
Development of Efficiently Coupled
Fluid-Flow/Geomechanics Model

To Predict Stress Evolution in
Unconventional Reservoirs With
Complex-Fracture Geometry

Anusarn Sangnimnuan, Jiawei Li, and Kan Wu, Texas A&M University

Summary

Stress changes associated with reservoir depletion are often observed in the field. Stress evolution within and surrounding drainage
areas can greatly affect further reservoir developments, such as completion of infill wells and refracturing. Previous studies mainly
focus on biwing planar-fracture geometry, which limits the possibility of investigating stress evolution caused by complex-fracture ge-
ometry. In this paper, we have developed a novel and efficient coupled fluid-flow/geomechanics model with an embedding-discrete-
fracture model (EDFM) to characterize stress evolution associated with depletion in unconventional reservoirs with complex-fracture
geometry. Coupled geomechanics/fluid flow was developed using the well-known fixed-stress-split method, which is unconditionally
stable and computationally efficient to simulate how stress changes during reservoir depletion. EDFM was coupled to the model to gain
capability of simulating complex-fracture geometries using structured grids. The model was validated against the classical Terzaghi
(1925) and Mandel (1953) problems. Local grid refinement was used as a benchmark when comparing results from EDFM for fractures
with 0 and 45� angles of inclination. After that, the model was used to analyze stress distribution and reorientation in reservoirs with
three different fracture geometries: planar-fracture (90� angle of inclination), 60� inclination, and nonplanar-fracture geometries. As the
pressure decreases, reservoir stresses tend to change anisotropically depending on depletion area. The principal stress parallel to the ini-
tial fracture reduces faster than the orthogonal one as a function of time. The decrease rate of principal stresses is distinct for different
shapes of depleted areas created by different fracture geometries. The rectangular shape produced by the planar-fracture geometry
yields the largest stress-reorientation area for a variety of differential-stress (DS) values (difference between two horizontal principal
stresses). The squared shape produced by nonplanar-fracture geometry yields stress reorientation only for low DS. The results indicate
that created fracture geometry has a significant effect on stress distribution and reorientation induced by depletion. To the best of our
knowledge, this is the first time a coupled fluid-flow/geomechanics model incorporated with EDFM has been developed to efficiently
calculate stress evolution in reservoirs with complex-fracture geometry. Characterization of stress evolution will provide critical guide-
lines for optimization of completion designs and further reservoir development.

Introduction

Stress changes associated with reservoir depletion have been considered as an important parameter when studying fracture propagation
for applications such as infill wells or refracturing. Gupta et al. (2012) studied the connection between reservoir depletion and stress dis-
tribution and found that the smaller the DS, the more likely it was for stress to reorient. Roussel et al. (2013) confirmed this phenom-
enon by studying stress evolution in the infill-well region, showing longitude fractures generated in the infill well. However, stress can
reverse back to its original orientation after a certain period of production time. Safari et al. (2015) showed that fractures created by
infill wells can curve because of stress reorientation in the field from tightly spaced horizontal wells. It was concluded that production
from infill wells can be maximized by minimizing communication between wells, which can be achieved by studying how stress evolu-
tion occurs in the field because of reservoir depletion, and optimizing fracture spacing.

To accurately predict stress evolution caused by reservoir depletion, a coupled model of fluid flow and geomechanics that is capable
of predicting stress change caused by the poroelastic effect is necessary. There are two types of models: a fully coupled method and a
sequentially implicit method. The sequentially implicit method solves fluid flow and geomechanics separately during the same timestep
and produces a smaller system of equations, resulting in lower computational time compared with the fully coupled method. As dis-
cussed by Kim et al. (2011a, 2011b, 2011c, 2013), the sequential method can mainly be divided into two main categories: solving geo-
mechanics first or solving fluid flow first. Both methods can yield either the same result or different results, depending on the type of
problem being solved. However, among the methods mentioned by Kim et al. (2011a), the fixed-stress-split method is found to be
unconditionally stable. This method was also used by Jha and Juanes (2014) to simulate multiphase flow and geomechanics of faulted
reservoirs. Wang (2014) also used this fixed-stress-split method to develop a reservoir simulator capable of simulating a complex
coupled poromechanical process on massively parallel computers.

There are many types of numerical methods that can model coupled fluid flow/geomechanics. The finite-element method (FEM) is
one such method used in many commercial software products because of its capability in solving solid mechanics equations. Simulators
used by both Roussel et al. (2013) and Gupta et al. (2012) are dependent on the FEM. However, as presented by Tang et al. (2015), the
finite-volume method (FVM), which has mainly been used in computational fluid dynamics, can be a good alternative to FEM with its
capability of handling both linear and nonlinear continuum solid mechanics (Jasak et al. 2000). A main feature of FVM is its solutions
with cell-centered bases, whereas FEM handles only solutions at the edges of elements. Tang et al. (2015) adapted FVM using Open
Source Field Operation and Manipulation (OpenFOAM) to model coupled poroelastoplasticity. The model contains both material
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nonlinearity and strong solid/fluid-coupling effects derived from implicit/explicit discretization. The developed model yields good
agreement with analytical solutions.

Although much work has been performed to investigate stress evolution caused by reservoir depletion (Gupta et al. 2012; Roussel
et al. 2013; Safari et al. 2015), one main feature that is still missing is complexity of fracture geometry. Previous studies only focus on
planar-fracture geometry, which is not always the case in the field, especially for unconventional reservoirs. Therefore, incorporating
complex-fracture geometries in the model can yield a more-accurate result in terms of stress analysis and production forecast as actual
fracture geometry in the field is being analyzed. Complex-fracture geometries can be obtained using a fracture-propagation model. In
many circumstances, complex-fracture geometries are modeled through unstructured grids with grid refinement around fractures
(Cipolla et al. 2011). However, this comes with high computational cost and instability in some cases. Li and Lee (2008) originally
developed a method called the EDFM. Xu (2015) further developed this model and incorporated EDFM into commercial simulators.
The main idea of EDFM is to use the structured-gridding discretization to explicitly model the influences of fractures through transmis-
sibility between nonneighboring cells by the definition of nonneighboring connections. In EDFM, the reservoir is discretized with struc-
tured grids and additional grids are introduced for fractures. EDFM has been improved from the dual-porosity model (Bai 1999) by
explicitly representing each fracture using an element or a control volume. EDFM is found to honor computational performance of
structured grids as well as accuracy and flexibility of explicit-fracture modeling. Coupling EDFM with the coupled geomechanics/fluid-
flow model allows the prediction of stress evolution in reservoirs with complex-fracture geometry using a structured-gridding system.
This can be useful in terms of both computational time and accuracy. Ren et al. (2017) implemented EDFM to model fluid flow on their
finite-element-base simulator (XFEM), mainly used for approximating geomechanics with a dual-porosity-hybrid model to handle
small-scale fracture networks around primary fractures in stimulated reservoir volume regions.

In this study, our main goal is to address stress evolution induced by depletion in unconventional reservoirs with complex-fracture geom-
etry, which is significantly important for infill-well treatments and refracturing. To achieve this, we have developed a 3D coupled geome-
chanics/fluid-flow model with EDFM. The model is dependent on an open source code, OpenFOAM using FVM. EDFM was implemented
on the model, resulting in the fluid flow in matrix and fracture being solved implicitly to open the possibility of simulating complex-
fracture geometry on the structured-gridding system, which is known to have high computational efficiency. The main advantage of our
model is that it is able to simulate the effect of coupled geomechanics/fluid flow on complex-fracture geometry in a multiple-fracture sys-
tem with high computational efficiency, which cannot be achieved by commercial software that requires an unstructured-gridding system,
to forecast production and study stress evolution caused by the poroelastic effect. Details of the model are introduced in the next section.

Governing Equations

Coupled Fluid Flow/Geomechanics. Coupled fluid flow/geomechanics is derived from the Biot (1941, 1955) theory, which describes
the poroelastic effect in isothermal linear isotropic poroelastic material, which can be used to model a reservoir. The governing equations
for this coupled system come from mass conservation and linear-momentum balance. Mechanical deformation can be expressed as

r � rþ qbg ¼ 0; ð1Þ

where r is the total stress tensor (Rank 2), qb is single-phase fluid bulk density, and g is gravitational acceleration. Combined with the
Biot (1941, 1955) theory, which relates fluid-pressure change to strain rate, the relationship between stress and strain with poroelastic
effect from Kim et al. (2011b) can be written as

r� r0 ¼ Cdr : e� bðp� p0ÞI; ð2Þ

1

M

@p

@t
þ b

@ev

@t
þr � V ¼ q; ð3Þ

where the subscript 0 refers to reference state, Cdr is the Rank 4 elastic tensor, I is the Rank 2 identity tensor, p is fluid pressure, b is the
Biot coefficient, and e is the linearized strain tensor, which can be written in terms of displacement as

e ¼ 1

2
ðruþrTuÞ; ð4Þ

where ev ¼ trðeÞ is the volumetric strain, V is fluid-flow rate, q is a source/sink term, M is the Biot modulus, and u is the displacement
vector containing three components. The relationship between the Biot modulus and the Biot coefficient can be shown as

1

M
¼ /cf þ

b� /
Ks

; ð5Þ

b ¼ 1� Kdr

Ks
; ð6Þ

where cf is fluid compressibility, Ks is the bulk modulus of solid grain, / is porosity, and Kdr is the drained bulk modulus, which can be
computed from the drained rock properties, such as Young’s modulus (E) and Poisson’s ratio (�). According to Kim et al. (2011b), Kdr

can be chosen to achieve an optimal convergence rate for the fixed-stress iterative coupling:

Kdr ¼
Eð1� vÞ

ð1þ vÞð1� 2vÞ : ð7Þ

Volumetric mean total stress is the trace of the stress tensor rv ¼
1

3
trr

� �
. With the relationship between volumetric stress and

strain, Eq. 2 can be rewritten as

ðrv � rv;0Þ þ bðp� p0Þ ¼ Kdrev: ð8Þ

The fluid-flow rate can be written in terms of pressure through Darcy’s law as

V ¼ � k

lf

ðrp� qbgÞ; ð9Þ
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where lf is fluid viscosity and k is matrix permeability (Rank 2 tensor). If we substitute Eq. 9 in Eq. 3, which represents the fluid-pres-
sure change caused by the strain rate, and neglect the gravitational term, we have

1

M

@p

@t
þ b

@ev

@t
� k

lf

ðr2pÞ ¼ q: ð10Þ

Eqs. 2 and 10 are called fixed-strain split (Kim et al. 2011b), in which the equations are solved in terms of strain. Fixed-strain repre-
sents the sequential method in which geomechanics and fluid-flow equations are solved separately, starting by solving Eq. 10 and then
Eq. 2 using the relationship in Eq. 1. The iteration stops when the convergence criteria are reached for both equations. As demonstrated

by Kim et al. (2011a), this method is not stable for high coupling strength s ¼ b2M

Kdr
> 1

� �
. Thus, Eq. 10 is modified by writing volu-

metric strain in terms of volumetric strength as

1

M
þ b2

Kdr

� �
@p

@t
þ b

Kdr

@rv

@t
� k

lf

ðr2pÞ ¼ q: ð11Þ

Eq. 11 is called the fixed-stress-split method and is unconditionally stable. Kdr can also be expressed in terms of the first and second
Lamé constants (k and l) as

l ¼ E

2ð1þ vÞ ; ð12Þ

k ¼ vE

ð1þ vÞð1� 2vÞ : ð13Þ

If we substitute Eqs. 11, 12, 13, and 2 in Eq. 1 and neglect the gravitational term, we can finally obtain the relationship between dis-
placements and pressure under the momentum-balance condition:

r � ½lruþ lruT þ kItrðruÞ� þ r � r0 � brpþ brp0 ¼ 0: ð14Þ

Eq. 11 can also be written in terms of displacement as

1

M
þ b2

Kdr

� �
@pn

@t
� b2

Kdr

@pn�1

@t
þ b

@ðr � uÞ
@t

� k

lf

ðr2pnÞ ¼ q; ð15Þ

where n is the current timestep and n–1 is the previous timestep. Eqs. 14 and 15 are solved through an iteration loop to obtain displacement
and pressure as shown in Fig. 1. The details of discretization and how to solve each equation will be discussed in the Numerical Model section.

Our model includes not only the zero-displacement boundary condition, but also the traction boundary condition for the geome-
chanics equation. For the traction boundary condition, displacements at boundaries are computed from the traction boundary and are
then applied to solve for the entire displacement field. The traction boundary equation is obtained by setting Eq. 1 equal to the traction
value rather than zero:

r � ½lruþ lruT þ kItrðruÞ� þ r � r0 � brpþ brp0 ¼ T; ð16Þ

where T is the traction at the boundaries.

Fully Coupled Fluid Flow/Geomechanics With EDFM. In this subsection, we implemented EDFM to our coupled model to effi-
ciently simulate complex-fracture geometry without using unstructured grids. As mentioned by Xu et al. (2016) and Du et al. (2017),
EDFM has been developed with the concept of honoring the accuracy of DFMs while keeping the efficiency offered by structured grids.
The idea is to completely separate the fracture from the matrix domain and have them communicate through transmissibility. It is worth
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Fig. 1—Diagram showing fixed-stress method for fluid-flow and geomechanics.
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mentioning that deformation inside the fracture is not considered for EDFM, and deformations from the matrix (reservoir) and the frac-
ture are combined. Both the fracture and matrix domains have the same grid size. The volume of the fracture segment (Vf) represented
in the fracture domain can be computed as

Vf ¼ Ssegwf ; ð17Þ

where Sseg is the area of the fracture segment perpendicular to the fracture aperture and wf is the fracture aperture. The pore volume of
the fracture (/f ) domain will be assigned as

/f ¼
Ssegwf

Vb
; ð18Þ

where Vb is the bulk volume of the cell assigned to the fracture segment. The next important parameter is transmissibility, which repre-
sents the flow from the fracture to the matrix domain and can be defined as

qf�m ¼ ktTf�mDp; ð19Þ

where qf–m is the flow between the fracture and the matrix cell, kt is the relative mobility, Tf–m is the transmissibility between the frac-
ture and the matrix, and Dp is the pressure difference between the fracture and the matrix cell.

For connections between two fracture cells, as discussed by Xu et al. (2016), transmissibility can be expressed as

Tf�f ¼
T1T2

T1 þ T2

; ð20aÞ

T1 ¼
kf 1wf 1Lint

df 1

; T2 ¼
kf 2wf 2Lint

df 2

; ð20bÞ

where Tf–f is the transmissibility between Fracture Cells 1 (T1) and 2 (T2); kf 1 and kf 2 are the permeability inside Fracture Cells 1 and 2,
respectively; wf 1 and wf 1 are the width of Fracture Cells 1 and 2, respectively; Lint is the length of the intersection line; and df 1 and df 2

are the weighted average of the normal distances from the centroids of the subsegments (on both sides) to the intersection line.
The transmissibility factor between the matrix and the fracture segment (Tf–m) depends on the matrix permeability and the fracture

geometry. Eq. 20a can be modified incorporating the normal vector between the fracture and the matrix as

Tf�m ¼
2Af ðK � n* Þ � n*

df�m
; ð21Þ

where Af is the area of the fracture segment on one side, K is the matrix-permeability tensor, n
*

is the normal vector of the fracture plane,
and df–m is the average normal distance from the matrix to the fracture, which can be calculated as

df�m ¼

ð
V

xndV

Vc
; ð22Þ

where xn is the distance from the matrix to the fracture cell and Vc is the cell volume. The transmissibility term is then added to Eq. 15
to account for flow associated with the fracture as

1

M
þ b2

Kdr

� �
@pn

@t
� b2

Kdr

@pn�1

@t
þ b

@ðr � uÞ
@t

� k

lf

ðr2pnÞ þ ktTf�mðpf
n � pnÞ ¼ 0: ð23Þ

Similarly, the conservation in fracture can be written as

1

Mf
þ b2

Kdr

� �
@pf

n

@t
� b2

Kdr

@pf
n�1

@t
� kf

lf

ðr2pf
nÞ þ ktTf�mðpn � pf

nÞ ¼ q: ð24Þ

Eq. 24 is added to the system of equations to solve for fracture pressure ( pf); Mf is the Biot modulus inside the fracture domain calcu-
lated using modified porosity obtained from Eq. 18; and kf is fracture permeability.

Numerical Model

As stated previously, OpenFOAM has been used as a main solver for our model. Discretization uses the FVM, which is up to second-
order accuracy and consists of time and space. Time discretization is an implicit method with first-order accuracy, whereas spatial dis-
cretization consists of both implicit and explicit methods, in which the majority is dependent on the Gaussian linearization method. Dis-
cretization, discussed in Tang et al. (2015), can be written in an integral form representing the control volume (@V) of each cell.
Geomechanics (Eq. 14) can be rewritten using Gauss’s theorem to convert the volume integral to the surface integral asþ

@V

ds � ½ð2lþ kÞru� ¼ �
ð
@V

ds�½lruT þ kItrðruÞ � ðlþ kÞru� þ
þ
@V

ds�ðbpIÞ �
þ
@V

ds�ðbp0I þ r0Þ: ð25Þ

The term on the left-hand side of Eq. 25 is the implicit surface-diffusion term, whereas the terms on the right-hand side are, in order,
the explicit surface-diffusion term, the explicit pressure-coupling term, and the explicit constant term representing the initial state. In
addition, the fluid flow of Eq. 23 can be rewritten asð

V

1

M
þ b2

Kdr

� �
@pn

@t

� �
dV �

þ
@V

ds� k

l
rpn

� �
¼
ð

V

b2

Kdr

@pn�1

@t

� �
dV �

þ
@V

ds� @u

@t
�
ð

V

½ktTf�mðpf
n � pnÞ� dV: ð26Þ

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . .

J189452 DOI: 10.2118/189452-PA Date: 3-January-18 Stage: Page: 4 Total Pages: 21

ID: jaganm Time: 12:51 I Path: S:/J###/Vol00000/170107/Comp/APPFile/SA-J###170107

4 2018 SPE Journal



The first term on the left-hand side of Eq. 26 is an explicit term representing pressure from a previous timestep, the second term is
an explicit displacement coupling term, and last term is an explicit source/sink term. The fluid-flow equation inside fractures (Eq. 24)
can be discretized in a manner similar to that for Eq. 26:ð

V

1

Mf
þ b2

Kdr

� �
@pf

n

@t

� �
dV �

þ
@V

ds � kf

l
rpf

n

� �
¼
ð

V

b2

Kdr

@pf
n�1

@t

� �
dV �

ð
V

½ktTf�mðpn � pf
nÞ� dV þ

ð
V

qdV: ð27Þ

The traction boundary condition can also be discretized in the manner used for Eq. 25 with implicit and explicit splits, but only at
the boundary surfaces. With the discretization, the system of five equations consisting of three displacement equations and fluid-flow
equations in matrix and fractures with five unknowns (i.e., ux, uy, uz, p, and pf) can then be solved sequentially using the iterative
method. Effective stress and total stress can be computed after obtaining displacement components and pressure using Eq. 2.

Validation

This section is divided into two subsections. The first part is the coupled fluid-flow/geomechanics model, and the second part is the
implementation of EDFM in our coupled model.

Coupled Fluid-Flow/Geomechanics Model. We validated our coupled model with classical poroelasticity problems consisting of the
Terzaghi (1925) (1D) (Fig. 2a) and Mandel (1953) (2D) (Fig. 2b) problems. We assume that the isothermal porous media is composed
of single-phase fluid and solid and behaves as linear poroelastic.

Terzaghi Problem. The Terzaghi (1925) problem deals with the 1D consolidation of a fluid-saturated column with a drainage
boundary at the top domain and a no-flow boundary at the bottom domain. A constant load (w) is applied instantaneously at time t¼ 0.
The problem geometry is shown in Fig. 2a. The column height, H¼ 15 ft, is subdivided into 10 gridblocks of uniform size z¼ 1.5 ft.
Gravity effect is neglected for this problem. Poroelastic parameters used for this problem are shown in Table 1. Initial pressure ( p0) is
1,450 psi and displacement is zero everywhere. A 2,900-psi load (w) is applied on top of the domain, whereas zero-displacement bound-
ary condition is applied on bottom of the domain. Fluid is only allowed to flow out at the top of the domain with boundary pressure of
1,450 psi, and there is no flow on the bottom of the domain. As shown in Fig. 3a, the solution for vertical displacement computed by
our model (dots) is compared with the analytical solution (lines) specified in detail in Appendix A.

Fig. 3b shows a comparison between analytical and numerical solutions for both pressure ( p) and vertical displacement (uz) at vari-

ous characteristic times: td ¼
kt

lð/cf þ 1
Kdr
ÞL2

. We obtain a good agreement for both pressure and displacement at early and late times.

Initially, pressure along the column increases to approximately 1.5 times the initial pressure and then decreases as the fluid flows out at

. . . . . . . . . .

w w

Z

X

H

(a) Terzaghi (1925) problem (b) Mandel (1953) problem

H

L

pb

pbp0 p0

Fig. 2—Diagram for (a) Terzaghi problem and (b) Mandel problem.

Parameter Value Unit 

Young’s modulus (E) 1.45×105 psi
Poisson’s ratio (ν) 0 –
Biot coefficient (b) 1 –

Reservoir permeability (k) 50 md

Reservoir porosity (φ) 0.25 –

Fluid compressibility (cf) 2.76×10–5 psi–1

Fluid viscosity (μf) 1 cp 

Table 1—Parameters used in calculation of the Terzaghi (1925)

problem.
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the bottom of the domain. Linear displacement along the z-direction increases with time because there is less pressure to support
the column.

Mandel Problem. The Mandel problem deals with 2D consolidation of a fluid-saturated slab sandwiched between two rigid, fric-
tionless, and impermeable plates with compressive force being applied on both sides (Mandel 1953). A traction-free boundary is applied
on both the left and right boundaries, with fluid being allowed to flow out. A main feature of this classical problem is the Mandel-Cryer
effect (Cryer 1963), which is the instant increase of pressure at the middle of the slab because of two-way coupling between fluid flow
and solid deformation. To achieve this, uniform vertical displacement (in the z-direction) along the x-direction must be maintained at
all times. This can be done by modeling the stiff plate (impervious material) on top of porous material (Lee 2008) or using time-depend-
ent displacement boundary condition calculated from analytical solution (Wang 2014). In this case, rather than modeling a stiff plate,
we used the geometry in Fig. 2b (length in y-direction is longer than x-direction, like a column) to ensure uniform vertical displacement.
Because of the symmetry of this problem, the simulation was run only for one-quarter of the domain by assigning the left and bottom
boundaries as no flow for the fluid part, and the roller boundary as shown in Fig. 2b (zero normal displacement) for the geomechanics
part. The domain is 30 ft long (x-direction) and 300 ft high (z-direction) with 20 gridblocks along the x-direction and 200 gridblocks
along the z-direction. Details of the parameters used in this problem are shown in Table 2. Initial pressure ( p0) is 0 psi, including the
pressure at boundary ( pb), and displacement in both the x- and z-direction are zero everywhere. A 616-psi load (w) is uniformly applied
on top of the domain, zero displacement in normal direction is used for the left and bottom of the domain to represent symmetry bound-
ary, and the right boundary of the domain is traction-free. Fluid is only allowed to flow out on the right boundary, with boundary pres-
sure being set as 0 psi and other boundaries being no-flow. Solutions for pressure, x-displacement along the x-direction, and the vertical
stress along the z-direction computed by our model (dots) are compared with the analytical solution (lines). The analytical solution is
provided in detail in Appendix A.

Fig. 4 shows a comparison between analytical (lines) and numerical solutions (dots) for pressure ( p), vertical stress (ryy), and hori-
zontal displacement (ux) at various characteristic times (td). Our model produces similar solutions compared with the analytical solution
at both early and late times. Initially, a uniform pressure, 313 psi, which is approximately one-half of the load being applied on the top
boundary, is generated because of the Skempton effect (Skempton 1954). The Mandel-Cryer effect can then be observed at td¼ 0.085,
illustrating a rise in pressure of approximately 10%. After this point, pressure starts to decrease because of the flow boundary until it
reaches an initial value, which is p¼ 0 psi at late time. The vertical stress (y-direction) increases more than the external load (w) at the
center because of the Mandel-Cryer effect. As pressure starts to decrease, ryy approaches a uniform value, which is the value of external
load (w). The largest horizontal displacement (ux) can be observed at the right boundary because the plate is fixed at the center. ux for
the entire domain decreases to zero with time because of the fluid flowing out from the domain.

The Coupled Model With EDFM. Our coupled geomechanics/fluid flow with EDFM using uniform structure grids is validated
against local grid refinement for a 0�-angle-of-inclination fracture and against a refined grid for a 45�-angle-of-inclination fracture on a

(a) Pressure plot at various times
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(b) Displacement in x-direction plot at various times
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Fig. 3—Comparison of numerical solution (dots) for (a) pressure, (b) horizontal displacement with the analytical solution (lines)
along the x-direction at various characteristic times.

Parameter Value Unit 

Young’s modulus (E) 6.52×104 psi
Poisson’s ratio (ν) 0 –
Biot coefficient (b) 1 –

Reservoir permeability (k) 50 md

Reservoir porosity (φ) 0.25 –

Fluid compressibility (cf) 2.76×10–6 psi–1

Fluid viscosity (μf) 1 cp 

Table 2—Parameters used in calculation of the Mandel (1953) problem.
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2D reservoir. Fig. 5 shows fracture geometry on local grid refinement and refined grid (zoomed-in area around fracture) with
Lx¼ 2,420 ft and Ly¼ 1,820 ft with Nx¼ 121, Ny¼ 95 for a 0�-angle-of-inclination fracture, and Nx¼ 347, Ny¼ 317 for a 45�-angle-of-
inclination fracture. For the EDFM case, we used a uniform grid with Nx¼ 121, Ny¼ 91 for both 0 and 45� angles of inclination. Param-
eters used in simulation are shown in Table 3. The fracture is along the x-direction. Initially, the stress in the x-direction is 4,600 psi
and the stress in the y-direction is 4,500 psi. The initial reservoir pressure is 4,000 psi.

Figs. 6 and 7 provide a comparison between local grid refinement and our model for reservoir pressure ( p) (Figs. 6a, 6b, 7a, and
7b), rxx (Figs. 6c, 6d, 7c, and 7d), and ryy (Figs. 6e, 6f, 7e, and 7f) distribution for 0 and 45� cases. ryy and rxx are the current reservoir
stresses after depletion. As shown in Figs. 6 and 7, the difference between our model and local grid refinement is insignificant for both
0 and 45� cases. Pressure is observed being depleted in an elliptical shape because of its geometry. rxx increases on the top and bottom
parts of the domain to support pressure depletion in the x-direction, whereas ryy increases on the right and left parts of the domain to
support pressure depletion in the y-direction. Flow rate for all four cases is calculated using the Peaceman (1993) equation with 0.25-ft
well radius. Comparison in Fig. 8 yields good matching among all cases with 0� having slightly higher flow rate because of the larger
depletion area. This implies that the angle of inclination plays an important role in well performance. In addition, our model provides a
significant improvement in computational efficiency. Although this cannot be observed in the 0� case because the number of cells is
very similar for our model and local refinement, the 45� case reduces the computational time from 4 hours of local refinement to the 0.5
hours of our model. This is important for future studies that consider complex-fracture geometry.

Case Studies

In this section, we focus on studying the effects of fracture geometry on stress distribution and reorientation in the field. The boundary
condition needs to be appropriately chosen to accurately simulate actual conditions in the field. In the following subsections, the effects
of boundary conditions were investigated to illustrate the role that boundary conditions play in the flow/stress calculation.

Effect of Boundary Condition. In this subsection, we compare pressure and stress distribution between constrained and unconstrained
boundary conditions. Similar comparison was conducted by Dean et al. (2006), with the focus on reservoir pressure and surface subsi-
dence compared between constrained and unconstrained boundary conditions. Reservoir and fracture geometry are shown in Fig. 9.
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Fig. 4—Comparison of numerical solution (dots) for (a) pressure and (b) displacement with analytical solution (lines) along the
z-direction at different characteristic times. (a) Pressure plot at various times; (b) displacement plot in x-direction at various times;
(c) stress in y-direction plot at various times.
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Table 4 provides the parameters used in the simulation. This set of parameters is derived from the Bakken Reservoir, which was given
in Roussel et al. (2013). The domain has length of 755 ft (Lx), width of 755 ft (Ly), and height of 100 ft (Lz). The domain was discretized
to 151 cells in the x- and y-direction and one cell in the z-direction. The constrained boundary condition has 11,000 psi applied on the
boundary in the x-direction, 11,500 psi applied on the boundary in the y-direction, 13,000 psi applied on the top boundary in the z-direc-
tion, and zero displacement on the bottom boundary. The unconstrained boundary condition has zero displacements on all boundaries,
except the top boundary in the z-direction, with 13,000-psi traction stress. A no-flow boundary is applied on all six boundaries to con-
tain fluid from flowing out, thus pressure in the reservoir can only decrease because of production.

Fig. 10 illustrates the comparison of pressure with direction of maximum horizontal stress (rHmax), rxx, and ryy distributions
between constrained and unconstrained boundary conditions at 5 years of production. White dashed lines on top of the pressure distribu-
tion in Figs. 10a and 10b represent the orientation of rHmax. The difference of pressure distribution is insignificant. However, contour
plots of rxx and ryy show a significant difference between the two conditions. There is a stress difference of approximately 1,000 psi in
the region near the boundaries. The constrained boundary condition allows stress to change at all boundaries, whereas the unconstrained
boundary condition enforces stress at the boundaries to remain constant. Therefore, when pressure decreases, stress at the boundaries
increases to support boundary force from the unconstrained boundary condition. Distribution at the fracture area is shown to be not
very different between constrained and unconstrained boundary conditions, which results in small difference of stress reorientation

Parameter Value Unit

Young’s modulus (E) 1×106 psi
Poisson’s ratio (ν) 0.3 –
Biot coefficient (b) 0.7 –

Reservoir permeability (k) 10 md

Reservoir porosity (φ) 0.05 –

Fluid compressibility (cf) 2×10–4 psi–1

Fluid viscosity (μf) 0.6 cp

Table 3—Parameters used in calculation for a single-fracture-test

problem.

(a) Local grid refinement for 0° (b) Local grid refinement for 45°

(c) Grid structure for 0° EDFM (d) Grid structure for 45° EDFM
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Fig. 5—Grid structure (zoomed-in area around fractures) for (a) 08 grid refinement, (b) 458 grid refinement, (c) 08 EDFM, and (d) 458
EDFM angle of inclination.
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(Figs. 10a and 10b). Flow rate and average reservoir pressure remain the same for both cases (Fig. 11). From the analysis, we can find
that boundary conditions primarily have great effects on stresses near the boundary and nearly no influence on stresses within the drain-
age area. Because we only focus on a group of four fractures from a well with a multistage-fracturing treatment, the constrained bound-
ary condition is a better choice in this case because it allows stress at all boundaries to change over time. Constraining displacements in
the normal direction are a result of production from adjacent fractures or wells. If we were to run the entire reservoir that covers multi-
ple perforations as well as a large area of reservoir, the unconstrained boundary might be a better option because stress at all boundaries
is expected to remain constant.

Effect of Fracture Geometry. In this subsection, we studied how fracture geometries affect stress distribution and reorientation as
well as production rate using the constrained boundary condition as discussed previously. With implementation of EDFM in our
coupled geomechanics/fluid-flow model, the code is capable of simulating stress change caused by depletion in the reservoir with com-
plex-fracture geometry. Fracture geometries in this study consist of planar-fracture (90� angle of inclination), 60�-inclination, and non-
planar-fracture geometries. We chose fractures with 60� misaligned angle because in some situations horizontal wells are not drilled
along the direction of the least principal stress. When fracture interaction has great effects on multiple-fracture propagation, nonplanar-
fracture geometry can be generated in the field. The nonplanar-fracture geometry was obtained using our in-house fracture-propagation

1,500

1,000

500

500 1,000 1,500

X (ft)

Y
 (

ft)

2,000

(a) Pressure distribution for local grid refinement (b) Pressure distribution for our model

(d) σxx distribution for our model(c) σxx distribution for local grid refinement

(e) σyy distribution for  local grid refinement (f) σyy distribution for our model

psi

3,400

3,500

3,600

3,700

3,800

1,500

1,000

500

500 1,000 1,500

X (ft)

Y
 (

ft)

2,000

psi

3,400

3,500

3,600

3,700

3,800

1,500

1,000

500

500 1,000 1,500

X (ft)

Y
 (

ft)

2,000

psi

4,540

4,580

4,560

4,600

4,620

4,660

4,6401,500

1,000

500

500 1,000 1,500

X (ft)

Y
 (

ft)

2,000

psi

4,540

4,580

4,560

4,600

4,620

4,660

4,640

1,500

1,000

500

500 1,000 1,500

X (ft)

Y
 (

ft)

2,000

psi

4,480

4,500

4,490

4,510

4,520
1,500

1,000

500

500 1,000 1,500

X (ft)

Y
 (

ft)

2,000

psi

4,480

4,500

4,490

4,510

4,520

Fig. 6—Comparison between our model (right) and local grid refinement (left) of (a, b) 08 angle of inclination for pressure distribu-
tion, (c, d) rxx distribution, and (e, f) ryy distribution at 100 days of production.
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model, which predicts fracture propagation incorporating stress-shadowing effects. To make comparisons, all three geometries have
been created with the same surface area. The same set of parameters and reservoir size found in the preceding subsection are used here
to represent simulation in the Bakken Reservoir. Figs. 12 and 13 show pressure distribution with direction of rHmax and ryy � rxx of
the three fracture geometries at 1 and 5 years of production.

As shown in Fig. 12, all three cases have different drainage areas. Nonplanar-fracture geometry has the largest depleted area, followed
by 60�-inclination and planar-fracture geometries. This directly affects production rate, which corresponds to the size of the depleted area,
as shown in Fig. 13. Nonplanar-fracture geometry has the largest area resulting in highest production, followed by planar-fracture geome-
tries and 60� inclination, respectively. There is nearly no difference in production between the planar fracture and 60�-inclination geometry,
which is a result of similar drainage size. Another observation from these plots is the direction of maximum horizontal stress, which origi-
nally is in the y-direction (fracture-propagation direction). After 1 year of production, we start to see some angle changes around fracture
tips for all three cases. In addition, after 5 years of production, more angle changes, especially at the depleted area, can be observed. Stress
reversal (stress rotates 90� from its original orientation) can mainly be observed at the inner fractures around the depleted area only for
planar-fracture geometry. Similarly, stress rotates 60� from its original orientation for 60� inclination fracture geometry, becoming perpen-
dicular to fracture orientation. This is because of the shape of the depleted area, which will be further discussed in the next subsection.

(a) Pressure distribution for local grid refinement (b) Pressure distribution for our model

(d) σxx distribution for our model(c) σxx distribution for local grid refinement

(e) σyy distribution for  local grid refinement (f) σyy distribution for our model
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Fig. 7—Comparison between our model (right) and local grid refinement (left) of (a, b) 458 angle of inclination for pressure distribu-
tion, (c, d)rxx distribution, and (e, f) ryy distribution at 100 days of production.
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Fig. 9—Reservoir geometry with four planar fractures.

Parameter Value Unit

Young’s modulus (E) 2×106 psi
Poisson’s ratio (ν) 0.2 –
Biot coefficient (b) 0.7 –

Reservoir permeability (k) 0.304 µd

Reservoir porosity (φ) 0.05 –

Fluid compressibility (cf) 2.18×10–5 psi–1

Wellbore radius (rw) 0.25 ft
Fluid viscosity (μf) 0.25 cp
Initial pressure (p0) 1×104 psi

Initial stress in x-direction (σxx,0) 1.1×104 psi
Initial stress in y-direction (σyy,0) 1.15×104 psi
Initial stress in z-direction (σzz,0) 1.3×104 psi

Fracture spacing 50 ft

Table 4—Parameters used for testing different boundary conditions

on multifracture-test problem and case studies for different frac-

ture geometries.
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(a) Pressure distribution for the unconstrained
boundary condition

(b) Pressure distribution for the constrained
boundary condition

(c) σyy distribution for the unconstrained
boundary condition

(e) σxx distribution for the unconstrained
boundary condition

(f) σxx distribution for the constrained
boundary condition

(d) σyy distribution for the constrained
boundary condition

700
10,000

9,000

8,000

7,000

6,000

5,000

psi

600

500

400

300

200

100

0
0 200 400 600

Y
 (

ft)

X (ft)

700
10,000

9,000

8,000

7,000

6,000

5,000

psi

600

500

400

300

200

100

0
0 200 400 600

Y
 (

ft)

X (ft)

700
11,500

11,000

10,500

10,000

9,500

9,000

psi

600

500

400

300

200

100

0
0 200 400 600

Y
 (

ft)

X (ft)

700 12,500

12,000

11,500

11,000

10,500

10,000

psi

600

500

400

300

200

100

0
0 200 400 600

Y
 (

ft)

X (ft)

700
12,500

12,000

11,500

11,000

10,500

psi

600

500

400

300

200

100

0
0 200 400 600

Y
 (

ft)

X (ft)

700
11,000

10,500

10,000

9,500

psi

600

500

400

300

200

100

0
0 200 400 600

Y
 (

ft)

X (ft)

Fig. 10—Comparison between constrained (right) and unconstrained (left) for (top) pressure distribution, (middle) ryy distribution,
and (bottom) rxx distribution at 5 years of production. (a) Pressure distribution for the unconstrained boundary condition; (b) pres-
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tribution for the constrained boundary condition; (e) rxx distribution for the unconstrained boundary condition; (f) rxx distribution
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Furthermore, stress reversal can be observed at the top and bottom area of the fractures for all three cases after 5 years of production.
This is because of the reduction in stress difference (ryy � rxx), as shown in Fig. 14, which represents distribution of stress difference at
1-year and 5-year production times. Originally, ryy is 500 psi larger than rxx. After depletion, ryy decreases more in the top and bottom
areas, whereas rxx in these areas stays nearly the same. Consequentially, the difference between ryy and rxx becomes less than its origi-
nal value. In some areas, ryy can become smaller than rxx. In contrast, rxx decreases more at the right and left boundaries, whereas ryy

remains the same. Thus, in this location, the difference between ryy and rxx become larger than its original difference. In the drainage
area near fractures, the three different fracture geometries generate significant difference of ryy � rxx distribution. Both rxx and ryy

decrease with reservoir pressure. ryy reduces faster than rxx as a function of depletion. However, decrease rate of rxx and ryy is distinct
for different fracture geometries. Decrease-rate difference of rxx and ryy is much larger for planar-fracture geometry than nonplanar-
fracture geometry. Updated stress difference (ryy � rxx) of nonplanar-fracture geometry is greater than that of planar-fracture geometry,
which implies that the difference of decrease rate of rxx and ryy is smaller for nonplanar-fracture geometry. In most regions within the
drainage area, the stress difference is still larger than zero for nonplanar-fracture geometry, whereas the difference is less than zero for
planar-fracture geometry. Once ryy becomes smaller than rxx, stress reversal will occur.

Effect of DS (rxx;0 � ryy;0). DS is defined as the difference between the two horizontal principal stresses in the reservoir before deple-
tion. Because two principal stresses are initially in the x- and y-direction, DS is the difference between rxx;0 and ryy;0. DS plays an im-
portant role in stress reorientation because the smaller it is, the higher chance that reorientation will occur. In this section, DS is 500
psi, which is a base case in the preceding subsection, as well as 250 and 100 psi. To study how new fractures would propagate during
refracturing or completion of infill wells when existing fractures are under production, it is important to be able to predict stress reorien-
tation, which defines the direction of new fracture propagation. rxx;0 and ryy;0 are the initial reservoir stresses before depletion, whereas
ryy and rxx are current reservoir stresses after depletion. Dryy, Drxx, and Drxy are stress changes induced by depletion. The relationship
between stresses can be expressed as

ryy � rxx ¼ ryy;0 þ Dryy � rxx;0 � Drxx;

ryy � rxx ¼ ðryy;0 � rxx;0Þ þ Drxx � Dryy;

ryy � rxx ¼ DSþ Drxx � Dryy; � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ð28Þ

Fig. 15 illustrates the induced stress difference (Dryy � Drxx) plotted along the x-direction at y¼ 377.5 ft for all three geometry
cases at 1, 5, and 30 years. According to Eq. 28, this plot can be applied for any initial DS because it is written in terms of DS, which is
a constant value. ryy � rxx is an updated stress difference after production and only changes when DS changes for a specific
Dryy � Drxx. If the initial DS is 0 psi, any areas of the plot that are less than 0 psi represent stress reversal. The same mechanism applies
for other different stresses; [i.e., 100 psi (pink line) and 500 psi (green line) in Fig. 15].

A very small magnitude of induced shear stress (Drxy) is observed on planar- and nonplanar-fracture geometries (Figs. 15b and 15f).
The inclination fracture geometry produces a large shear stress as a result of inclination of fractures causing stress to rotate to 60�.
Because the magnitude of induced shear stress is small compared with induced horizontal stresses, a main factor that causes stress to
reorient is the difference between Drxx and Dryy. Therefore, we focus on the induced stress difference Dryy � Drxx because it directly
affects the calculation of reorientation.

For planar-fracture geometry (Fig. 15a), stress reorientation between inner fractures can be observed from DS¼ 0 psi up to approxi-
mately 500 psi at 1 year and 850 psi at 5 years. We can also observe stress reorienting back after 30 years of production. This result cor-
responds to the preceding subsection, in which stress reorientation at the depleted area can be observed the most in planar-fracture
geometry. The angle change of maximum horizontal stress (rHmax) can be found in Fig. 16 for DS¼ 100 and 500 psi. This aligns with
plots of Dryy � Drxx because both cases reorient 90� at the depleted area between two inner fractures.

On the other hand, for 60�-inclination fracture geometry (Fig. 15c), no reorientation can be observed for DS¼ 400 psi or more. This
implies that if the original DS is 500 psi, which is our base case, there will be no stress reorientation. After 30 years of production, stress
starts to reorient back just like planar-fracture geometry. Fig. 16 shows orientation change at DS¼ 100 and 500 psi, which confirms that
only a small orientation change occurs at DS¼ 500 psi (Figs. 16a, 16c, and 16e) for planar-fracture geometry and 60�-inclination frac-
ture geometries. No change can be observed for nonplanar-fracture geometry. A larger orientation change occurs at DS¼ 100 psi for all
three geometries, especially in the region between inner fractures (Figs. 16b, 16d, and 16f). Maximum angle change for 60�-inclination
fracture geometry is only 53�, which is very close to the initial fracture direction (60�), but in the perpendicular direction. Meanwhile,
the maximum angle change for the other two cases is 90� or fully reversed.
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Fig. 11—Flow-rate comparison between constrained and unconstrained boundary conditions.
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(a) Pressure distribution for planar-fracture
geometry with direction of maximum 

horizontal stress at 1 year

(c) Pressure distribution for 60° fracture
geometry with direction of maximum

horizontal stress at 1 year

(e) Pressure distribution for nonplanar-fracture
geometry with direction of maximum

horizontal stress at 1 year

(f) Pressure distribution for nonplanar-fracture
geometry with direction of maximum

horizontal stress at 1 year

(d) Pressure distribution for 60° fracture
geometry with direction of maximum

horizontal stress at 5 years

(b) Pressure distribution for planar-fracture
geometry with direction of maximum

horizontal stress at 5 years
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Fig. 12—(a, b) Pressure distribution with direction of maximum horizontal stress of planar-fracture geometry; (c, d) 608-inclination
fracture geometry; and (e, f) nonplanar-fracture geometry at 1 and 5 years. (a) Pressure distribution for planar-fracture geometry
with direction of maximum horizontal stress at 1 year; (b) pressure distribution for planar-fracture geometry with direction of maxi-
mum horizontal stress at 5 years; (c) pressure distribution for 608 fracture geometry with direction of maximum horizontal stress at
1 year; (d) pressure distribution for 608 fracture geometry with direction of maximum horizontal stress at 5 years; (e) pressure dis-
tribution for nonplanar-fracture geometry with direction of maximum horizontal stress at 1 year; (f) pressure distribution for non-
planar-fracture geometry with direction of maximum horizontal stress at 1 year.
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Similarly, no stress reorientation is observed on nonplanar-fracture geometry (Fig. 15e) for any DS greater than 250 psi. At
DS¼ 100 psi, some reorientation can be observed, but the area is small compared with planar-fracture geometry and 60�-inclination
fracture geometry. It can be seen from Fig. 15 that there is no reorientation for DS¼ 500 psi even after 30 years of production. How-
ever, for DS¼ 100 psi, reorientation can be observed between inner fractures from 1 to 30 years of production. This corresponds to Fig.
15e, where Dryy � Drxx is less than zero between inner fractures.

As mentioned in the preceding subsection, stress reorientation occurs when ryy becomes smaller than rxx. This phenomenon can be
observed in the depleted area that has different depletion rates in the x- and y-direction (rectangular shape). Large reduction in the
y-direction causes ryy to decrease faster than rxx and finally become less than rxx, creating stress reorientation. Depletion in rectangular
shape can be observed in planar-fracture geometry and 60� inclination-fracture geometry. The squared shape of the drainage area can
be observed in nonplanar-fracture geometry, which results in small difference of stress change in the x- and y-direction and small likeli-
hood of stress reorientation. It is noted that stress can rotate back if ryy again becomes larger than rxx. It is possible to observe this phe-
nomenon around the fracture area, especially between inner fractures. This is because both rxx and ryy decrease at different rates at
different production periods.

Conclusions

A geomechanics/fluid-flow finite-volume-based model has been successfully developed using the fixed-stress method to ensure stability
for high-coupling-strength problems and has been coupled with EDFM to simulate the poroelastic effect of complex-fracture geometry
in unconventional reservoirs. This opens the possibility of simulating multiple hydraulic fractures in reservoirs with highly complex-
fracture geometries to study stress evolution during depletion. The model was validated against classical poroelastic problems as well
as local grid refinement to ensure accuracy for coupled geomechanics/fluid flow with EDFM. The constrained boundary condition was
chosen to represent the actual condition in the field. The simulations were run for three different types of geometries using parameters
from the Bakken Reservoir. Different fracture geometries result in different shapes of depleted area as well as stress redistribution and
reorientation. Decrease rates of two horizontal principal stresses are distinct for different fracture geometries. Rectangular shape with
longer drainage dimension in the y-direction can be found in planar-fracture geometry. Squared shape with similar drainage dimension
in both the x- and y-direction can be found in nonplanar-fracture geometry. The shape of the depleted area has a significant effect on
stress changes in the x- and y-direction and stress reorientation. The rectangular shape yields the largest stress reorientation, whereas
the squared shape has much smaller likelihood to create stress reorientation. Large induced shear stress can be observed in inclined-
fracture geometries. Reorientation observed from these cases tends to be the same angle as created fractures. In addition, DS also plays
an important role in stress reorientation. The smaller the DS, the higher chance of the stress to reorient. The results simulated by our
model indicate that it is important to simulate fracture geometry as close to what actually exists in the reservoir to accurately predict
stress redistribution and reorientation rather than simulating planar-fracture geometry, which can easily be simulated using a typical
coupled geomechanics/fluid-flow simulator. It is crucial for applications of refracturing and completion of infill wells to understand
how stress in the reservoir changes after a period of production time. These findings can provide not only a fundamental guideline for
selecting the best candidates to perform refracturing and for optimizing fracturing design of infill wells, but also a tool to predict the
direction of new fracture propagation.

Nomenclature

Af ¼ area of fracture segment, ft2

b ¼ Biot coefficient, dimensionless
cf ¼ fluid compressibility, psi�1

Cdr ¼ Rank 4 elastic tensor, psi
df�m ¼ average normal distance from matrix to fracture, ft

df 1 ¼ weighted average of the normal distances from centroids of subsection to the intersection line in Cell 1, ft
df 2 ¼ weighted average of the normal distances from centroids of subsection to the intersection line in Cell 2, ft

E ¼ Young’s modulus, psi
g ¼ gravitational acceleration, ft � s�2

H ¼ domain height, ft
k ¼ matrix permeability, md

kf ¼ permeability inside fracture domain, md
kf 1 ¼ permeability inside Fracture Cell 1, md
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Fig. 13—Flow-rate and cumulative production comparison between planar-fracture, 608-inclination fracture, and nonplanar-frac-
ture geometries.
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(a) σyy − σxx distribution for planar-fracture
geometry at 1 year

(b) σyy − σxx distribution for planar-fracture
geometry at 5 years

(c) σyy − σxx distribution for planar-fracture
geometry at 1 year

(d) σyy − σxx distribution for planar-fracture
geometry at 5 years

(e) σyy − σxx distribution for planar-fracture
geometry at 1 year

(f) σyy − σxx distribution for planar-fracture
geometry at 5 years

Fig. 14—(a, b)ryy 2rxx distribution of planar-fracture geometry; (c, d) 608-inclination fracture geometry; and (e, f) nonplanar-frac-
ture geometry at 1 and 5 years. (a) ryy 2rxx distribution for planar-fracture geometry at 1 year; (b) ryy 2rxx distribution for planar-
fracture geometry at 5 years; (c) ryy 2rxx distribution for planar-fracture geometry at 1 year; (d) ryy 2rxx distribution for planar-frac-
ture geometry at 5 years; (e) ryy 2rxx distribution for planar-fracture geometry at 1 year; (f) ryy 2rxx distribution for planar-fracture
geometry at 5 years.
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kf 2 ¼ permeability inside Fracture Cell 2, md
Kdr ¼ drain bulk modulus, psi
Ks ¼ bulk modulus of solid grain, psi

K ¼ matrix-permeability tensor, md
L ¼ domain length, ft

Lint ¼ length of the intersection line, ft
Lx ¼ domain length in x-direction, ft
Ly ¼ domain length in y-direction, ft
Lz ¼ domain length in z-direction, ft
M ¼ Biot modulus, psi

Mf ¼ Biot modulus inside fracture domain, psi

n
* ¼ normal vector of fracture plane, dimensionless

Nx ¼ number of cells in x-direction, dimensionless
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Fig. 15—On the left, change of DS along center of the well for three different geometries (a, c, e) at different times. On the right,
shear stress along center of the well for three different geometries (b, d, f) at different times. (a) Dryy 2Drxx for planar-fracture ge-
ometry at different times; (b) Drxy for planar-fracture geometry at different times; (c) Dryy 2Drxx for 608-inclination fracture geome-
try at different times; (d) Drxy for 608-inclination fracture geometry at different times; (e) Dryy 2Drxx for nonplanar-fracture
geometry at different times; (f) Drxy for nonplanar-fracture geometry at different times.
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Ny ¼ number of cells in y-direction, dimensionless
Nz ¼ number of cells in z-direction, dimensionless
p ¼ fluid pressure, psi

pb ¼ boundary pressure, psi
pf ¼ pressure of fluid inside fracture domain, psi
p0 ¼ fluid pressure at initial state, psi
q ¼ source/sink term, s�1

qf�m ¼ flow from fracture domain to matrix domain and vice versa, ft3 � s�1

rw ¼ well radius, ft
Sseg ¼ area of fracture segment perpendicular to the fracture aperture, ft2

td ¼ characteristic time, dimensionless
T ¼ traction force at the boundary, psi

Tf�f ¼ transmissibility between two fracture cells, md-ft
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(c) Orientation change of σHmax for 60°
inclination fracture geometry at DS = 500 psi

(d) Orientation change of σHmax for 60°
inclination fracture geometry at DS = 100 psi

(f) Orientation change of σHmax for nonplanar-
fracture geometry at DS = 100 psi
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(b) Orientation change of σHmax for planar-
fracture geometry at DS = 100 psi
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Fig. 16—(a, b) Orientation change along the x-direction at y 5 377.5 ft for planar-fracture geometry; (c, d) 608-inclination fracture ge-
ometry; and (e, f) nonplanar-fracture geometry at different production times for DS 5 100 and 500 psi. (a) Orientation change of
rHmax for planar-fracture geometry at DS 5 500 psi; (b) orientation change of rHmax for planar-fracture geometry at DS 5 100 psi; (c)
orientation change of rHmax for 608-inclination fracture geometry at DS 5 500 psi; (d) orientation change of rHmax for 608-inclination
fracture geometry at DS 5 100 psi; (e) orientation change of rHmax for nonplanar-fracture geometry at DS 5 500 psi; (f) orientation
change of rHmax for nonplanar-fracture geometry at DS 5 100 psi.
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Tf�m ¼ transmissibility between fracture and matrix cell, md-ft
TNNC ¼ nonneighboring-connections transmissibility, md-ft

T1 ¼ transmissibility inside Fracture Cell 1, md-ft
T2 ¼ transmissibility inside Fracture Cell 2, md-ft
u ¼ displacement vector, ft

ux ¼ displacement in x-direction, ft
uy ¼ displacement in y-direction, ft
uz ¼ displacement in z-direction, ft
V ¼ fluid-flow rate, lbm � ft�3

Vb ¼ bulk volume of the cell assigned to the fracture segment, ft3

Vc ¼ cell volume, ft3

Vf ¼ volume of fracture segment, ft3

w ¼ external load, psi
wf ¼ fracture width, ft

wf 1 ¼ fracture width in Cell 1, ft
wf 2 ¼ fracture width in Cell 2, ft

x ¼ location in x-direction, ft
xn ¼ distance from fracture cell to matrix cell, ft
y ¼ location in y-direction, ft
z ¼ location in z-direction, ft

Dp ¼ pressure difference between matrix and fracture cell, psi
Drxx ¼ induced stress in x-direction, psi
Dryy ¼ induced stress in y-direction, psi
Drzz ¼ induced stress in z-direction, psi

e ¼ strain tensor, psi
ev ¼ volumetric-strain tensor, psi
k ¼ first Lamé constant, psi
kt ¼ relative mobility, cp�1

l ¼ second Lamé constant, psi
lf ¼ fluid viscosity, cp
� ¼ Poisson’s ratio, dimensionless

qb ¼ single-phase fluid bulk density, lbm � ft�3

r ¼ total stress tensor, psi
reff ¼ effective stress, psi

rhmin ¼ minimum horizontal stress, psi
rHmax ¼ maximum horizontal stress, psi

rv ¼ volumetric mean total stress, psi
rv;0 ¼ volumetric mean total stress at initial state, psi
rxx ¼ total stress in x-direction, psi

rxx;0 ¼ initial total stress in x-direction, psi
ryy ¼ total stress in y-direction, psi

ryy;0 ¼ initial total stress in y-direction, psi
rzz ¼ total stress in z-direction, psi

rzz;0 ¼ initial total stress in z-direction, psi
r0 ¼ total stress tensor at initial state, psi
s ¼ coupling strength, dimensionless
/ ¼ porosity, dimensionless

/f ¼ pore volume in fracture cell, dimensionless
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Appendix A—Analytical Solution of the Terzaghi (1925) and Mandel (1953) Problems

The analytical solutions for pressure ( p) and displacement (uz) at different locations and time can be shown as

pðz; tÞ ¼ �W
af�ai

aai

X1
j¼0

4ð�1Þj

pð2jþ 1Þ cos
ð2jþ 1Þpz

2H

� �
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� �2 cf t

4H2

( )
; ðA-1Þ

uzðz; tÞ ¼ �Wðaf � aiÞH
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where

af ¼
ð1þ �Þð1� 2�Þ

Eð1� �Þ ; ðA-3Þ

ai ¼ af
b2af

/cf

� ��1

; ðA-4Þ

where W is the external load on top of the column, H is column height, and z is location along the z-direction.
The analytical solutions for the Mandel (1953) problem for pressure ( p) and displacement (ux and uy) are written as

uxðx; tÞ ¼
W�

2GL
�W�u

GL
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where �u is the undrained Poisson’s ratio, B is the Skempton pore-pressure coefficient, x is the location in the x-direction, y is the loca-
tion in the y-direction, L is domain length, G is shear modulus, and c is the general consolidation coefficient,

c ¼ 2kB2Gð1� �Þð1þ �uÞ2

9ð1� �uÞð�u � �Þ
: ðA-7Þ

In addition, in Eq. A-6, t is time and ai, i¼ 1,1, are the roots of

tanai ¼
1� �
ð�u � �Þ

ai: ðA-8Þ
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In our study, �u ¼ 0:5 and B ¼ 1

ð1þ cf /KdrÞ
. Pressure, total stress rxx, ryy, and shear stress rxy can also be obtained using

pðx; tÞ ¼ 2WBð1þ �uÞ
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rxx ¼ 0: ðA-10Þ

rxx is zero because of the traction-free boundary on the right of the domain:

ryy ¼
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rxy ¼ 0; ðA-12Þ

because uy is assumed to be uniform along the x-direction. Thus, ryy is also uniform along the x-direction. rxy is zero at all times and
external force acts only in the normal direction to the surface. Finally, there is no force acting in the direction parallel to the surface.
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SI Metric Conversion Factors

ft�3.048 E�01¼M

in.�2.54 Eþ00¼Cm

psi�6.895 Eþ00¼ kPa

All conversion factors are exact.
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