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Abstract This work focuses on investigation of structural (phase) transformations in crystal lattices from
continuum and discrete points of view. Namely, the continuum, which is equivalent to a simple lattice in the
sense of the Cauchy–Born energy, is constructed using long-wave approximation, and its strong ellipticity
domains in finite strain space are obtained. It is shown that various domains correspond to variants of tri-
angular and square lattices, and the number of the domains depends on the interaction potential parameters.
Non-convex energy profiles and stress–strain diagrams, which are typical for materials allowing twinning
and phase transformations, are obtained on the straining paths which connect the domains and cross non-
ellipticity zones. The procedures of the lattice stability examinations and estimation of energy relaxation by
means of molecular dynamical (MD) simulation are developed, and experimental construction of the enve-
lope of the energy profiles, corresponding to the energy minimizer, is done on several straining paths. The
MD experiment also allows to observe the energy minimizing microstructures, such as twins and two-phase
structures.

Mathematics Subject Classification 74B20 · 74N05 · 74N15 · 74A50

1 Introduction

One of themotivations for thiswork is to bridge the gap between continuumand discretemechanics of structural
(phase) transformations. The interfaces which appear due to martensite phase transformations and twinning
in deformable solids can be viewed as the surfaces across which the displacement and traction are continuous
but some components of the deformation gradient are discontinuous. In contrast to the deformations in a joint
body or composite materials where the interfaces between twomaterials are prescribed by contact surfaces, the
interfaces are unknown surfaces. The thermodynamic equilibrium interfaces have to satisfy an additional jump
condition, i.e., the continuity of the normal component of the Eshelby stress tensor (see, e.g., monographs [1,2]
and reference therein), and in the case of twinning strains are fitted at the interface so that the thermodynamic
condition is satisfied automatically [3].

Mathematical modeling of phase transformations starts from the choice of the strain energy function so
that the theory can predict what will happen with a given material in various loading conditions. The choice of
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the strain energy function is usually guided by the results obtained from a number of simple experiments. The
problem is that the constitutive equations allow the appearance of strain discontinuity surfaces in an elastic
solid only if the strong ellipticity of a material is lost at some deformations [4]. This in turn results in waning
parts in stress–strain diagrams and non-convexities of the strain energy which cannot be observed in any
experiments because of stability reasons: uniform deformation of a material is not stable at the deformations at
which the ellipticity is lost. That is why for a long time the strong ellipticity requirements have been considered
as restrictions for the choice of constitutive equations in the sense that “a good material is an elliptic one.” But
then it became clear that the loss of the strong ellipticity at a certain uniform deformation means that there
may exist a non-uniform deformation which is characterized by lower energy (see, e.g., [5,6]). Two-phase
deformation is such a non-uniform deformation, and two-phase microstructure growth becomes a mechanism
of the energy relaxation. Moreover, on a given straining path, two-phase deformations may be more preferable
than uniform one-phase states before the non-ellipticity zone is reached (see, e.g., [7–10]). Thus, on the one
hand, non-elliptic branches of the energy dependencies are necessary for phase transitions modeling, and on
the other hand, they cannot be obtained from experiments with real materials.

Recently, interest in the discrete and continuum models of crystalline solids has emerged, in particular in
connection with stability definition and investigation (see, e.g., [11–13] and reference therein). For example, in
[12] it is shown that for Bravais lattices, the discrete and continuum stability regions converge with the increase
in the number of particles in a periodic cell, and the stability is defined in terms of energy minimization; this
fact is also analyzed numerically in [13]. In the present paper, we restrict ourselves to strong ellipticity analysis
for the continuum model and numerical experiments with application to twinning and phase transformations.

We start at microscopic level considering a simple lattice in Sect. 2. Long-wave approximation [14] is used
to construct equivalent continuum, and the strong ellipticity conditions are derived for this continuum. Then
in Sect. 3 we focus on a planar triangular lattice described by the Morse interaction potential and construct the
strong ellipticity region in the strain space. Note that the instability of a planar lattice within the 3D problem
statement may lead to the appearance of non-planar configurations (see, e.g., [15,16]). In the present paper,
we restrict ourselves to the purely plane case for simplicity of visualization and interpretation, bearing in mind
further consideration of 3D lattices in 3D space. The strong ellipticity region, obtained in Sect. 3, consists of a
number of domains divided by non-ellipticity zones.We show that these domains can be treated as the domains
of strains at which the triangular and square lattice variants can exist. We examine how the energy changes
and what are stress–strain diagrams on the straining paths connecting different domains; namely, we obtain
non-convex energy profiles and van der Waals type stress–strain diagrams, typical for materials undergoing
twinning and phase transformations.

Then in Sect. 4 we return to the discrete lattice. Using MD experiments, we study the lattice behavior on
various straining paths.We develop a procedure of “homogeneous” and “inhomogeneous” perturbations to find
external strains at which two-phase or twinned microstructures can appear and obtain “real” energy profiles
and stress–strain diagrams. We see that experimental dependencies coincide with theoretical ones until the
structural transformation starts inside the strong ellipticity domains, and the relaxed energy curve becomes the
envelope of the non-convex theoretical curve after new phase domains or twins nucleation. The stress–strain
dependence in the case of twinning satisfies the Maxwell equal area rule. Finally we represent and describe the
microstructures appeared which minimize the energy. In the Appendix we show the derivation of the formulae
for stress tensors, equilibrium and strong ellipticity conditions used in the paper.

2 Strong ellipticity of simple lattices

Let us first describe the material behavior on microscopic level, introducing the common model of the material
with microstructure—simple crystal lattice, i.e., the lattice that coincides with its Bravais lattice. Let us assume
that the considered lattice is infinite not to account for boundary and surface effects, which, however, become
crucial when nanosized objects are regarded. Thus, we can choose any particle, i.e., any nod of the lattice, as
a reference particle. In Fig. 1a, which shows a typical part of triangular lattice as an example of simple lattice,
the reference particle’s position vector is marked as r. Every neighbor of the reference particle located at the
distance ak along the unit vector ek has the position vector rk = r+ak . Due to the symmetry of simple lattices,
it has a pair characterized by the same distance a−k = ak and the unit vector e−k = −ek (see Fig. 1a). The
set of particles located at the same distance from the reference particle is called a coordinational sphere. The
maximum number of particles in the first coordinational sphere is six for a two-dimensional lattice and twelve
for a three-dimensional lattice. The only 2D lattice with six nearest neighbors is the triangular lattice; the
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Fig. 1 Simple lattice geometry (a) and pair force interaction hypothesis (b)

most common 3D lattices with twelve nearest neighbors are encountered in face-centered cubic and hexagonal
close-packed structures. In this paper, in Sects. 3 and 4 we will limit ourselves to a triangular lattice as the
example of media with microstructure.

In order to describe the geometry in the current configuration, we assume, following Born [14], that the
imposed uniform deformation results in a homogeneous displacement field at each representative volume
element (RVE). Using the Cauchy–Born rule, we introduce

akek = F · a0k e0k, F =
( ◦∇ r

)T
, ���, (1)

where a0k and e0k are the reference bond lengths and directions, respectively, ak and ek are the current bond
lengths and directions, F is the deformation gradient for the equivalent continuum, the ◦ sign above∇ indicates
that the derivatives are calculated with respect to reference configuration, namely

◦∇ r ≡
∑
n

in
∂r
∂r0n

,

where r0n are Lagrangian coordinates in the orthonormal basis in . The absence of higher degrees of deformation
gradient is the result of the long-wave approximation. This rule is valid for simple lattices and has to bemodified
for complex lattices (see, e.g., [17]).

The interaction law at microscopic level is introduced by means of interaction potentials. In this paper, we
use the pair force interaction: particles are connected with other particles by nonlinear springs, and the potential
Π depends on relative displacements only. Let us denote Πk = Π (ak) and introduce the interaction force
fk = Π ′

kek = Π ′ (ak) ek (see Fig. 1b) and bond stiffness Π ′′
k = Π ′′ (ak). The most common interaction laws

provide repulsion upon compression, cohesion upon stretching and only one equilibrium bond distance (the
distance at which two particles are at equilibrium), i.e., the solution of Π ′ (r) = 0 is unique; also Π (r) → 0
when r → ∞.

To build the bridge between continuum and discrete representation of thematerial, the Cauchy–Born energy
is used as the energy of the equivalent continuum in the absence of body forces [11,18]

W = 1

2V0

∑
k

Πk, (2)

where V0 is the unit cell (RVE) volume in the reference configuration, and the energy is summed over all
considered coordinational spheres. In the case of pair force interaction, potentials Πk depend on relative
displacements only, which in turn can be expressed in terms of the deformation gradient F using (1). Then the
Piola stress tensor for equivalent continuum can be calculated as (see the Appendix)

P ≡ ∂W

∂FT = 1

2V0

∑
k

Π ′
ka

0
k e

0
kek, (3)
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and the Cauchy stress tensor is

σ = 1

2V

∑
k

Π ′
kakekek, (4)

where V is the unit cell (RVE) volume in the current configuration, and the condition σ = 0 determines the
distances between the particles at microscopic level which correspond to the stress-free state of the lattice. Due
to the symmetry of simple lattices, the tensor equation σ = 0 yields only one scalar equation, which has the
unique solution under the aforementioned assumptions on the interaction potential. The solution has a smaller
value than the equilibrium bond distance, if more than one coordinational sphere is regarded, and is exactly
equal to it for nearest neighbor interaction.

The symmetry of the simple lattice under pair force interaction assumption ensures its equilibrium at arbi-
trary uniform strain at both micro- (see Fig. 1b) and macroscopic levels, because within long-wave approxi-
mation (see the Appendix)

∑
k

(fk + f−k) = 0 ⇔ ◦∇ ·P = 0.

As the equilibrium equations hold identically, it is possible to obtain the strong ellipticity condition for
equivalent continuum, which is a necessary stability condition for a uniformly deformed material [5]. Let us
impose a minor perturbation on the pre-strained lattice at the microscopic level. This leads to the following
equation of motion for the equivalent continuum:

ρ0δü = δ
( ◦∇ ·P

)
, (5)

where u is the displacement field, ρ0 = m

V0
is the density, and m is the total mass of the particles, located in

V0.

Taking into account that
◦∇ =

( ◦∇ r
)
·∇ and denoting v = δu, we obtain the following wave equation [19]

(see the Appendix):

v̈ =4Q · · · ∇∇v,

where
4Q = (

I� +4	
)
, � = 1

2V0ρ0

∑
k

Π ′
kakekek,

4	 = 1

2V0ρ0

∑
k

a2k

(
Π ′′

k − Π ′
k

ak

)
ekekekek .

(6)

Here I is the unit tensor, and the fourth-rank tensor 4Q is expressed in terms of microscopic characteristics, and
thus, 4Q depends on the deformation gradient F only. Searching the solution in wave form v = v0eiωt eik·r,
where k is the wave vector and ω is the frequency, we get

(
D − ω2I

) · v0 = 0, D =4Q · ·kk,

and the frequencies of the elastic waves in the equivalent continuum are real if and only if the acoustic tensor
D is positive definite. Thus, the strong ellipticity condition for the simple lattice, treated as the equivalent
continuum, takes the form of the positive definiteness of the acoustic tensor D expressed by (6) in terms of
lattice parameters ak , ek , derivatives of the energy (2) and wave vector.

In the next sections, the condition
D(k) > 0 ∀k 
= 0 (7)

is specified for the planar triangular lattice. This allows us to construct the non-ellipticity domain in strain space.
Then structural transformations as the mechanisms of energy relaxation are observed using MD simulation on
straining paths which cross the non-ellipticity domain.
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3 Strong ellipticity analysis for triangular lattice

3.1 Strong ellipticity domains

A typical part of a triangular lattice is shown in Fig. 1. The uniform deformation gradient F in the 2D case can
be represented in the following form using QR decomposition:

F = Q̂ · F̂.

Here Q̂ is an orthogonal tensor, and F̂ has upper triangular matrix form. Taking objectivity considerations into
account and also bearing in mind that the lattice is infinite, so that boundaries are not regarded, we will further
restrict ourselves to the deformation gradients for which Q̂ is a unit tensor. Thus, F will have the following
matrix form:

F ∼
(
1 + ε11 tgϕ

0 1 + ε22

)
, (8)

which is an affine transformation with extension in directions 1 and 2, and shearing in the direction 1; indices
1 and 2 correspond to the coordinate axes introduced in Fig. 1, ε11 and ε22 are strains along the respective
axes, and ϕ is a shear angle.

Substituting the deformation gradient (8) into (1), we calculate current bond lengths and directions, and
using (7), we obtain strong ellipticity conditions in the form

trD > 0 ⇔ A1k
2
1 + B1k1k2 + C1k

2
2 > 0,

detD > 0 ⇔ A2k
4
1 + B2k

2
1k

2
2 + C2k

4
2 + D2k

3
1k2 + E2k1k

3
2 > 0,

(9)

where k1 and k2 are components of thewave vector and the coefficients A1, B1,C1, A2, B2,C2, D2, E2 depend
on the components of tensor 4Q, and, thus, on the strain parameters ε11, ε22, tgϕ:

A1 = Q11 + Q21, B1 = Q14 + Q24, C1 = Q12 + Q22,

A2 = Q11Q21 − Q2
41, B2 = Q14Q24 + Q11Q22 + Q12Q21 − 2Q41Q42 − Q2

44, C2 = Q12Q22 − Q2
42,

D2 = 2 (Q11Q24 − 2Q41Q44 + Q14Q21) , E2 = 2 (Q12Q24 − 2Q42Q44 + Q14Q22).

Here the following notation is used to pass from four indices to two indices due to the symmetry of formula
(6): 11 → 1, 22 → 2, 12 = 21 → 4.

Further, we take the interaction law in the form of the Morse potential

Π(r) = D
[
e−2θ( r

a −1) − 2e−θ( r
a −1)

]
. (10)

The parameter D is the depth of the potential well, θ is responsible for the well width, and a is the equilibrium
bond distance. For the sake of the result representativeness, we take θ = 6, unless otherwise specified. Note
that at this particular θ the Morse potential is equivalent to the Lennard-Jones potential at r ≈ a [18].

Figure 2 shows the strong ellipticity region for the planar triangular lattice in strain space ε11, ε22, tgϕ. We
show only the case ϕ ≥ 0, and the picture is mirrored with respect to the plane ε11, ε22 at ϕ < 0. In general,
one can distinguish between five domains denoted as I, II, III, IV and V. The shape, the size and the number
of the domains depend on the interaction potential parameters, and the minor domains III and V vanish as the
parameter θ decreases.

Typical lattice states which correspond to different domains are presented in Fig. 3. Here the RVE is gray,
the reference particle is in the center of the figures, the nearest neighbors in the reference configuration are black
circles of a smaller radius, and the particles of the reference second coordinational sphere are depicted as empty
circles. The domain I contains the point ε11 = ε22 = tgϕ = 0, and the lattices at strains from the domain I can be
referred to as the deformed lattice “a.”The domain II contains the point ε11 = √

3−1, ε22 = 1/
√
3−1, tgϕ = 0

that corresponds to the triangular lattice “b,” and lattices at strains from the domain II can be considered as
the deformed lattice “b,” and, finally, the strains from the domain IV can be considered as the strains of the
triangular lattice “c” with the reference state at ε11 = ε22 = 0, tgϕ = 2/

√
3. Further, wewill refer to the lattice

states at strains from the domains I, II and IV as to the deformed variants “a,” “b” and “c” of the “triangular
phase,” and it will be shown that the states “a,” “b” and “c” of the triangular lattice are stress-free states.
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Fig. 2 Strong ellipticity domains for triangular lattice in strain space ε11, ε22, tgϕ. The Morse potential with θ = 6

Fig. 3 The states of the triangular lattice typical for the strong ellipticity domains: a vertical orientation of RVE (reference
configuration, domain I), b horizontal orientation of RVE (domain II), c vertical orientation of RVE (domain IV), d, e square
RVE (domains III and V)

The lattice configurations at strains from domains III and V can be regarded as deformed square lattices
“d” and “e.” It is known that the pair force interaction does not allow the stability of stress-free square lattice,
because its shear modulus is zero within nearest neighbor interaction [18]. Indeed, in this case, the forces do
not produce any work upon shearing due to the symmetry of the lattice. Thus, in contrast to the “triangular
phase,” the square lattices “d” and “e” can be strongly elliptic only at all-round extension. Further, we will
refer to the lattice states at strains from the domains III and V as to states of the “square phase.”

The use of the terms from the phase transition theory, namely a distinction between the deformed variants
of the triangular phase and deformed states of the square phase, is supported by the fact that the different lattice
states take place at strains which correspond to different convex branches of the lattice energy dependencies
on strains divided by non-convex curve pieces (see below).

Judging by Fig. 3, one can expect that surfaces of strain discontinuities can appear on the straining paths
which connect different ellipticity zones. These surfaces form twins on the paths connecting domains I and
II, I and IV, and II and IV with coexisting variants of lattices with different RVE orientations: “a” and “b,”
“a” and “c,” and “b” and “c,” respectively, and interphase boundaries on the paths connecting domains I and
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(a) (b)

Fig. 4 Strong ellipticity regions’ cross section at ϕ = 0 for the Morse potential at θ = 6 (a) and θ = 20 (b)

III, I and V, II and III, etc. which correspond to coexisting triangular and square phases. Note that the phase
transformations are possible only at those interaction potential parameters at which the domains III and V
exist.

3.2 Biaxial straining paths at ϕ = 0

Nowwe focus on the cross section of the strong ellipticity region by the plane ϕ = 0 that contains cross sections
of the domains I, II and III (Fig. 4a). In this case, the eigenvectors of deformation gradient and, consequently,
of the Cauchy stress tensor coincide with the axes 1 and 2 shown in Fig. 1, ε1 ≡ ε11, ε2 ≡ ε22. Note that the
coordinates ε̃1, ε̃2 can be chosen in which the domains I and II in the plane ϕ = 0 become symmetric with
respect to the line ε̃1 = ε̃2. If the origin is placed in stress-free square state, then

ε̃1 = 1 + ε1√
2

− 1, ε̃2 =
√
3(1 + ε2)√

2
− 1.

The strong ellipticity domains are determined by the simplified inequalities (9)

trD > 0 ⇔ A1k
2
1 + C1k

2
2 > 0,

detD > 0 ⇔ A2k
4
1 + B2k

2
1k

2
2 + C2k

4
2 > 0,

(11)

becausemultipliers like Q14 vanish, when off-diagonal components ofF are absent. It is possible to exclude the
components of k from (11), so that the strong ellipticity conditions are expressed in terms of the components
of tensor 4Q only [19], i.e.,

Q11 > 0, Q21 > 0, Q12 > 0, Q12 > 0, B2 > −√
A2C2,

A2 = Q11Q21, C2 = Q12Q22, 2B2 = Q11Q22 + Q12Q21 − 4Q2
44.

(12)

Note that on the strong ellipticity domains’ boundaries positivity is lost either by one of the instantaneous
Young’s moduli or by one of the instantaneous shear moduli [19].

Black dots in Fig. 4a correspond to the reference lattice states “a” and “b” in Fig. 3. Three straining
paths connecting these states are indicated: the solid curve is the uniaxial loading path along the axis 1, the
dash-dotted curve is constant volume curve, and the dashed line is just a straight line.

To confirm that the lattice variant “b” is stress free in its reference state, we construct a stress–strain diagram
along the uniaxial loading path. The dependence of σ1 on ε1 at σ2 = 0 is shown in Fig. 5a where σ1 and σ2
are the eigenvalues of the Cauchy stress tensor (4). Strains and corresponding stresses at which the material
is strongly elliptic belong to the hatched zones. There are three stress-free states and, evidently, the left one
matches the lattice variant “a” and the right one matches “b.” The middle one corresponds to the stress-free
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(a) (b)

Fig. 5 Transition from triangular phase to triangular phase. a Stress–strain diagram at uniaxial loading connecting configurations
shown in Fig. 3 “a” and “b” (solid line in Fig. 4a), b energy (solid) and its derivative (dashed) on the straight line path connecting
configurations shown in Fig. 3 “a” and “b” (dashed line in Fig. 4a). Strong ellipticity zones are hatched. The Morse potential,
θ = 6

square lattice. One can see that both strong ellipticity domains I and II contain stress-free states of the triangular
configurations, but the stress-free square lattice cannot exist in the strong ellipticity domain.

Figure 5b shows the energy (solid line) and its first derivative (dashed line) along the straight line connecting
two stress-free states “a” and “b” in Fig. 4a. Two minima are of equal depth, as expected. They are separated
by the non-ellipticity zone where the energy is non-convex.

In the next section, using MD simulation we will demonstrate that the boundaries separating the grains
occupied by the lattices with various orientations (twins) appear on the straining paths connecting stress-free
states. We will show the results only for the path on which the sample’s volume is constant (dash-dotted curve
in Fig. 4a) in order to focus on shearing deformation mechanisms and get clear picture without additional
vacancies, holes and cracks due to volume changes.

To make the transformation from triangular phase to square phase more visible, we enlarge the domain III
by changing the potential parameter θ from θ = 6 to θ = 20 (Fig. 4b). This also leads to approaching of the
domain III to the point that corresponds to the stress-free square lattice configuration. Besides, the thickness
of the domains I and II decreases.

To demonstrate the energy changes due to the lattice evolution if the phase state changes, we consider
two straight line straining paths connecting domains I and III. Both lines start from the reference strain of the
stress-free lattice variant “a.” The stress-free square lattice lies outside the strong ellipticity zone, but close
to the intersection of the axis ε̃1 = ε̃2 of the square lattice all-round extension and the boundary of domain
III. The dashed line passes the stress-free triangular state and this intersection. The solid line just crosses the
domain III. The energy changes on two paths are shown in Fig. 6. One can see that two uniformly deformed
phases can indeed exist in strong ellipticity zones, but the square phase can exist only in the stressed state, as
there is no minimum in the strong ellipticity zone. The non-convexity of the energy profile allows us to expect
the appearance of two-phase deformations on these straining paths, and this is confirmed in the next section
by MD experiments.

4 MD simulation of structural transformations: relaxed energy

In this section, the evolution of the triangular lattice is investigated bymeans ofMD simulation along particular
straining paths mentioned above. The simulation technique in general is described in [18]. In the present paper,
we develop the procedures of the lattice stability examinations and estimation of energy relaxation from
unstable states. We also observe the appearance of microstructures as the mechanism of the energy relaxation.

The strain space ε1, ε2 is divided into a grid. For each node, we construct a triangular lattice in the
corresponding deformed state with periodic boundary conditions so that to bring the system to the state
considered theoretically. The interaction between the particles is described by the Morse potential (10).
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(a) (b)

Fig. 6 Transition from triangular phase to square phase. Energy on the paths connecting stress-free configuration “a” and all-round
extended configuration “d” (see Fig. 3): a on the dashed line, b on the solid line (see Fig. 4b). Strong ellipticity zones are hatched.
The Morse potential, θ = 20

Stability examination is carried out using two types of perturbations: “homogeneous” and “inhomogeneous”
ones; in both cases, they are caused by introduction of initial kinetic energy. Within the “homogeneous”
approach, a small random velocity with normal distribution is attributed to each particle so that the average
kinetic energy of the sample is about six orders of magnitude smaller than the depth of the potential well D,
i.e., the energy required to evaporate the sample. The system evolution is described by the solution of the
Cauchy problem for the set of ordinary differential equations for the particles

mr̈k =
N∑

n=1

f (|rk − rn|) rk − rn
|rk − rn| , (13)

where N is the number of particles, m is the particle mass, and rk is the position vector of the kth particle,
using the Verlet algorithm [20]. The calculation step is 0.01T , where T is the period of small oscillations of
an isolated pair of particles.

We calculate the kinetic energy per particle. If at a given strain the kinetic energy starts growing and
exceeds the initial value, then the configuration is considered as unstable. Since perturbation is caused only by
velocities, the kinetic energy Ek partially converts to potential energy right away (less than within 5T ), e.g.,
for linear systems the value of the average kinetic energy is two times smaller than that of the initial Ek [21].
Thus, the only reason for the kinetic energy to exceed the initial Ek is the decrease in the value of the potential
energy, which is associated with structural changes in the material. The number of calculation steps before
the instability arises depends on the given strain and varies from tens to hundreds of thousands. In order to
speed up the calculations, we use the following scheme. At the first stage, before the onset of instability, the
calculation is carried out in accordance with the Verlet list of interactions [20], which are compiled prior to
the computation. This approach is justified by the fact that the list of interactions does not change in a stable
configuration at low levels of average kinetic energy. At the next stage, if the instability is detected, Verlet lists
are recompiled every 20 steps, i.e., 0.2T , using the cell-linked list method [22]. We wait 500T until a new
equilibrium microstructure is formed. Our calculations showed that this time is sufficient for the structure to
form and for the kinetic energy to change its behavior from growing to oscillating. After that, we slowly “cool”
the system introducing a dissipation coefficient which depends on the average kinetic energy and calculate the
relaxed energy. We take ν in the form

ν = ν0

(
νA − νB E2

k

E2
k + νC

)
, (14)

where the parameter ν0 = 2
√
mC is the critical damping coefficient, C is the stiffness of the bond between

particles, and νA = 0.3, νB = 0.295, νC = 0.01D are certain constants chosen in a way as to minimize the
cooling time and, at the same time, to ensure sufficient moveability of the particles for prospective structural
rearrangement.
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When the value of the average kinetic energy per particle becomes smaller than D · 10−3, the particles’
velocities are decreased by ten times every 50T , since at this value of the kinetic energy the structure of the
material is no longer changing. The cooling process is assumed to be completed with sufficient precision when
the value of the average kinetic energy becomes smaller than D · 10−4 within 50T . Note that the dimension
of the stability region in strain space depends on the number of the calculation steps; its size decreases and the
obtained stability boundary tends to the theoretical strong ellipticity boundary shown in Fig. 4 with increasing
number of steps. After the cooling is completed, the average values of the mechanical properties of the material
are calculated, and the averaging time is 300T .

We emphasize that the instability region does not overlay the strong ellipticity region at the homogeneous
perturbations considered. But it is known that a phase transformation can start before the local stability of
a parent phase is lost. Recall that only purified gas and liquid can be in undercooled or superheated states,
respectively, in phase transitions “gas–liquid,” and the Maxwell rule allows a phase transformation to start
earlier owing to the existence of inhomogenous perturbations.

Having this inmind,we develop the “inhomogeneous” perturbations approach. First, a uniformdeformation
and a random minor velocity field is imposed on the lattice like in the previous case. Then a zone with the
area of about one quarter of the sample’s area is chosen in the sample’s center. The particles’ velocities are
additionally increased inside this zone so that the kinetic energy averaged over the zone becomes only one order
of magnitude smaller than the depth of the potential well. The instability exhibits as the appearance of the torn
bonds and the particles’ rearrangements. After that, we wait again until the microstructure is formed, “cool”
the system and calculate the relaxed energy. This procedure allows us to obtain the relaxed microstructures
with energies which are closest to the minimum possible energy in terms of value, obviously exceeding it due
to imperfections. Thus, using two types of perturbations, we obtain experimentally both a lower energy bound
and stability bounds. The randomness of the initial velocity distribution accounts for non-uniqueness of the
static solution after strong ellipticity loss. The relaxed microstructures vary from one run of the experiment to
another, but the main features remain the same.

Figure 7 shows the energy and shear stress dependencies on strain along the constant volume straining
path (1 + ε1) (1 + ε2) = 1 connecting the stress-free triangular states “a” and “b” in strain space (dash-dotted
curve in Fig. 4a). In theoretical analysis that does not account for evolution after strong ellipticity loss, it
means that both the sample’s and the unit cell’s volumes are fixed and equal to the corresponding volumes
of the stress-free state, as only uniform deformations are considered. In the MD simulation, we can fix the
sample’s volume alone, thus allowing for structural transformations, and the unit cell’s volume is fixed only as
the initial condition for particle positions. Such a straining path enables us to exclude the influence of all-round
extension or compression and focus on shearing deformation mechanisms. The dashed line in Fig. 7a shows
the energy calculated theoretically for uniformly deformed lattice as it was done in the previous section for the
Morse potential with θ = 6. The solid line is obtained by the MD experiment after the energy relaxation. Here
the energy jumps are nucleation barriers, and the other part of the curve forms the envelope of the theoretical
energy profile obtained for the uniformly deformed lattice.

Experimental (solid line) and theoretical (dashed line) shear stress–shear strain dependencies are shown
in Fig. 7b. In the chosen coordinates, the theoretical curve is analogous to the van der Waals isotherm in the
pressure–volume diagram for a phase transition “gas–liquid,” and the experimental line practically satisfies
the Maxwell equal area rule with a difference between the areas of approximately 9%.

An example of microstructure that corresponds to the relaxed energy at external strain taken within the
non-ellipticity zone is shown in Fig. 8. Each point is a particle; the color denotes its energy. One can see grains
formed by the variants “a” and “b” of the triangular lattice. The grains contain particles with minimal energy.
They are energetically indistinguishable and can be referred to as twins. The particles with the higher energy
form grain boundaries, point defects and dislocations where the excess energy is localized.

Thus, the experimental observations fully comply with the theoretical point of view according to which
the obtained envelope of the energy profile may be a quasiconvex envelope that corresponds to the energy
minimizing microstructures. Theoretically, the envelope curve could have been a tangent line to both energy
minima in the case of stress-free twinning; and the deviation from the straight line may be caused by the
accumulation of the energy produced by internal stresses. One can see that grain boundaries and various
defects are sources of energy accumulations in the case under consideration. And finally, twins automatically
satisfy the Maxwell rule [3].

We conclude the investigations of structural transformations in a triangular lattice by the considerations of
two-phase microstructures which appear on the straining path connecting the stress-free triangular phase “a”
and the stressed square phase “d” (dashed straight line in Fig. 4b). The relaxed energy is shown in Fig. 9 (the
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(a) (b)

Fig. 7 Transition from triangular phase to triangular phase. Energy before (dashed) and after (solid) relaxation (a) and shear
stress–shear strain diagram (b) along the constant volume straining path (dash-dotted line in Fig. 4a). Strong ellipticity zones are
hatched. The Morse potential, θ = 6

Fig. 8 Microstructures with grains formed by variants of triangular lattice within non-ellipticity zone at ε1 = 0.366 (see Fig. 7).
The Morse potential, θ = 6. a Twins, b vacancies, c dislocations

Fig. 9 Transition from triangular phase to square phase. Energy before (dashed) and after (solid) relaxation on dashed line shown
in Fig. 4b. Strong ellipticity zones are hatched. The Morse potential, θ = 20

dashed line reproduces the theoretical curve from Fig. 6a). The examples of microstructures corresponding to
points A, B and C are shown in Figs. 10, 11 and 12, respectively.

Closer to the domain I, we see grains occupied by the triangle phase “a.” In contrast to the constant volume
path, more vacancies and microcracks appear at the straining path chosen here. The difference between Figs. 8
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Fig. 10 Microstructures in non-ellipticity zone at strains “A” (see Fig. 9). The Morse potential, θ = 20. a Triangular lattices
divided by thin layers of square lattice, b vacancies, c microcracks

Fig. 11 Layered two-phase microstructure in non-ellipticity zone at strains “B” (see Fig. 9). The Morse potential, θ = 20.
Amorphous zones appeared

Fig. 12 Microstructures in non-ellipticity zone at strains “C” (see Fig. 9). The Morse potential, θ = 20. a Domains of square
lattices divided a shear band formed by a layer of triangular lattice, b a void formed at the cross section of two shear bands,
c voids at the ends of shear bands

and 10 is that the grains are divided by thin layers of the square phase. As the external strain increases, a
clearly marked layered two-phase microstructure develops. One can see in Fig. 11 that the supplied energy
is distributed between coexisting domains occupied by low-energy variants of the triangular phase and high-
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energy square phase. Finally almost all the material transforms into the square phase. In Fig. 12 one can also
see shear bands formed by thin layers of the triangle phase and voids at the ends and intersections of shear
bands. Note that the energy relaxation is connected not only with two-phase microstructures formation, but
also with twinning, which is visible, although not specifically marked, in Fig. 10.

As in the case of twinning, these results comply with the general theoretical prediction [23] that two-
phase microstructure nucleation and development is the mechanism of the energy relaxation in materials with
non-convex energy.

5 Conclusions

Using both theoretical and MD experimental approaches, we studied structural transformations in a triangular
lattice, as a general case of a planar simple lattice. The algorithm of strong ellipticity investigation is presented
for the continuum, which is equivalent to a simple lattice in the sense of the Cauchy–Born energy and con-
structed within long-wave approximation. On the whole, five strong ellipticity domains in strain space were
identified: three of them contain stress-free states of the triangular lattice variants, and the other two corre-
spond to stressed square lattices. The size, the shape and the number of the domains depend on the interaction
potential parameters. We showed that the energy profiles and stress-strain diagrams on the straining paths
connecting the various strong ellipticity domains are typical for materials allowing twinning and martensite
phase transformations. MD experiments supplemented the theoretical results by the “real” lattice behavior on
the straining paths connecting the ellipticity domains. In fact, the energy envelope similar to the quasiconvex
envelope corresponding to the energy minimizer was obtained experimentally for particular straining paths,
and minimizing microstructures (twins, two-phase structures) were observed.

On the whole, we demonstrated the variety of behaviors of the lattice depending on straining paths and
interaction potential parameters. We showed that the developed equivalent continuum approach and MD
simulation together may be a proper instrument for bridging continuum and discrete mechanics of materials
undergoing phase transformations.

Acknowledgments The authors are deeply grateful to the reviewers for their comments which have led to major improvements
in the paper. This work was supported by Russian Foundation for Basic Research (Grant Nos. 12-01-31297 mol_a, 14-01-31487
mol_a, 13-01-00687).

Appendix

1. The Piola stress tensor is the transposed derivative of the energy (2) with respect to the deformation gradi-
ent [5],

P =
(

∂W

∂F

)T

= 1

2V0

∑
k

Π ′
k
∂ak
∂FT .

We rewrite (1) as

ak = F · a0k,
where

ak = akek, a0k = a0k e
0
k, ���.

Then the increment of the current bond length is

δak = δ

√
a0ka

0
k · · (

FT · F) = 1

2ak
a0ka

0
k · · δ

(
FT · F) = F · a

0
ka

0
k

ak
· · δFT = aka0k

ak
· · δFT.

Thus,

∂ak
∂FT = a0kak

ak
= a0k e

0
kek,
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and we arrive at formula (3):

P = 1

2V0

∑
k

Π ′
ka

0
k e

0
kek .

We use the following notation for the tensor product of two vectors and the convolution of two tensors:

a ⊗ b ≡ ab, ab · · cd ≡ (b · c) (a · d),

and the definition [5] of the derivative g′
X of the function g of tensor argument X that follows from the equality

δg (Xkl) = ∂g

∂Xkl
δXkl = ∂g

∂Xmn
emen · · elekδXkl = g′

X · · δXT.

The respective formula for the Cauchy stress tensor (4) is

σ = V0
V

F · P = 1

2V

∑
k

Π ′
kakekek .

2. To check the consistency, let us make sure that the equilibrium equations for simple lattices hold identically
on both micro- and macroscopic levels following [18]. The microscopic equilibrium equation for any particle
(which we can call reference particle, as the lattice is simple and infinite) has the form

∑
k

fk + b = 0,

where fk is the force with which the k th particle acts on the reference particle, and b corresponds to the external
forces. It can be rewritten as

1

2

∑
k

(fk + f−k) + b = 0.

Let us assume that the forces depend only on r0, the reference position of the reference particle. Using long-
wave approximation and taking Fig. 1a into account, we get

f−k
(
r0

) = −fk
(
r0 − a0k

) ≈ −fk
(
r0

) + a0k ·
◦∇ fk

(
r0

)
.

Thus, the equilibrium equation yields

◦∇ ·1
2

∑
k

a0kfk + b = 0.

Introducing the body force

bv = 1

V0ρ0
b,

we come to the continuum equilibrium equation

◦∇ ·P + ρ0bv = 0,

if the Piola stress tensor is

P = 1

2V0

∑
k

a0kfk .

Due to the pair force interaction assumption

fk = Π ′ (ak)
ak

ak,
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and we once again arrive at formula (3) for the Piola stress tensor and thus demonstrate the equivalence of
microscopic and continuum equilibrium equations.

3. Now let us turn to the equation of perturbed motion (5)

ρ0δü = δ
( ◦∇ ·P

)
.

Denoting v = δu and taking into account that
◦∇ is written in the reference configuration, we get

ρ0v̈ = ◦∇ · δP.

The Piola stress tensor depends on the deformation gradient only, so

δP = ∂P
∂FT · · δF.

Let us calculate

∂P
∂FT = 1

2V0

∑
k

∂Π ′
k

∂FT a
0
k e

0
kek + 1

2V0

∑
k

Π ′
ka

0
k e

0
k

∂ek
∂FT .

Taking into account that

δek = δ

(
1

ak
ak

)
= −ak

a2k

a0kak
ak

· · δF + 1

ak
Ia0k · · δFT = a0k

ak

(∑
n

ine0k in − eke0kek

)
· · δFT,

we get

∂ek
∂FT = a0k

ak

(∑
n

ine0k in − eke0kek

)
,

where unit tensor in the orthonormal basis in is

I =
∑
n

inin .

Thus,

∂P
∂FT = 1

2V0

∑
k

[
1

a2k

(
Π ′′

k − Π ′
k

ak

)
a0kaka

0
kak +

∑
n

Π ′
k

ak
a0k ina

0
k in

]
.

Since

δF =
( ◦∇ δr

)T
=

( ◦∇ v
)T

,

Eq. (5) yields

δP = 1

2V0

∑
k

[
1

a2k

(
Π ′′

k − Π ′
k

ak

)
a0kakaka

0
k + Π ′

k

ak
a0k Ia

0
k

]
· · ◦∇ v.

Taking into account that

◦∇ =
( ◦∇ r

)
· ∇,

we get

a0k ·
◦∇ v = ak · ∇v,
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thus

δP = 1

2V0

∑
k

[
1

a2k

(
Π ′′

k − Π ′
k

ak

)
a0kakakak · · ∇v + Π ′

k

ak
a0kak · ∇v

]
.

Finally,

v̈ = 1

ρ0

◦∇ ·δP =4Q · · · ∇∇v,

where

4Q = (
I� +4	

)
, � = 1

2V0ρ0

∑
k

Π ′
k

ak
akak,

4	 = 1

2V0ρ0

∑
k

1

a2k

(
Π ′′

k − Π ′
k

ak

)
akakakak .

According to, e.g., [5], the strong ellipticity condition can be written in the following form:

∀n0 4Q0 · ·n0n0 > 0, Q0
i jkl =

(
∂2W

∂
(
FT

)2
)

jkil

,

where

4Q0 = (
I�0 +4	0) , �0 = 1

2V0ρ0

∑
k

Π ′
k

ak
a0ka

0
k,

4	0 = 1

2V0ρ0

∑
k

1

a2k

(
Π ′′

k − Π ′
k

ak

)
akaka0ka

0
k

and n0 indicates the direction of the wave vector in the reference configuration.
Taking into account that the unit vectors n0 in the reference and n in the current configuration are related as

n0 = (
n · F · FT · n)−1/2

FT · n
and det (F) > 0, we get

sign
(4Q · · nn) = sign

(4Q0 · · n0n0) ,

which means the equivalency of condition (7) and the conventional form of the strong ellipticity condition.
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