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a b s t r a c t

This paper reviews classical theories of coarse-graining and gives a short introduction to
representative coarse-grained atomistic models that were developed based on structure
reduction, an assumption of homogenous deformation, and field representation. The appli-
cability and limitations of these coarse-grained models are analyzed on the basis of their
theoretical frameworks as well as the coarse-graining methods they employ.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing demands of engineering design to push the limits of current capabilities require predictive theories and
simulation tools. The need for this predictive ability has enabled atomistic modeling and simulation to become an essential
component for examining phenomena in molecular science, materials science, and engineering applications. Supplemented
by quantum mechanical calculations of force fields that describe the interaction of atoms, atomistic simulations can predict
properties and behavior of various molecular and material systems.

However, MD is limited by its characteristic length and time scales, and by the speed and storage constraints of available
computers. Current state-of-the-art MD simulations on supercomputer can handle about 109 atoms, amounting to a volume
of less than a cubic micron, for a short duration of time. It is unlikely, in the near future, for MD to solve engineering material
systems or complex molecular processes that involve physical phenomena operating across large ranges of scale – 12 orders
of magnitude in time scales as in the modeling of protein folding, or 10 orders of magnitude in spatial scales as in the design
of advanced materials (Oden et al., 2006). These limitations have motivated efforts in the research and development of
coarse-graining methods for study of complex phenomena that involve large length and time scales.

We define the process of representing a system with fewer degrees of freedom than those actually present in the system
as coarse-graining (Espanol, 2004). Phenomenological theories, e.g., classical thermodynamics and macroscopic mechanics,
are all coarse-grained (CG) models in which the majority of degrees of freedom is eliminated. These phenomenological CG
models were usually constructed with a judicious balance of physical intuition, simplicity, and respect of material symme-
tries. They start from a few empirical observations, which are organized and axiomatized in the form of physical laws, and
. All rights reserved.
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arrive at a CG model with a few parameters. However, molecular information is usually absent in these phenomenological
approaches of coarse-graining.

Many recent developments of CG models are based on atomistics, and hence we may call them CG atomistic models. By
coarse-graining atomistic models, we expect to predict the properties and behavior of the systems from the interaction at
atomic scale.

The objective of this paper is to analyze the applicability and limitations of coarse-graining methods from their mathe-
matical and physical foundations. Therefore, it is not our intention to provide an extensive review of existing coarse-grained
models. Following this introduction, classical theories of coarse-graining will be reviewed in Section 2, representative mod-
ern CG models will be introduced in Section 3, analyses of the CG models will be presented in Section 4, and a brief discus-
sion will be given in Section 5.

2. Theoretical foundations of coarse-graining

2.1. Coarse graining through ensemble averaging – equilibrium statistical mechanical theory

The principles of statistical mechanics offer a molecular basis for the laws of phenomenological thermodynamics and pro-
vide a means to calculate macroscopic quantities from properties of molecules (Green, 1952). The most fundamental concept
in statistical mechanics is coarse graining or averaging. Two important averaging processes in statistical mechanics are the
‘‘time average’’ and the ‘‘ensemble average’’. From the standpoint of mechanics, macroscopically observable quantities in a
thermodynamic system are simply the time averages over the molecular trajectories in phase space:
hAi ¼ lim
t!1

1
t

Z tþt0

t0

Aðrðt þ sÞ;pðt þ sÞÞds: ð1Þ
Here hAi is the time-average of the A(r,p), where (r,p) � (R1,R2, . . . ,Rn,m1V1,m2V2, . . . ,mnVn), are the phase-space coordi-
nates, i.e., the positions and momenta of atoms. The calculation of the time averages, however, was a very arduous task be-
fore the advent of digital computers. Gibbs, along with Maxwell and Boltzmann, made a great advance by suggesting that the
average over a period of time for a given system at equilibrium is equivalent to the average over the ensemble at one instant
of time. The equilibrium ensemble average of a dynamic phase function A(r,p) is defined as
A �
Z

p

Z
r

Aðr;pÞf ðr;pÞdr dp; ð2Þ
where the probability density function
f ðr;pÞ ¼
1 if E < Hðr;pÞ < Eþ D;

0 otherwise;

�
ð3Þ
represents the microcanonical ensemble (NVE), with H(r,p) being the Hamiltonian, E is a constant, and
f ðr;pÞ ¼ e�Hðr;pÞ=kT ; ð4Þ
represents the canonical ensemble (NVT). According to the ergodic hypothesis, the time average defined by Eq. (1) should
be the same as the ensemble average defined by Eq. (2). Eq. (2) thus replaces the mechanically well-posed but physically
difficult task of integrating the classical many-body dynamics equations of motion by the somewhat more manageable
task of averaging over static phase-space states. As mentioned by Maxwell and Boltzmann that laws of macroscopic physics
can be deduced from the microscopic dynamics of a system at equilibrium, Gibbs’ ensemble theory has successfully for-
mulated and explained the fundamental laws of equilibrium thermodynamics through coarse-graining microscopic many-
body dynamics.

2.2. Coarse-graining though field representation – Statistical mechanical theory of transport processes

Gibbs developed the statistical ensemble theory for analyzing equilibrium thermodynamic properties of macroscopic sys-
tems. When the conditions depart from thermodynamic equilibrium, transport processes occur. The most common transport
processes are diffusion, heat transfer, fluid flow, and response to external forces that depend upon time. These transport pro-
cesses are irreversible processes. The central problem of nonequilibrium statistical mechanics has thus been to derive the
governing equations that describe the irreversible processes in coarse-grained systems from the reversible equations of mo-
tion in microscopic many-body dynamics (Montroll & Green, 1954).

The kinetic theory of rarefied gases of Boltzmann (1872) marked the beginning of the statistical mechanics formulation of
irreversible processes, providing insight into the problem of how irreversible phenomena can be treated building on the con-
cepts of reversible dynamics. Many fundamental developments in coarse-graining of nonequilibrium processes in dense flu-
ids and solids have resulted from the fruitful and inspiring work of Kirkwood in the years 1946–1959, with a series of 14
articles bearing the thematic title of ‘‘statistical mechanical theory of transport processes’’ as a backbone.
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In Kirkwood’s statistical mechanical theory of transport processes, the fundamental equation that defines the link be-
tween microscopic many-body dynamics and the macroscopic description is the definition of local densities in the three-
dimensional physical space:
�aðx; tÞ ¼
Xn

k¼1

Z
r

Z
p

Aðr;pÞf ðr;p; tÞdðRk � xÞdr dp; ð5Þ
where r = {R1,R2, . . . ,Rn}, and p = {m1V1,m2V2, . . . ,mnVn}, are respectively the positions and momenta of molecular centers. The
probability function f(r,p, t) is time-dependent, and the delta function, d(Rk � x), is normalized with a unit of inverse volume.
Following from Eq. (5), Kirkwood and his co-workers obtained the time evolution laws of the local densities of mass, linear
momentum and energy, as exact consequence of laws of Newtonian mechanics that governs the dynamics of the microscopic
many-body systems. Here, the ergodic hypothesis is not pursued and fully nonequilibrium behavior can be treated. These
partial differential equations are identical in form with transport equations of hydrodynamics or the balance equations of
continuum mechanics. In the process of the formulation, the formulas for calculations of fluxes (stress and heat flux) were
derived and the parameters involved were determined from the underlying atomistic model.

It is worthwhile to mention that the statistical mechanical theories of CG nonequilibrium systems were also intensely
studied by Green (1952), Kubo (1957), Zwanzig (1911), Mori (1965), and others. Among these statistical mechanical meth-
ods, Kirkwood’s field method is intended to apply to all states of aggregation. The formulation has also provided a method to
investigate the limits of validity of the empirical laws of diffusion, heat conduction, and viscous flow, and a means to deter-
mine the coefficients of diffusion, thermal conductivity, and viscosity, from the structure of the system on the molecular
scale. It has also provided a powerful technique to deepen understanding of Brownian motion and of the Boltzmann and
Enskog equations for gas-phase kinetics. Furthermore, it led to derivation of the first autocorrelation function representation
in transport theory, for the ‘‘friction coefficient,’’ in Langevin equations, anticipating the later Green–Kubo–Mori–Zwanzig
results of the same generic form.

Kirkwood’s statistical mechanical theory of transport processes provides a coarse-grained description using field variables
which have, in principle, an infinite number of degrees of freedom. Note that these fields are continuous in physical space.
Since the continuum fields can be represented by a discretization on the length scale of interest, it becomes clear that the
coarse-grained level of description indeed uses fewer degrees of freedom than the atomistic description. There seems to
be a smallest length-scale for classical continuum field models, however, determined by the molecular or atomic structure.
This characteristic length scale was studied and discussed by Alder and Alley (1984), whose analysis of simulation data
shows that the classical continuum field representation works successfully from macroscopic down to the length of only
a few inter-atomic distances.

2.3. Coarse-graining through assumptions of homogeneous deformation in crystals

Crystalline solids are distinguished from other states of matter by a periodic arrangement of the atoms; such a structure is
called crystal lattice (Fig. 1). If we visualize a simple lattice as the periodic repetition of a single atom, we can look upon a
general lattice or a multi-atom lattice as the repetition of the atoms in the basis as a group.

If a lattice is deformed such that the resulting structure remains a perfect lattice, according to Born and Huang (1954), the
deformation is homogeneous. Under homogenous deformation, a particle in a simple lattice initially at r is moved tor0

according to the affine mapping given by
r0i � ri ¼ ui ¼
X

j

Fijrj ði; j ¼ 1;2;3Þ; ð6Þ
with ui is the ith component of displacement, Fij are called deformation parameters. Eq. (6) transforms the coordinates of all
particles linearly and homogeneously and is generally referred to as Cauchy–Born hypothesis.
a

b

Fig. 1. (a) Simple lattice, (b) general lattice.
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If there is more than one atom in the lattice cell, say Na atoms, the total displacement of the ath atom in the kth lattice
cell, denoted as ka atom, should then be expressed as
Fig. 2.
particle
uka
i ¼ na

i þ
X

j

Fijrka
j ði; j ¼ 1;2;3; a ¼ 1;2; . . . NaÞ; ð7Þ
where the displacement of ka atom is decomposed as the displacement of the mass center of lattice cell k and of ath atom
within the kth lattice cell, with na

i being the ith component of the internal displacement of the ath atom.
The quantities na

i and Fij were respectively described as the internal and external deformation; the latter are identical with
the macroscopic elastic deformation. As a body is elastically deformed, an internal strain is induced. If one assumes the inter-
nal strain minimize the energy density for the given external elastic deformation Fij. The internal deformation can then be
eliminated. The atomistic model of general crystals can then be coarse-grained to obtain a macroscopic elastic model. Using
this homogeneous deformation assumption, Born and Huang (1954) derived the energy density, elastic constants, and
mechanical stability of crystals subjected to homogenous deformation in which the particles interact with central forces.

3. Representative CG atomistic models

The fundamental process of coarse-graining is to eliminate degrees of freedom. The art of coarse-graining is hence to bal-
ance the reduction of CG variables so that the reduced order of representation of the system is amenable to simulation while
the essential properties of interests can still be retained. Here we divide the methods that have been developed to reduce the
degrees of freedom of an atomistic system into three categories:

(1) Reducing the order of the particle representation of the molecular structure.
(2) Assuming atomic-scale homogeneous deformation.
(3) Using field representations.

3.1. CG models based on reduced-representation of molecular structures

Most of CG soft matter models are based on the reduced-structure method shown in Fig. 2. This method consists of two
steps: (1) grouping several atoms into one rigid CG particle so as to directly reduce the complexity of the structure, and (2)
construct an effective force field for the CG model by matching the structure, or thermodynamic properties, or forces of the
CG model with that of the underlying atomistic model. Popular models in this category include the earliest CG models: uni-
ted-atom model (Levitt, 1976; Levitt & Warshel, 1975), the super-atom model (Reith, Meyer, & Müller-Plathe, 2001; Tschöp,
Kremer, Batoulis, Bürger, & Hahn, 1998), the beads model (Favrin, Irbäck, & Wallin, 2002), the dissipative particle dynamics
(Espanol & Warren, 1995), and recently developed the multiscale CG method (Izvekov & Voth, 2005).

(a) Super-atom model (united atom model, beads model)
The united-atom, the super-atom, and the beads model intend to reproduce the structural properties or to match
thermodynamic properties such as energy or free energy of the underlying atomistic model by parameterization of
a pre-selected analytical form of the CG potential. The analytical effective potentials are assumed to contain the inter-
molecular non-bonded potential and intramolecular bonded potentials. The energy-matching model has been useful
for simulating processes where thermodynamic properties play a decisive role. The structure-matching model that
aim to reproduce a target structure, often described by a set of radial distribution functions obtained from all-atom
molecular simulations, on the other hand, has a distinct advantage that it facilitates ‘‘backmapping’’ to reinsert atom-
istic coordinates into the CG model after CG simulation. The general strategy is to use rigid all-atom chain fragments –
which were taken from the all-atom chain structures. These fragments are fitted onto the CG structure. The resulting
all-atom structure is then relaxed by energy minimization and a short equilibration. The combination of CG simula-
tions with an efficient backmapping or inverse mapping capability has the promise to efficiently simulate long time
scale and large length scale soft matter processes and in the end to obtain well-equilibrated atomistic structures and
trajectories (Peter & Kremer, 2010).

(b) Multiscale coarse-grained method (MS-CG)
MS-CG is a new structure-reduction based CG method introduced by Izvekov and Voth (2005) for determining the
effective interactions between CG sites using information from atomistic MD trajectories. The basis of the MS-CG
Procedure to construct a super-atom model from the underlying atomistic model, The atomistic model, (b) the atoms are grouped into 3 rigid
s, (c) the CG model.
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approach is the force-matching method (Hone, Izvekov, & Voth, 2005; Izvekov, Parrinello, Burnham, & Voth, 2004)
used to build effective empirical force fields from ab initio MD data. In distinction with the structure- or energy-based
structure-reduction CG methods, MS-CG method aims to generate a CG model that is ‘‘consistent’’ with the atomistic
model of the same system in that the equilibrium distribution function of the CG model is equal to the distribution
determined by the specific CG mapping and the equilibrium distribution function of the atomistic model. The statis-
tical mechanics foundation of the MS-CG force matching method was described by Noid et al. (2008a), who defined
the CG potential U(RN) in terms of the atomistic potential u(rn), i.e.,
UðRNÞ ¼ �kBT ln
Z

drn exp �uðrnÞ=kBT½ �d MN
RðrnÞ

� �
� RN

� �
: ð8Þ
The CG force is given by
FIðRNÞ ¼ � @UðRNÞ
@RI

; ð9Þ
which is determined by variationally minimizing the residual
v2
MS½F

MS� ¼ 1
3N

XN

I¼1

f IðrnÞ � FMS
I ðM

N
RðrnÞÞ

��� ���2
* +

; ð10Þ
where MN
RIðrnÞ ¼

P
i¼1cIiri; f IðrnÞ ¼

P
i2If iðrnÞ, n the number of atoms, and N is the number of CG particles.

There have been substantial efforts to numerically implement the MS-CG method. Current MS-CG developments are mainly
based on simple potential functions, e.g., pairwise additive potentials (Das & Andersen, 2009; Noid et al. (2008a, 2008b)) and
three-body potentials (Larini, Lu, & Voth, 2010). MS-CG simulations have been shown to reproduce well the structural prop-
erties of atomistic models (Das & Andersen, 2009; Izvekov & Voth, 2005; Larini et al., 2010).

(c) Dissipative particle dynamics (DPD)

DPD is a particle model that allows simulation of complex fluids at mesoscopic scales. The original phenomenological
formulation was not linked to microscopic particle systems. Espanol (1995), Espanol and Warren (1995) derived the
stochastic differential equations of DPD using the technique of projection operators. By considering not only effective
conservative forces but also velocity-dependent frictional forces as those in the generalized Lagevin equations for the
CG variables, the resulting dynamic equations have the structure of DPD. Each particle in a DPD model can be regarded
as a collection of molecules. The time evolution of the particles is governed by the Langevin equations of motion, i.e.,
the force acting on a particle has three parts:
f i ¼ fC
i þ fD

i þ fR
i ¼

X
j

fC
ij þ ni _ri þ fR

i ðT; tÞ: ð11Þ
Here fC is the conservative force, fD the velocity-dependent dissipative or dragging force, and fR the random force, and ni is
the friction constant. The amplitudes of these forces are dictated by the fluctuation–dissipation theorem. The DPD method in
general has been shown to produce a correct NVT ensemble if the fluctuation–dissipation relation is satisfied. Recent devel-
opments have extended the DPD method from the constant temperature DPD to include constant pressure or constant sur-
face tension (Jakobsen et al., 2005).

DPD currently is the most commonly used mesoscopic model for complex fluids. There is, however, no theory to link the
atomic interaction and the DPD force fields and parameters, no direct connection between the friction coefficient and the
viscosity of the solvent. The fluid particle has no physical size and the scale of the DPD particle is undetermined. The model
is purely isothermal and, as a consequence of the absence of the internal energy of the fluid particles, energy is not con-
served. Therefore, DPD is not an atomistically-consistent CG model.

3.2. CG models based on homogeneous deformation assumption

Assuming homogenous deformation, as in Eq. (6) (Born & Huang, 1954), is another approach to reduce the degrees of free-
dom of the systems. A special case is the Cauchy–Born rule based on the hypothesis introduced by Cauchy (1828) and Born
(1915) to relate changes in atomic positions to macroscopic deformation. Two popular methods using this method are the
quasi-continuum method and the coarse-grained molecular dynamics method.

(a) Quasicontinuum method (QC)
QC is an energy minimization technique developed by Tadmor, Ortiz, and Phillips (1996) and Knap and Ortiz (2001) for
simulating mechanical response of crystalline materials at zero temperature. The essence of the method is to replace
the atomistic model of N atoms by a CG model of Nh(Nh < N) representative atoms (or nodal points), and to replace the
energy minimization of the atomistic model
min Uðr1; r2; . . . ; rNÞ; or f i ¼ 0; i ¼ 1;2; . . . N ð12Þ
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with a reduced counterpart
min Uhðr1
h; r

1
h; . . . ; rNh

h Þ; or f i
h ¼ 0; i ¼ 1;2; . . . ;Nh; ð13Þ
where the positions of the atoms r = {r1,r2, . . . ,rN} are linked to and determined by the position of the nodal points or rep-
resentative atoms rh ¼ r1

h; r
1
h; . . . ; rNh

h

n o
through ‘‘Cauchy–Born rule’’ (see Fig. 3), and the displacements of the CG nodes rh are

solved through Eq. (13) using conjugate gradients method.
The zero-temperature static QC has been widely used to study diverse problems and has attracted many researchers to fol-
low. Recently, the method has been extended to treat nonequilibrium systems at finite-temperature by replacing the posi-
tion-dependent interatomic potentials with position-temperature-dependent ones, and treating time-dependent
phenomena as a sequence of incremental problems (Kulkarni, Knap, & Ortiz, 2008). This finite-temperature formulation,
however, has lost the simplicity of that of the zero-temperature, and is no longer ‘‘consistent’’ with the atomistic model since
macroscopic phenomenological laws, such as the law of heat conduction, have to be assumed. The energy to be minimized is
the sum of Helmholtz free energy F and an external potential Uext:
Uðhrhi; Th; fxghÞ ¼ Fðhrhi; Th; fxghÞ þUextðhrhiÞ: ð14Þ
Here, hrhi are the mean positions of rh, Th is the CG local temperature, {x} is a measure of the standard deviation of atomic
positions and momenta; the mean position, temperatures and {x} of each atoms are linked to those of the representative
atoms through piecewise interpolation functions.
Another attempt to extend QC to nonequilibrium systems (Marian et al., 2010) was based on the Langevin equation. The
equations that govern the time evolution of the CG displacement rh were derive as
Mh€rh þ s�1ðrhÞMh _rh ¼ f bðrhÞ þ RhðtÞ; ð15Þ
where Mh is called mass matrix, fb(rh) are the body forces, Rh(t) the instantaneous random forces, and s�1(rh) is a spatial var-
iable describing a characteristic damping time. The governing equations of QC now have become stochastic differential equa-
tions (SDE) and have the same structure as that of the DPD.

(b) Coarse-grained molecular dynamics (CGMD)

CGMD is a procedure to derive the effective Hamiltonian for a set of coarse-grained variables from the Hamiltonian of the
atomistic N-body system (Rudd & Broughton, 1998, 2004, 2005). The displacement of the mesh node j is a weighted average
of the atomic displacements
uj
CG ¼

X
a

Wjaua; ð16Þ
where Wja is a weighting function determined by FE shape function. The CG energy is defined as canonical ensemble aver-
aged energy, and is expressed in terms of displacements uj

CG and momenta pj
CG of the FE nodes as
ECG ¼ EðuCG; _uCGÞ ¼
1
Z

Z
r

Z
p

Hðr;pÞf ðr;pÞ
Y

j

d uj
CG �

X
a

fjaua

 !
d pj

CG �
X

a
fjapa

 !
drdp; ð17Þ
where f(r,p) is the canonical ensemble probability function in Eq. (4), and Z is the partition function given by
Z ¼
Z

r

Z
p

f ðr;pÞ
Y

j

d uj
CG �

X
a

fjaua

 !
d pj

CG �
X

a
fjapa

 !
drdp: ð18Þ
The CGMD governing equations can be written in the general form
Mjk €uk
CG ¼ �Kjk €uk

CG þ Fj
ext: ð19Þ
For monatomic harmonic crystals, the matrix M, K, and the CG energy ECG can be analytically computed (Rudd & Broughton,
2005). CGMD then operates in a manner similar to conventional MD. Thermodynamic quantities are calculated in the usual
Fig. 3. Procedure to construct a QC model (a) an atomic model, (b) displacements of atoms are constrained by that of FE nodes.
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way. In particular, temperature is defined in terms of the mean-squared velocity of the CG nodes. The CGMD is derived solely
from the MD model, and has no continuum parameters. Currently its formulation is complete for monatomic harmonic crys-
tals. The anharmonic potential is computed by perturbation theory about the harmonic Hamiltonian assuming quasi-
harmonic or small anharmonic interaction.

3.3. CG models based on field representation

Most of phenomenological CG models are based on the invocation of a continuum field assumption. In this section we
review two field theories that can be developed through coarse-graining of atomistic N-body dynamics.

(a) Micromorphic theory
Micromorphic theory is a continuum field theory originally introduced by Eringen and Suhubi (1964) and Eringen
(1964) for material bodies that possess internal fine scale structures. The theory was further developed by Eringen
(1970, 1972) and by Eringen and Kafadar (1976), revisited and closed by Eringen (1992), and presented with micro-
polar theory and microstretch theory on a unified foundation in the book Microntinuum Field Theories (1999). In
micromorphic theory, a material body is considered as a continuous collection of a large number of deformable par-
ticles, called material particles. The material particle differs from that of classic continuum mechanics by possessing
internal structure of finite size. A material particle, in the reference configuration, is identified by its centroidal X and a
director N attached to it. The motion of the particle is then characterized by two sets of equations: the motion of the
centroid X and the motion of the director N. As shown in Fig. 4a, a generic point P is represented by the vector sum of X
and N in the reference state at time t = 0.
The motions that carry P(X,N) to P(x,n, t) in the deformed state at time t are governed by conservation equations of
mass, microinertia, generalized spin, linear momentum, and energy. These equations were formulated by means of
volume and surface averages applied to an element of the body (Eringen, 1964; Eringen & Suhubi, 1964), and were
obtained again from the macroscopic energy balance equation (Eringen, 1992) by subjecting it to invariance under
arbitrary, constant velocity rigid-body translations and arbitrary, constant-velocity rotations, as
Fig. 4.
deform
@q
@t
þrx � ðqvÞ ¼ 0; ð20Þ

@

@t
ðqiÞ þ rxðv � qiÞ ¼ quþ quT ; ð21Þ

@

@t
ðqvÞ þ rx � ðqv � v � tÞ ¼ f ; ð22Þ

@

@t
ðquÞ þ rx � ðv � qu�mÞ ¼ x � qi �xT þ tT � sþ l; ð23Þ

@ðqeÞ
@t
þrx � ðvqe� qÞ ¼ t : r� v þm..

.
r�xþx : ðs� tÞT þ h; ð24Þ
where q, qi, qv and qu = x � qi are the local densities of mass, moment inertia, linear momentum, and generalized spin,
respectively; t is the Cauchy stress, s is the microstress average, and m is high order moment stress; f and l are the densities
of body force and body moment, respectively; h is the energy source.

Micromorphic theory was considered as a branch of continuum theories. Upon assumptions of small deformation and
slow motion within the particle, micromorphic theory is shown (Chen, Lee, & Eskandarian, 2004) to reduce to Mindlin’s
Microstructure Theory (Mindlin, 1964). When the microstructure of the material is considered as rigid, micromorphic theory
then reduces to the micropolar Theory (Eringen, 1965). Assuming a constant microinertia, micropolar theory is identical to
the Cosserat Theory (1909). Eliminating the distinction of macromotion of the particle and the micromotion of its internal
structure, it results in the couple stress theory (Mindlin & Tiersten, 1962; Toupin, 1962). When the particle reduces to a
structure-less mass point, all the microcontinuum theories revert to classical continuum mechanics. These microcontinuum
a 

x

b P α(X,Y )

X

P( , , ), 1,  2,... at Nα α =x y
P X Ξ

X 

Ξ

x 

ξ
P(x,ξ, t)

Macro- and micro-motions of a material particle in (a) micromorphic theory and (b) AFT, left in (a) and (b) the reference state and (right) the
ed state at time t, where Na is the number of atoms in a primitive unit cell.
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formulations serve as successful CG models formulated via a top-down approach based on the principles of rational contin-
uum mechanics.

The connection of micromorphic theory to atomistic model was studied by Chen and Lee (2003a, 2003b) and Chen et al.
(2003c, 2004). Decomposing the atomic displacements into the lattice displacements and the relative internal displacements
within each lattice cell, and also assuming the subscale internal deformation is continuous, Chen and Lee (2003a, 2003b)
have derived the full set of balance equations of micromorphic theory from atomistic model and identified the connections
between micromorphic variables and atomic variable, thus obtaining a CG model of micromorphic theory from the atomis-
tics. By constructing a material frame-based formalism similar to the spatial frame-based formalism developed by Hardy
(1982) and Zimmerman et al. (2010) have derived expressions for micromorphic theory variables based on atomic-scale
quantities and obtained again the exact form of balance equations of micromorphic theory. These atomistic derivations have
confirmed that micromorphic theory is on firm atomistic foundation, and can be framed as a CG atomistic model that does
not involve continuum parameters.

(b) Atomistic Field Theory (AFT)

In the first one of the 14 classical papers on the statistical mechanical theory of transport processes, Kirkwood (1946)
envisioned the extension of the formulation to molecules possessing internal degrees of freedom. In the book by Born
and Huang (1954), the atomic deformation in a general lattice was expressed as the sum of the lattice and internal
deformation. Motivated by Kirkwood’s idea of molecule possessing internal degrees of freedom as well as the lattice
dynamics description of internal deformation, Chen and Lee (2005) proposed a new approach for linking a local den-
sity a(x,yat) to atomic variables:
aðx; yatÞ �
XNl

k¼1

XNa

n¼1

Aðr;pÞdðRk � xÞ~dðDrkn � yaÞ; ð25Þ
where Rk are the mass center position of the kth unit cell, Drka the internal positions of the ath atom relative to the unit cell
k, and the first localization function, d(Rk � x), implies that over the entire physical space all the unit cells can be found; then,
for each unit cell k, the second localization function, ~dðDrkn � yaÞ, identifies Drkn to be ya.

This new definition establishes a two-level correspondence between the phase space and physical space description of
quantities, and leads to a concurrent two-scale representation of balance equations. Later, Chen (2009) derived Eq. (25) from
the local density definition in Kirkwood’s formulation, Eq. (5), by considering that there is group of atoms situated in each
lattice cell, and proved that the atomic-scale local density defined in Eq. (25) is related to the unit-cell-averaged local density
or Kirkwood’s molecular-scale local density as
�aðx; tÞ ¼
XNa

a¼1

aðx; ya; tÞ: ð26Þ
Chen (2009) further showed that by including the subscale internal variable ya (a = 1,2, . . ., ,Na), where Na is the number of
atoms in one molecule or one primitive unit cell, a multiscale representation of the balance equations of an atomistic system
can be obtained:
@qa

@t
¼ �rx � ðqavÞ � rya � ðqaDvaÞ; ð27Þ

@qaðv þ DvaÞ
@t

¼ rx � ðta � qav � ðv þ DvaÞÞ þ rya � ðsa � qaDva � ðv þ DvaÞÞ þ f a; ð28Þ

@

@t
ðqaeaÞ ¼ rx � ðqa þ ta � ðv þ DvaÞ � vqaeaÞ þ rya � ðja þ sa � ðv þ DvaÞ � DvaqaeaÞ þ f a � ðv þ DvaÞ: ð29Þ
The decomposition of the atomic displacement into a smooth-varying displacement field and a rapidly-varying internal
atomic displacement enables description of an atomic-scale local property to be continuous in x while discontinuous in
a, with ya being internal variables. Consequently, fluxes consist of two parts: the homogeneous parts resulted from the dis-
tortions of lattice cells (denoted as ta and qa, respectively), and the inhomogeneous parts caused by the rearrangement of
atoms within each lattice cell (denoted as sa and ja, respectively). The formulation, called atomistic field theory (AFT), has
thus extended Kirkwood’s formulation to include the internal degrees of freedom of a molecule or a unit cell, and is con-
sistent with Born and Huang’s crystal dynamics description of general lattice. The formulation possesses a similar frame-
work of rational continuum mechanics in that it views a material as a continuous collection of material points, but
departs from classical continuum mechanics description of materials in that embedded within each material point there
is a group of discrete atoms.

AFT is derived solely from atomistic model and does not have continuum parameters for static, dynamic, zero or finite
temperature systems. Its goal is therefore not to achieve a reduced order of continuum model but rather an atomistic field
representation. In the process of the derivation, the fluxes are determined in terms of atomic displacements and local tem-
perature. In AFT, a material can be discretized into finite elements; each contains a collection of primitive unit cells, with



=                                

a b

Fig. 5. Procedure to construct a CG-AFT model by FE method: (a) an undeformed atomistic model, (b) the deformed CG-AFT model in which each FE node
corresponds to a primitive unit cell.
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each FE node corresponding to a primitive unit cell that contains a group of atoms (Fig. 5). Coarse-grained AFT by finite
element method can be mapped back to the underlying atomistic model. AFT can also be seamlessly linked to atomistic par-
ticle models.

4. Comparisons and analyses

4.1. Theoretical framework

(1) The governing equations of the reduced-structure based methods, including the united-atom method, super-atom
method, MS-CG, etc., is Newton’s law for each CG particle, i.e., the same as for MD equations of motion. In a viscous
medium like water, these equations of motion are then replaced by Langevin equations, as also the case for constant-
temperature MD or DPD. The CG methods in this category thus fall within the theoretical framework of N-body
dynamics. The CG equivalent force field and parameters are, therefore, keys to such CG models.

(2) The equilibrium positions in static zero-temperature QC are obtained by minimizing total potential energy of the CG
model, or equivalently, by force equilibration at each nodal point, with the interatomic potential being the sole empir-
ical input. The QC formulations for nonequilibrium systems, however, involve assumptions of phenomenological law
or parameters that require extra empirical assumptions or pre-assigned coefficients as that in DPD. Although the local
properties are piecewise continuously distributed assuming Cauchy–Born rule or continuous interpolation function,
both QC and CGMD are essentially particle models, i.e., they are coarse-grained molecular mechanics or molecular
dynamics models.

(3) Fundamentally different from that in CG particle models, the governing equations in micromorphic theory and AFT are
expressed in terms of local densities. The evolution of these local densities in space and time is governed by the con-
servation equations of mass, linear momentum, and energy. In both micromorphic and AFT, there is an analytical link
between the continuum quantities and the atomic variable. The independent field variables to be solved are the local
temperature and displacement field. The later is a sum of the homogeneous displacement field and the subscale inter-
nal displacements embedded within the material particles. Note that the balance equations in AFT have a similar
structure to that in micromorphic theory. The main difference is that micromorphic theory assumes the structure
of the material particle to be a continuum, while AFT considers that there is a group of discrete atoms embedded
within each material particle (see Fig. 4). AFT can be reduced to micromorphic theory assuming continuous subscale
internal deformation (Chen, Lee, & Xiong, 2009). While micromorphic theory is a two-scale continuum-continuum
theory, AFT provides a concurrent atomistic-continuum methodology.

4.2. Applicability and limitations

(1) By eliminating fine details of the molecular structure, reduced-structure methods (Super-Atom, MS-CG, etc.) simulta-
neously reduce the degrees of freedom and eliminate high frequency-vibration modes of the systems, which in turn
increase simulation time steps and reduce the range of interactions. As a consequence, the computational speed can be
increased by several orders of magnitude. This is the most efficient CG method. However, the cost of parameterization
for the CG effective potential can be intimidating. Currently, reduced-structure models obtained by matching struc-
tural or thermodynamic properties of the atomistic model can reproduce structural properties or thermodynamic
properties, but not both. MS-CG aims to derive its force field by matching the force field with that of the atomistic
model. Its applicability in reproducing both structural and thermodynamic properties is yet to be demonstrated. There
are considerable efforts that aim to design CG models to be thermodynamically and structurally consistent with an
underlying atomistic simulation model. This consistency has to be achieved before the CG models to be used in a mul-
tiscale concurrent simulation framework (Peter & Kremer, 2010).
DPD is also essentially a molecular dynamics simulation technique, but the particles interact through both direct con-
servative potentials and dissipative Brownian dashpots. The macroscopic behavior of Brownian dynamics simulations
is diffusive as the only conserved quantity is the total mass of the system. In DPD, on the other hand, not only the mass
but also momentum is conserved. However, the energy is not conserved. Therefore, DPD is applicable to studies of
hydrodynamic behavior but not those involving energy transport (Espanol, 1995).
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Although it is tempting for the structure-reduction based CG methods to model dynamic processes and phenomena,
such an effort, as pointed out by Izvekov and Voth (2005), would be seriously misguided. The simple equivalent struc-
tural representation averages out the fine details of the molecular structure and high frequency vibrations of the sys-
tems. Using classical MD method with such CG particle models based on an equivalent potential that was fitted to
reproduce force or energy or structure may not be able to yield the real microscopic dynamic information (e.g., phonon
transport processes, heat conduction). The actual dynamics of the systems as would be seen in a fully resolved atom-
istic MD simulation is essentially lost through the structural reduction.

(2) The CG models of QC and CGMD were constructed based on the assumption of atomic-scale homogeneous deforma-
tion following Eq. (6). Different from the reduced-structure methods, the atomic deformation is constrained, but the
atomic-level structure can be preserved in both QC and CGMD. Therefore, the same interatomic potential can be used
for the CG model. The reduction of the interaction sites is proportional to the reduction of the degrees of freedom.
Since the site energy is computed though atomic interaction, the computational time step in such CG simulations can-
not be increased. Methods in this category are less efficient than reduced-structure approaches and the efficiency is
also dependent on the numerical method. From Eq. (6), we see that the Cauchy–Born rule is only valid for Bravais lat-
tices; the static QC is thus only applicable to static analysis of simple lattice. It should be noted that, however, the
focus of QC is not on the CG region, but the atomic region or the overall behavior of the combined atomic + CG region.
The applicability of QC, therefore, may better be considered from that perspective.
In many aspects, QC is similar to CGMD. They represent an effective technique for construction of a concurrent mul-
tiscale particle model. Compared with QC, CGMD was developed to reproduce NVT MD, but its theoretical formulation
for materials other than monatomic harmonic crystals becomes very complicated or incomplete, which may have hin-
dered the application of CGMD to more challenging problems than have been reported in the literature. Unlike CGMD,
the finite-temperature QC needs additional empirical assumption or parameterization. The advantage of static QC and
CGMD is that both the atomistic and the CG regions are governed by the same theoretical framework and in the atomic
limit both QC and CGMD can be reduced to the atomistic model.
Applicability of the dynamic QC and CGMD to nonequilibrium processes is unclear since the key step in CGMD is the
definition of a Hamiltonian and that of dynamic QC is a Hamiltonian or a Lagrangian. The Hamiltonian plays a central
role in Gibbs’ equilibrium statistical mechanics. Nevertheless, one new element in the statistical mechanics of non-
equilibrium systems is the abandonment of Hamiltonian dynamics, and the key theme of nonequilibrium thermody-
namics becomes the time-evolution equations. Like DPD, QC and CGMD conserve mass and momentum, however, the
lack of an energy transport equation in their methodologies makes the current versions of QC and CGMD inapplicable
to nonequilibrium processes involving energy transport. Also, QC and CGMD both are constructed by constraining
atomic deformation and/or motion. As a consequence, they may not be applicable to systems involving large thermally
driven fluctuations such as soft matter systems.

(3) Field theories are the earliest theoretical models that provide CG descriptions of macroscopic properties and material
behavior. For numerical simulation, a field theory has to be represented by a discretization on the length scale of inter-
est. The applicability of a field theory thus not only depends on the theoretical formulation but also the numerical
implementation. By including subscale micro-motion and micro-deformation, micromorphic theory extends the appli-
cation of classical field theories to microscopic space and time scales. However, the continuum assumption of the
internal structure of the particles give rises to fundamental limitations in the applications to complex crystalline
materials, in particular, to crystalline materials that have more than two atoms in the primitive unit cell. Chen
et al. (2003c, 2004) have examined the physical foundation of microcontinuum or generalized continuum theories
by comparing the predictions of phonon dispersion relations from each of those theories with real experimental mea-
surements, and concluded that while micromorphic theory overlaps a large application region of atomistic dynamics,
the applicability of those microcontinuum theories is limited because of the continuum assumption of the microstruc-
ture and micromotion of the material particles.
AFT extends Kirkwood’s formulation to molecules possessing internal degrees of freedom. Different from Kirkwood’s
formulation or classical continuum mechanics, the balance equations solve for both the homogeneous deformation of
lattice cells and the rearrangement of atoms within the lattice cells, thus extending the application region of a contin-
uum field theory to atomic scale. AFT has been shown to be able to generate the complete set of phonon dispersion
relations of BiScO3 (Chen, 2006), and with the majority of degrees of freedom being reduced, to reproduce the phe-
nomenon of phase transformation (Xiong & Chen, 2009a, 2009b), dislocation nucleation and migration (Xiong, Tucker,
McDowell, & Chen, 2010), and also dynamic crack initiation, propagation and branching (Deng, Xiong, & Chen, 2010).
The representation of the complete conservation laws makes AFT applicable to dynamic and nonequilibrium processes
involving mass, momentum and/or energy transport. Discretization of AFT at primitive unit cell level yields the under-
lying atomistic model. Assuming homogeneous deformation of unit cells, the majority of degrees of freedom of an
atomistic system can be eliminated. It reproduces the full set of phonon modes; however, phonons with wavelength
smaller than the size of a finite element will be cut off if linear FE shape function is used. This is a problem facing any
continuum as well as structure-reduction or motion-constrain based CG models.
Reducing the representation of an atomistic model can increase the length/time scales of the computational models.
Eliminating degrees of freedom, on the other hand, necessarily gives rise to models which reproduce fewer features of
the atomistic systems. Main features and applicability of discussed CG models are summarized in Table 1.



Table 1
Summary and comparisons of representative CG atomistic models.

Super-atom MS-CG DPD Static QC Dynamic QC CGMD Micro-
morphic

AFT

Publication year 1975 2005 1992 1996 2010 1998 1964 2005
Route to CG Structure

reduction
Structure
reduction

Structure
reduction

Cauchy–Born
rule

Cauchy–
Born rule

Shape
function

Field
representation

Field
representation

Theoretical
framework

Particle
mechanics

Particle
mechanics

Particle
mechanics

Particle
mechanics

Particle
mechanics

Particle
mechanics

Continuum
mechanics

Continuum
mechanics

Governing laws Newton’s
2nd law

Newton’s
2nd law

Langevin
dynamics

Energy
minimization

Langevin
Dynamics

Newton’s
2nd law

Balance Laws Balance laws

Information passing Structure or
energy

Atomic
Force

Atomic
interaction

Atomic
interaction

Atomic
Interaction

Atomic
interaction

Atomic
interaction

Atomic
interaction

Additional
empirical laws

No No Yes No Yes No No No

Parameter fitting Yes Yes Yes No Yes No Yes No
Backmapping to

atoms
Yes Yes No Yes Yes Yes No Yes

Interfacing with
atomic model

Not yet Not yet No Yes Yes Yes Not
seamlessly

Yes

Energy transport No No No No No or
assumed

No Yes Yes

Phonon branches Reduced Reduced Reduced N/A 3 3 Up to 12 All
Critical behavior Phase

transition
Not clear No Not in CG

region
Not in CG
region

Not in CG
region

Partially Yes
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5. Summary and discussion

In this paper, we have reviewed the theoretical foundations of coarse graining methods and analyzed several represen-
tative CG models. CG method promises to enable a direct comparison between predictive simulation and a variety of exper-
imental techniques and to project itself beyond the realm of physical experiments and observations. Current CG
methodologies are still not as predictive as all-atom simulations. There is a clear need for more accurate representations
of the systems, more rigorous parameterization methodologies, and better validation procedures.

Simulation of soft matter means dealing with large spatial and conformational fluctuations, making equilibration very
difficult. The locally relevant length scale can be from a few angstroms to a few nanometers (Peter & Kremer, 2010). From
this perspective, the reduced-structure model is currently the most effective method to reproduce structure properties of
soft matter. In single crystalline materials, on the other hand, the lattice is homogeneous and continuous, and in the high
temperature limit the magnitude of atomic displacement measured is only tenths of angstroms (Dove, 1993). Therefore,
the assumption of homogeneous lattice deformation in the particle models as well as the continuous assumption of lat-
tice-level local properties in field representations is appropriate. For static or zero-temperature equilibrium phenomena,
the CG particle models is simple and straight, and may be easier to numerically implement compared with continuum field
methods. Upon discretization, a field theory may become similar to a particle model for zero-temperature equilibrium
problems.

The fundamental difference between the discussed particle models and field representations is the treatment of dynamic
and nonequilibrium phenomena. Engineering processes by definition involve nonequilibrium systems. For this reason, there
has been a growing need for nonequilibrium models. However, for most nonequilibrium problems there are at present no
well-established MD methods. Thus, construction of a nonequilibrium CG particle model through coarse-graining MD or
MM models faces fundamental and foundational challenges. A field representation may be more advantageous for modeling
of transport phenomena if the dynamic equations of the transport processes, i.e., balance equations, can be fully formulated
from the underlying atomistic model. One of the difficulties lies in that well-established numerical methods were developed
for single length/time scale models, and hence, for simulation based on multiscale field representation there is a need for
new numerical methods.
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