up, in the present work, the Mie–
Grüneisen equation of state for a simple two-dimen-
sional lattice is obtained in tensor form, being asymp-
totically exact at a low level of thermal motion. It is
shown that the scalar Grüneisen coefficient does not
allow us to describe the lattice state in the presence of
shear deformation; i.e., the tensor nature of the
Grüneisen function has to be accounted for. At the
same time, the ratio between the components of the
deformation temperature tensor has a strong influence
on the value of the Grüneisen function for any strain.

The developed constitutive equation can be used in
software for modeling of thermomechanical processes
in solids. The results of this work allowed us to
increase the accuracy of calculation of the stress state
by 20%.
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