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ABSTRACT 

Crack initiation and propagation is a three-dimensional process. Most of the analytical solutions (such as PKN 
and KGD models) and numerical models treat crack propagation as a two-dimensional (2D) process. Yet, there 
is no experimental study, which can provide a one to one comparison in 2D to validate these kinds of models. 
The 2D experimental set-up equipped with a high-speed camera provides continuous video record and 
measurement of fracture path. A Speckle Pattern is applied in order to accurately measure surface deformation 
with Digital Image Correlation (DIC). A transparent material is used in order to have a direct viewing of fracture 
growth. The results provide information about the breakdown pressure, fracture growth direction, width and 
fracture speed.  
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INTRODUCTION 

Hydraulic fracturing has been used in different applications since 1950.There are still many open questions and 
uncertainties related to hydraulic fracturing. Observing the fracture geometry in field treatments is almost 
impossible, except in special tests with extensive seismic monitoring (Abe et al., 1983; Vinegar et al., 1992), 
even in those cases it is believed (de Pater et al., 1994) the data interpretation needs to be more developed. To 
better understand the behavior of rock during a hydraulic fracturing treatment, numerous studies have been 
undertaken and several physical models developed to investigate rock behavior during the injection. Laboratory 
tests should, therefore, serve as benchmarks for numerical simulations.  
 
In this study, an innovative two-dimensional set-up is introduced for conducting hydraulic fracturing on low-
strength rock-like materials. 
 
1. BACKGROUND 

There are three different approaches for simulating crack propagation. (1) Analytical, (2) Numerical and (3) 
physical models are introduced and related literature are summarized. 
 
1.1. Analytical Models 

Two types of analytical approaches are commonly used in 2D fracture propagation simulation: one is presented 
by Perkins and Kern (PK) (Perkins and Kern, 1961) and modified by Nordgren (1972) known as PKN (Perkins–
Kern–Nordgren) and the other one is given by Geertsma and de Klerk based on earlier works by Khristianovic 
and Zheltov (1955) and Geertsma and De Klerk (1969) known as GDK (Geertsma–de Klerk– Khristianovic). In 
PKN, the cross-section of the fracture in the vertical plane, perpendicular to the long axis of the fracture, 
maintains an elliptical configuration and plane strain condition exists in the vertical plane. On the other hand, the 
GDK model approach presumes an approximately elliptical configuration in the horizontal plane and a 
rectangular shape in the vertical plane and plane strain conditions in the horizontal plane. A schematic 
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illustration of the two models is given in Figure 1. Further common assumptions of the two models are the 
constant fracture height independent of the fracture length and the zero net pressure at the fracture tip. It is 
generally accepted that the PKN-model is most appropriate when length to height ratios are much larger than 
one, while the KGD-model is typically used for small length to height ratios (less than one) (Fjar et al., 2008). 
This implies that the PKN-model is more used in conventional HF modelling where the fracture is long compared 
to the fracture height. On the other hand, for open-hole stress tests where the fracture is normally short 
compared to the height, the KGD-model should give a better approximation. 
 

 

Figure 1. Illustration of fracture shapes for the PKN and KGD models (Fjar et al., 2008) 
 
According to the PKN solution (Perkins and Kern, 1961), the net pressure, Pnet (Pa), can be approximated using 
the following expression (Itasca, 2013).  
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The net pressure means to subtract the in-situ stresses from the injection fluid pressure. In any vertical elliptical 
cross-section perpendicular to the direction of propagation, the fluid pressure, p, is constant (i.e., no vertical 
pressure drop). 
 
Also, the expression for the width, w(x) (m) in the middle of the fracture is: 
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where E (Pa) is Young’s modulus, ν is the Poisson’s ratio, q (m3/s) is the injection rate, μ (Pa.sec) is the viscosity 
of the injected fluid, and L (m) and H (m) are the length and height of the fracture, respectively, as illustrated in 
Figure 2. 
 

 

Figure 2 Geometry of the PKN model (Itasca, 2013) 
 
Although these analytical models have been globally accepted and used in different commercial codes, it should 
be noted that these models have some simplification assumptions and the results might have low precision. 
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Thus, it is worth to introduce a physical model with almost the same geometrical assumptions. Then, the 
outcome of the physical model will be compared with the well-developed formulations such as net pressure or 
fracture width.  
 
1.2. Numerical models 

The rock masses contain several joints and natural fractures which influence the hydraulic fracture treatments. A 
numerical model must represent two types of mechanical behaviour in a discontinuous system such as naturally 
fractured reservoirs. (1) The behaviour of intact rock to represent the behaviour of solid material (matrix) that 
constitutes the particles or blocks in the discontinuous system. (2) The behaviour of the discontinuities to 
recognize the existence of contacts or interfaces between discrete bodies that comprise the rock system. 
(Hamidi and Mortazavi, 2014). Discrete Element Method (DEM) is the most popular method for simulating the 
mechanical responses of a dis-continuum medium. The numerical model which is going to be discussed in this 
study will focus mostly on the crack initiation and propagation in intact rock by DEM. Hamidi et al. (2016) wrote a 
comprehensive review of current advances in DEM models for simulating hydraulic fracturing. A short summary 
of the paper is provided in this section.  
 
DEM is a numerical solution used to describe the mechanical behaviour of discontinuous bodies. DEM was 
developed (Cundall, 1971b; Cundall, 1971a) for the analysis of rock mechanic problems using deformable 
polygonal-shaped blocks and then applied to soils (Cundall and Strack, 1979). This led to the development of 
Itasca's UDEC (Universal Distinct Element Code) and 3DEC (Three-Dimensional Distinct Element Code) 
software. PFC is a simplified implementation of the DEM because it utilizes rigid disks (PFC2D) or spherical 
particles (PFC3D) to extensively simplify contact detection between elements for faster model solutions. 
 
DEM has been used as a tool for simulating fracturing process in intact rocks since 1989 by Lorig and Cundall 
(1989). In UDEC Code Brostow et al. (1978); Finney (1979); Medvedev (1986) simulated intact material by 
Voronoi polygons assemblages (or tessellation). A fracture is assumed to be formed when the stress level at the 
interface between block exceeds a threshold value either in tension (Jkn) or in shear (Jks). Nasehi and 
Mortazavi (2013) employed the same method in UDEC for simulating the crack propagation both in intact rock 
and naturally fractured zone. The numerical approach has extended into 3D by Hamidi and Mortazavi (2014). 
The geometry of the 3D model was created by importing tetrahedron tessellation in Three-dimensional Distinct 
Element Code (3DEC). The drawback of using tetrahedron blocks is the higher possibility of interlocking. This 
interlocking may lead to increase the stiffness in contacts. Recently, Hamidi et al. (2016) suggested a 3D 
Voronoi tessellation to avoid this problem. 
 
Many other studies such as Pournin and Liebling (2005) generalized the DEM to sphero-polyhedral particles 
(DSEM) for modelling 3D particles with complex shapes. Galindo Torres and Muñoz Castaño (2007) introduced 
a DEM model which represents intact rock as an assembly of Voronoi polygons jointed by beams. Alonso-
Marroquín (2008) modified this method by introducing a multi-contact approach in 2D for modelling non-convex 
shapes. This method has been extended to 3D by Galindo Torres et al. (2009), which is published as an open 
source code known as MechSys (Galindo Torres et al., 2012). Behraftar et al. (2017) used MechSys to simulate 
crack propagation in Crack Chevron Notch Brazilian Disc (CCNBD) (Ouchterlony, 1988). For simulating the 
fracking, a further analysis in a combination of DSEM and Lattice Boltzmann Method (LBM) has been conducted 
by Galindo Torres (2013) to represent more realistic coupled behaviour. Gerolymatou et al. (2015) have recently 
used the same code to investigate the effect of pre-existing discontinuity on hydraulic stimulation. 
 
In all the DEM simulations, the micromechanical parameters (the values of Jkn and Jks) need to be evaluated 
based on laboratory experiments. Although there is an enormous difference in the scale of fractures in laboratory 
tests (crack) and in field applications (fracture), as de Pater et al. (1994) declared “a numerical model should at 
least be capable of describing model tests with the appropriate boundary conditions”. Thus, the physical models 
in laboratories could validate the numerical models. The validated models can be used for simulating hydraulic 
fracturing on a larger scale.  
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1.3. Physical models 

Most of these Physical models are largely conducted on cubic blocks with three-dimensional loading condition 
using opaque samples. In these models, induced fracture geometry is recorded in two ways. (1) Destructive: by 
cutting the sample after the test and (2) Non-Destructive: by using acoustic emission or seismic monitoring 
systems. While these models are useful, destructive sampling only shows the final result and the non-destructive 
options provide insufficient details. Thus, it was impossible to track the crack initiation and measure crack 
propagation geometry parameters directly during the injection experiments. The contribution of this study is to 
address this problem by providing a two-dimensional experimental set-up for investigating crack initiation and 
propagation in a transparent synthetic material. 
 
Synthetic materials have been used for simulating the hydraulic fracturing since the 1950s, in particular to 
ensure reproducibility of results and to maintain uniformity and homogeneity (Hubbert and Willis, 1957; Haimson 
and Fairhurst, 1969; Clifton et al., 1976; Papadopoulos et al., 1983; Weijers and de Pater, 1992; Bunger et al., 
2005a; Jeffrey et al., 2015; Xu et al., 2015). Laboratory experiments on hydraulic fracturing in transparent 
materials have been conducted allowing direct detailed visualization of the initiation and early growth (Rummel, 
1987; Takada, 1990; Bunger et al., 2004; Bunger, 2005; Bunger et al., 2005c; b; Wu, 2006; Wu et al., 2007; Wu 
et al., 2008; Bunger et al., 2011; Frash, 2012; Bunger et al., 2013; Frash, 2014; Frash et al., 2014; Kovalyshen 
et al., 2014). The visualization in real time of the developing geometry of the fracture and the direction of fracture 
propagation are the two main advantages of transparent materials. 
 
The growing fracture is monitored using a video camera and backlight. The images of the growing fracture are 
not only useful for measuring the fracture radius, but they also enable estimation of the full-field fracture opening. 
The intensity of light is decreased by an order of magnitude when it passes through a fluid layer with a specific 
thickness (Bunger et al., 2004; Bunger et al., 2005a; Bunger et al., 2005c; b; Bunger, 2006; Kovalyshen et al., 
2014). Validation of the method was presented through experiments performed wherein hydraulic fractures were 
driven beneath a thin plate so that the deflection of the plate, as measured by an LVDT, corresponds to the 
thickness of the fluid layer and could, therefore, be directly compared with photometric estimates (Bunger, 2006). 
Later Kovalyshen et al. (2014) conducted a comparison between photometric and the ultrasound method in a 
glass block. They found that these two methods are in a good agreement from a practical standpoint for 
monitoring the location of the crack front and the crack opening. In the current study, the initiation and 
propagation of induced crack are monitored via a high-speed camera. 
 
2. EXPERIMENTAL PROCITURE 

2.1. Testing material 

In this study, a transparent material with low tensile strength and a rock-like behaviour is used. This transparent 
breakaway blend made from high-quality resin and polymers is found by experimentation. The material known as 
Smash-It (Barnes, 2017) has a glass-like clarity and shatter. In particular, the Smash-It material has been 
originally used on film and TV productions. To form specimens for physical models, Smash-It has to be first 
melted by heating it up somewhat prior to being hand-poured into moulds. The samples are the thick-walled 
cylinders with 100mm external and 8 mm internal diameters with a constant height of 15 mm. Further details 
regarding Smash-It sample preparation could be found in (Hamidi et al., 2017(Under review)). Hamidi et al. 
(2017) tested the properties of Smash-It samples which are summarized in Table 1.  
 
Table 1. Summary of the properties of Smash-It. 

Density Porosity BTS UCS E ν KIC 
(gr/cm3) (%) (MPa) (MPa) (GPa) (-) (Mpa.m^0.5) 

1.065 0 0.73 17.62 1.09 0.466 0.0498 

BTS:  Brazilian Tensile Strength 
UCS: Uniaxial Compressive Strength 
E:       Elastic Modulus 

ν:     Poisson’s Ratio 
KIC:  Mode I fracture toughness 
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2.2. Experimental set-up 

As mentioned, the ultimate goal of this research is to characterize crack initiation and propagation in two 
dimensions. The design aims for low-strength brittle materials that could reduce the complexity and even the 
cost of experimental set-ups where low-stiffness loading plates and connection tubes could be used instead. As 
a result, a two-dimensional (2D) set-up is designed to investigate the hydraulic fracturing. A schematic illustration 
of the main set-up is shown in Figure 3. The set-up has two simplified considerations. First, the samples are in a 
disc shape instead of a rectangular slab. This consideration will help to compare the results with a Lame solution 
for the hollow elastic cylinder. Second, the tests are conducted under atmospheric pressure (confining pressure 
equal to zero) instead of biaxial stress condition as it is usually applied in fracturing tests. Physical model tests of 
hydraulic fracturing have been conducted with different objectives, such as crack initiation (from either open or 
cased holes), crack propagation, crack interaction with discontinuities, and crack containment. With a few 
modifications, the current experimental set-up could be used for all the purposes. 
 

 
Figure 3. Illustration of the experimental set-up design (not to scale) 
 
3. RESULTS 

Testing is started by applying a constant flow rate (=1ml/min) via the syringe pump into the hole. Consequently, 
the fluid pressure inside the hole is increased up to a threshold in which the crack starts to initiate. Figure 4 
presents the recording of fluid pressure and flow rate results obtained from a completed test. A sudden drop in 
fluid pressure graph is a representative of the rupture in the sample. The pressure at this point is the Breakdown 
Pressure (BP) of the material. The results (Figure 4) show that breakdown pressure under the zero confining 
stress is almost equal to the tensile strength (T) of the Smash-It material. After the first peak, the fluid is injected 
at a different flow rate to find the re-opening pressure of the induced crack. It can be seen by increasing the 
injection rate, the re-opening pressure increases as well. 
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Figure 4. Illustration of flowrate-time and pressure-time record 
 
4. CONCLUSIONS AND DISCUSSIONS 

The aim of the present study is to assess the usefulness of a two-dimensional experimental setup for 
investigating crack initiation, propagation, interaction with discontinuities. An innovative experimental set-up is 
introduced for conducting hydraulic fracturing on a low-strength transparent rock-like material. The breakdown 
pressure for the low–strength synthetic material is measured and it is almost equal to the material tensile 
strength. Although such results have been obtained in former studies by conventional experimental set-ups, the 
presented set-up allows the investigation of materials with low-strength in a quasi 2D problem to investigate the 
influence of different physical parameters on fracture initiation and propagation in a simpler – and as such safer 
and cheaper – way.  
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