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a b s t r a c t

We consider a two-dimensional square lattice model extended by additional not closed neighboring interactions.
We assume the elastic forces between the masses in the lattice to be nonlinearly dependent on the spring
elongations. First, we use an analysis of the linearized discrete equations to reveal the influence of additional
interactions on the properties of the dispersion relation for longitudinal and shear plane waves. Then we develop
an asymptotic procedure to obtain continuum two-dimensional non-linear equations to study the transverse
instability of weakly non-linear localized plane longitudinal and shear waves. We find that the additional
interactions used in the model may affect the sign of the amplitude of the plane strain waves (existence of
compression (minus sign) or tensile (plus sign) plane waves) and their transverse stability.

© 2017 Elsevier Ltd. All rights reserved.

0. Introduction

The study of the discrete model with non-neighboring interactions
between the particles in the lattice has attracted considerable interest
due to the dispersion of waves propagating in such a system [1–8].
In particular, this model is important for the study of the influence of
the microstructure of materials. Dynamic processes in one-dimensional
lattices have been investigated more extensively [1,3,9], while two-
dimensional lattices are mainly considered in the linearized case [3,6,7].
Some two-dimensional processes can be modeled in the one-dimensional
approximation, like plane waves propagation, while the study of
their transverse instability requires two-dimensional consideration. Also
some physical phenomena cannot be modeled in the one-dimensional
case, in particular, for a negative Poisson ratio or auxetic behavior
[10–13].

The structural features of the lattice are usually taken into ac-
count [10,14,15] to describe a negative Poisson ratio. In [11] it was
obtained that a negative Poisson ratio is observed for some directions
in many cubic metals due to their crystalline lattice features. It is also
known that anisotropic systems like cubic ones are typically nonauxetic
or partially auxetic [16]. The relationships for an anisotropic Poisson
ratio in some materials may be found in [17,18]. There is a procedure
for comparing the continuum limits of 2D discrete models with the 2D
limit of the continuum cubic crystal model [15] to establish a connec-
tion between the rigidities of the lattice model and the cubic elastic
constants. It turns out that these relationships hold only for the Cauchy
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condition [19]. It applies to materials with a cubic symmetry where
only central interactions are taken into account; however, deviations
from the conditions may be considerable, e.g., for cubic metals [20].
However, it was found in [21] that the Cauchy relations do not hold for
positive temperatures. Comparison with the 2D model, e.g., the auxetic
properties of 2D media, were studied in [22].

Dynamic processes in lattices have been studied using both discrete
and continuum modeling [1,9]. In the linear case, both discrete and
continuum equations can be solved analytically. However, only a few
discrete non-linear equations, such as the Toda lattice equation or the
Ablowitz–Ladik equation, possess exact solutions [23]. That is why an
approach based on the continuum limit of the original discrete equation
is needed to obtain the governing non-linear continuum equations.
The familiar acoustic branch continuum limit [1,9] requires the long
wavelength approximation and corresponds to the discrete model only
for small wave numbers.

The mechanical properties and stability of lattices depend on their
structure and particle interaction [19,24,25]. Discrete and continuum
models both possess analytical solutions in the linear case, which
allows complex analysis of the mechanical phenomena from micro-
and macroscopic points of view [26]. This analysis becomes crucial for
nano-objects where the discreteness of the atomic structure cannot be
neglected [27]. Nonlinearity is essential for a description of thermo-
mechanical effects [28] including peculiarities such as negative thermal
expansion [29].
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Localized non-linear strain wave propagation with a permanent
shape and velocity and its amplification are of special importance. The
plane waves can be described within the one-dimensional model while
their transverse instability and inclined waves interaction require two-
dimensional consideration [2,23,30–32]. It allows us to model new
types of the wave amplification and localization due to a transverse
instability [23,32,33] or interaction of the plane waves [30,34,35].

In this paper, an extended two-dimensional square lattice model is
considered with the addition of the nearest neighbors interactions of
the central particle. The model also includes a quadratic and a cubic
nonlinearity in the elastic inter-particle forces. Linearized analysis is
used to study the features of the dispersion relation caused by the
inclusion of the extended interactions on the basis of a plane wave
approximation. Further, an asymptotic solution is developed to obtain
the continuum non-linear governing equations for both longitudinal
and shear plane strain waves disturbed in the direction perpendicular
to their direction of propagation. The influence of the long-range
interactions on a transverse instability of both types of plane waves
is studied to see whether a two-dimensional localized non-linear wave
can appear from localized input or is due to a resonant plane waves
interaction.

1. Statement of the problem

Let us consider a square lattice discrete structure with the particles
having equal masses 𝑀 , see Fig. 1. One can distinguish three kinds of
interaction in contrast to the two used for the standard model. That is
why we call it an extended square lattice model. The central particle with
the number 𝑚, 𝑛 interacts with four horizontal and vertical neighbors by
the springs with linear rigidity 𝐶1 and non-linear rigidities 𝑄 and 𝑄3.
The relative distance in the unstrained state is assumed to be equal to 𝑙.
The contribution to the potential energy is

𝛱1 =
1
2
𝐶1

4
∑

𝑖=1
△𝑙2𝑖 +

1
3
𝑄

4
∑
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4
∑

𝑖=1
△𝑙4𝑖 ,

where 𝑥𝑚,𝑛, 𝑦𝑚,𝑛 are the horizontal and vertical displacements of particle
𝑚, 𝑛. The expressions for the elongations of the springs, △𝑙𝑖 are

△ 𝑙1 = 𝑥𝑚+1,𝑛 − 𝑥𝑚,𝑛, △ 𝑙2 = 𝑦𝑚,𝑛+1 − 𝑦𝑚,𝑛,

△ 𝑙3 = 𝑥𝑚,𝑛 − 𝑥𝑚−1,𝑛, △ 𝑙4 = 𝑦𝑚,𝑛 − 𝑦𝑚,𝑛−1

where the springs are numbered counter-clockwise. The next group of
interacting particles is composed by four diagonal neighboring particles
whose positions are described by the angles 𝜙 = 𝜋∕4+𝜋 𝑘∕2, 𝑘 = 0,… , 3.
The linear rigidity of the connecting springs is 𝐶2 while the non-linear
rigidities are 𝑃 and 𝑃3. The contribution to the potential energy is
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△ 𝑙5 =
1
√

2
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,
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,

△ 𝑙7 =
1
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(

𝑥𝑚,𝑛 − 𝑥𝑚−1,𝑛−1 + 𝑦𝑚,𝑛 − 𝑦𝑚−1,𝑛−1
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,

△ 𝑙8 =
1
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(

𝑥𝑚+1,𝑛−1 − 𝑥𝑚,𝑛 + 𝑦𝑚,𝑛 − 𝑦𝑚+1,𝑛−1
)

.

The final group consists of eight particles whose positions are
characterized by the angles 𝜓 , 𝜉, so as tan𝜓 = 1∕2, tan𝜒 = 2. Then
the elongations are

△ 𝑙9 = cos(𝜓)(𝑥𝑚+2,𝑛+1 − 𝑥𝑚,𝑛) + sin(𝜓)(𝑦𝑚+2,𝑛+1 − 𝑦𝑚,𝑛),

△ 𝑙10 = cos(𝜒)(𝑥𝑚+1,𝑛+2 − 𝑥𝑚,𝑛) + sin(𝜒)(𝑦𝑚+1,𝑛+2 − 𝑦𝑚,𝑛),

△ 𝑙11 = cos(𝜒)(𝑥𝑚,𝑛 − 𝑥𝑚−1,𝑛+2) + sin(𝜒)(𝑦𝑚−1,𝑛+2 − 𝑦𝑚,𝑛),

△ 𝑙12 = −cos(𝜓)(𝑥𝑚,𝑛 − 𝑥𝑚−2,𝑛+1) + sin(𝜓)(𝑦𝑚−2,𝑛+1 − 𝑦𝑚,𝑛),

△ 𝑙13 = cos(𝜓)(𝑥𝑚,𝑛 − 𝑥𝑚−2,𝑛−1) + sin(𝜓)(𝑦𝑚,𝑛 − 𝑦𝑚−2,𝑛−1),

△ 𝑙14 = cos(𝜒)(𝑥𝑚,𝑛 − 𝑥𝑚−1,𝑛−2) + sin(𝜒)(𝑦𝑚,𝑛 − 𝑦𝑚−1,𝑛−2),

△ 𝑙15 = cos(𝜒)(𝑥𝑚+1,𝑛−2 − 𝑥𝑚,𝑛) + sin(𝜒)(𝑦𝑚,𝑛 − 𝑦𝑚+1,𝑛−2),

△ 𝑙16 = cos(𝜓)(𝑥𝑚+2,𝑛−1 − 𝑥𝑚,𝑛) + sin(𝜓)(𝑦𝑚,𝑛 − 𝑦𝑚+2,𝑛−1).

while the contribution to the energy is
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where 𝐶3 is the linear rigidity, and 𝑆 and 𝑆3 are the non-linear rigidities.
Then the total potential energy is

𝛱 = 𝛱1 +𝛱2 +𝛱3,

and the kinetic energy is

𝑇 = 1
2
𝑀

(

�̇�2𝑚,𝑛 + �̇�
2
𝑚,𝑛

)

.

Then the Lagrangian, 𝐿 = 𝑇 − 𝛱 , can be composed, and the
Hamilton–Ostrogradsky variational principle applied to obtain the dis-
crete governing equations of motion.

2. Linear analysis

In this Section the influence of the extended interactions on the
discrete dispersion relation is studied using plane waves as an example.
Also a linearized long-wave continuum limit is compared with the model
of a cubic crystalline lattice to see whether extended interactions can
affect the auxetic features of the continuum model.

The linearized equations of motion (when 𝑃 = 𝑃3 = 𝑄 = 𝑄3
= 𝑆 = 𝑆3 = 0) obtained from the variational principle are further
reduced when the plane waves propagating in horizontal direction are
studied. In this case no variation in 𝑛 happens, and the equations of
motion are

𝑀�̈�𝑚 −
(

𝐶1 + 𝐶2 +
2𝐶3
5

)

(𝑥𝑚+1 − 2𝑥𝑚 + 𝑥𝑚−1)

− 8
5
𝐶3(𝑥𝑚+2 − 2𝑥𝑚 + 𝑥𝑚−2) = 0, (1)

𝑀�̈�𝑚 −
(

𝐶2 +
8𝐶3
5

)

(𝑦𝑚+1 − 2𝑦𝑚 + 𝑦𝑚−1)

− 2
5
𝐶3(𝑦𝑚+2 − 2𝑦𝑚 + 𝑦𝑚−2) = 0. (2)

2.1. Longitudinal plane waves

The longitudinal wave solution to Eqs. (1), (2) is sought in the form

𝑥𝑚,𝑛 = 𝐴 exp(𝚤(𝑘𝑥 𝑙 𝑚 − 𝜔 𝑡)), 𝑦𝑚,𝑛 = 0. (3)

It gives rise to the dispersion relation,

𝜔2 =
4sin2

(

𝑘 𝑙
2

)

(5𝐶1 + 5𝐶2 + 16𝐶3 cos(𝑘 𝑙) + 18𝐶3)

5𝑀
. (4)

First, it follows from Eq. (4) that the wave velocity is always higher in
the extended case than in the standard case (𝐶3 = 0). Also the shape
of the curve for 𝜔2 may contain more maxima–minima in the extended
case, see Fig. 2. Then the phase velocity varies in 𝑘 𝑙 different from the
velocity in the standard case as shown in Fig. 3. In particular, there
may be an increase in the velocity at some interval, see dashed line in
Fig. 3.
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Fig. 1. Square lattice with additional long-range interactions.

Fig. 2. Dispersion relation for plane longitudinal waves in the standard (solid line) and
generalized (dashed line) cases.

At small wave numbers, 𝑘 𝑙 ≪ 1, the displacements of neighboring
particles tend to the same value at 𝑘 𝑙 → 0, 𝑥𝑚+1∕𝑥𝑚 → 1. The truncated
power series Taylor expansion of the l.h.s. of Eq. (4) results in

𝜔2 =
𝑘2 𝑙2(5𝐶1 + 5𝐶2 + 34𝐶3)

5𝑀
−
𝑘4 𝑙4(𝐶1 + 𝐶2 + 26𝐶3)

12𝑀
. (5)

The solution corresponds to the acoustic branch since 𝜔 → 0 for 𝑘 𝑙 → 0.

2.2. Shear plane waves

The solution to Eqs. (1), (2) for shear waves is sought as

𝑥𝑚,𝑛 = 0, 𝑦𝑚,𝑛 = 𝐵 exp(𝚤(𝑘 𝑙 𝑚 − 𝜔 𝑡)). (6)

Fig. 3. Comparison of the phase velocity variation in the standard (solid line) and
generalized (dashed line) cases.

Then the dispersion relation is

𝜔2 =
4sin2

(

𝑘 𝑙
2

)

(5𝐶2 + 4𝐶3 cos(𝑘 𝑙) + 12𝐶3)

5𝑀
. (7)

Again, the wave velocity is always higher in the extended case than in
the standard one (𝐶3 = 0). However, now the shape of the curve for 𝜔2

does not contain more maxima–minima in the extended case, and the
shape of the dispersion relation always looks like the solid line profile
in Fig. 2.

At small wave numbers, 𝑘 𝑙 ≪ 1, the displacements of neighboring
particles tend to the same value at 𝑘 𝑙 → 0, 𝑦𝑚+1,𝑛∕𝑦𝑚 → 1, and the
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expansion of Eq. (7) is

𝜔2 =
𝑘2 𝑙2(5𝐶2 + 16𝐶3)

5𝑀
−
𝑘4 𝑙4(𝐶2 + 8𝐶3)

12𝑀
. (8)

2.3. Estimation of the constants

For small wave numbers, one assumes that the continuum displace-
ments of the central particle 𝑥𝑚,𝑛, 𝑦𝑚,𝑛 are 𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡). Then the
Taylor series for neighboring particles may be written as

𝑥𝑚±1,𝑛±1 = 𝑢 ± 𝑙 𝑢𝑥 ± 𝑙 𝑢𝑦 +
1
2
𝑙2𝑢𝑥𝑥 + 𝑙2𝑢𝑥𝑦 +

1
2
𝑙2𝑢𝑦𝑦 +⋯

The two-dimensional linearized continuum equations are

𝑀 𝑢𝑡𝑡 −
𝑙2

5

(

5(𝐶1 + 𝐶2) + 34𝐶3

)

𝑢𝑥𝑥 −
2𝑙2
5

(

5𝐶2 + 16𝐶3

)

𝑣𝑥𝑦

− 𝑙2

5

(

5𝐶2 + 16𝐶3

)

𝑢𝑦𝑦 = 0, (9)

𝑀 𝑣𝑡𝑡 −
𝑙2

5

(

5(𝐶1 + 𝐶2) + 34𝐶3

)

𝑣𝑦𝑦 −
2𝑙2
5

(

5𝐶2 + 16𝐶3

)

𝑢𝑥𝑦

− 𝑙2

5

(

5𝐶2 + 16𝐶3

)

𝑣𝑥𝑥 = 0. (10)

The signs of the rigidities 𝐶𝑖 can be checked using some known
models of interatomic interactions. Thus, the Mie potential [36],

𝛱(𝑟) = 𝐷
𝑛 − 𝑚

(

𝑚
( 𝑙
𝑟

)𝑛
− 𝑛

( 𝑙
𝑟

)𝑚 )

,

generalizes the familiar Lennard–Jones potential arising at 𝑚 = 6,
𝑛 = 12. Here 𝐷 is the bond energy. The condition of the lattice stability
can be obtained from the reality of the phase velocities following from
Eqs. (9), (10),

5(𝐶1 + 𝐶2) + 34𝐶3 > 0, 5𝐶2 + 16𝐶3 > 0. (11)

The last condition in the non-extending case, 𝐶3 = 0, is satisfied for
𝑚 = 1, 𝑛 = 2 since the rigidities are defined as

𝐶𝑖 = 𝛱 ′′(𝑟) = 𝑛𝑚
𝑛 − 𝑚

𝐷
𝑙2

(

(𝑛 + 1)
( 𝑙
𝑟

)𝑛+2
− (𝑚 + 1)

(𝑎
𝑟

)𝑚+2
)

where 𝐶1 = 𝛱 ′′(𝑙), 𝐶2 = 𝛱 ′′(
√

2𝑙), 𝐶3 = 𝛱 ′′(
√

5𝑙).
However, in the extended case one obtains

𝐶2
𝐶1

≈ 0.043,
𝐶3
𝐶1

≈ −0.058,

and the last condition in (11) is not satisfied.
The Morse potential [36] is

𝛱(𝑟) = 𝐷
(

𝑒−2𝛼(𝑟−𝑙) − 2𝑒−𝛼(𝑟−𝑙)
)

.

The rigidities are defined by

𝐶𝑖 = 𝛱 ′′(𝑟) = 2𝛼2 𝐷
(

2𝑒−2𝛼(𝑟−𝑙) − 𝑒−𝛼(𝑟−𝑙)
)

.

One can check that the stability conditions (11) are met for 𝑚 = 1, 𝑛 = 2
and at 𝛼 𝑙 = 1∕2. In this case all 𝐶𝑖 are positive.

3. Continuum non-linear equations

The equations of motion obtained from the variational principle are
further reduced for non-linear plane waves propagating in the horizontal
direction along the 𝑥 axis and weakly perturbed in transverse direction
along 𝑦 axis. The transverse weakness is characterized by the small
parameter 𝜀 ≪ 1, and the continuum displacements are assumed to be
the functions of the slow transverse variable 𝑌 = 𝜀𝑦. The same parameter
is used to account for weakly non-linear waves; however, its utilization
depends on whether transverse variations of longitudinal or shear waves
are studied.

3.1. Longitudinal waves

For small wave numbers, one assumes that the continuum dis-
placements of the central particle 𝑥𝑚,𝑛, 𝑦𝑚,𝑛 are 𝑢(𝑥, 𝑌 , 𝑡), 𝑣(𝑥, 𝑌 , 𝑡). Of
special interest are the localized waves keeping their shape and velocity
when propagating. These waves exist due to the balance between
nonlinearity and dispersion. Dispersion terms are the higher-order linear
derivative terms arising from the Taylor expansion. Their smallness can
be provided by choosing 𝑙 = 𝜀 ℎ. The non-linear terms turn out to be of
the same order of smallness under the assumption about the smallness of
the continuum displacements, 𝜀2 𝑢(𝑥, 𝑌 , 𝑡), 𝜀3 𝑣(𝑥, 𝑌 , 𝑡), and at non-linear
rigidities of the order 𝑃 = 𝑃∕𝜀, 𝑄 = �̃�∕𝜀, 𝑆 = �̃�∕𝜀. The cubic non-linear
terms are negligibly small for longitudinal waves. A higher power of
the small parameter for the order of 𝑣(𝑥, 𝑌 , 𝑡) provides predominantly
longitudinal waves propagation.

Then the Taylor series for neighboring particles is

𝑥𝑚±1,𝑛±1 = 𝜀2 𝑢 ± 𝜀3ℎ𝑢𝑥 ± 𝜀4ℎ𝑢𝑌 + 1
2
ℎ2𝜀4 𝑢𝑥𝑥

+ 𝜀5 ℎ2𝑢𝑥𝑌 + 1
2
𝜀5ℎ2𝑢𝑌 𝑌 +⋯

Substitution of the Taylor series into the discrete equations of motion
gives rise to the continuum coupled non-linear partial differential
equations of motion for the functions 𝑢(𝑥, 𝑌 , 𝑡), 𝑣(𝑥, 𝑌 , 𝑡),

𝑀 𝑢𝑡𝑡 −
ℎ2

5

(

5(𝐶1 + 𝐶2) + 34𝐶3

)

𝑢𝑥𝑥

− 𝜀ℎ
2

5

(

5𝐶2 + 16𝐶3

)

(

2𝑣𝑥𝑌 + 𝑢𝑌 𝑌
)

−

− ℎ2

12
(

𝐶1 + 𝐶3 + 26ℎ2 𝐶4
)

𝑢𝑥𝑥𝑥𝑥

−2ℎ(2𝑃 + �̃� + 130�̃�)𝑢𝑥 𝑢𝑥𝑥 = 𝑂(𝜀3) (12)

𝑀 𝑣𝑡𝑡 −
ℎ2

5

(

5𝐶2 + 16𝐶3

)

(𝑣𝑥𝑥 + 2𝑢𝑥𝑌 ) = 𝑂(𝜀). (13)

One assumes that

𝑢 = 𝐺 (𝜃, 𝑇 , 𝑌 ) ; 𝑣 = 𝐹 (𝜃, 𝑇 , 𝑌 ) ,

where 𝜃 = 𝑥 − 𝑉 𝑡, 𝑉 is the phase velocity, 𝑇 = 𝜖2 𝑡 are the fast and the
slow variables respectively. It allows us to obtain an asymptotic solution
to Eqs. (12), (13) using the expansions

𝐺 = 𝐺0 + 𝜀2𝐺1 +⋯ , 𝐹 = 𝐹0 + 𝜀2𝐹1 +⋯

Thus one obtains in the leading order from Eqs. (12), (13), respectively,

𝐺0,𝜃𝜃
(

5𝐶1 + 5𝐶2 + 34𝐶3 − 5𝑀 𝑉 2) = 0, (14)

2𝐺0,𝜃𝑌 (5𝐶2 + 16𝐶3) + 𝐹0,𝜃𝜃(5𝐶2 + 16𝐶3 − 5𝑀 𝑉 2) = 0. (15)

Eq. (14) results in the solution for the phase velocity,

𝑉 =

√

5𝐶1 + 5𝐶2 + 34𝐶3
√

5𝑀
. (16)

Substitution of Eq. (16) into Eq. (15) allows us to express 𝐹0 through
𝐺0,

𝐹0,𝜃 =
2(5𝐶2 + 16𝐶3)𝐺0,𝑌

5𝐶1 + 18𝐶3
. (17)

The next order solution to Eq. (12) results in an equation for the
function 𝐺0,

𝐺0,𝜃𝑇 + 𝐴1 𝐺0,𝜃 𝐺0,𝜃𝜃 + 𝐴2 𝐺0,𝜃𝜃𝜃𝜃 + 𝐴3 𝐺0,𝑌 𝑌 = 0, (18)

where

𝐴1 =
ℎ
(

2𝑃 + �̃� + 130�̃�
)

√

𝑀
√

5𝐶1 + 5𝐶2 + 34𝐶3

, 𝐴2 =

√

5ℎ2(𝐶1 + 𝐶2 + 26𝐶3)

24
√

𝑀
√

5𝐶1 + 5𝐶2 + 34𝐶3

,

𝐴3 =
(5𝐶2 + 16𝐶3)(5𝐶1 + 20𝐶2 + 82𝐶3)

2
√

5𝑀(5𝐶1 + 18𝐶3)
√

5𝐶1 + 5𝐶2 + 34𝐶3

.
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Eq. (18) can be re-written in the form of the familiar Kadomtsev–
Petviashvili equation (see, e.g., [23] and references therein) for the
strain function, 𝑤 = 𝐺0,𝜃 ,
(

𝑤𝑇 + 𝐴1 𝑤 𝑤𝜃 + 𝐴2 𝑤𝜃𝜃𝜃
)

𝜃
+ 𝐴3 𝑤𝑌 𝑌 = 0. (19)

The coefficients 𝐴2 and 𝐴3 are always positive while 𝐴1 can be of either
sign. This sign depends on the long-range rigidity �̄� that results in the
sign of the amplitude of the solutions to the KP equation [23,32,33], in
our case, it defines whether compression (negative sign of 𝐴1) or tensile
(positive sign of 𝐴1) strain waves can propagate.

3.2. Shear waves

The small parameter 𝜀 is now introduced in a different way but using
the same reasons as for the longitudinal waves considered above. Now
predominantly shear waves are considered; nonlinearity is weak and
should balance dispersion; the waves are plane but disturbed in the
transverse direction. Then the continuum displacements of the central
particle 𝑥𝑚,𝑛, 𝑦𝑚,𝑛 are 𝜀2 𝑢(𝑥, 𝑌 , 𝑡), 𝜀 𝑣(𝑥, 𝑌 , 𝑡). Again 𝑙 = 𝜀 ℎ while for the
quadratic non-linear rigidities one has 𝑃 = 𝑃∕𝜀, 𝑄 = �̄�∕𝜀, 𝑆 = �̄�∕𝜀,
and for the cubic non-linear rigidities one has 𝑃3 = 𝑃3∕𝜀2, 𝑄3 = �̄�3∕𝜀2,
𝑆3 = 𝑆3∕𝜀2. Substitution of the corresponding Taylor series results in the
continuum coupled non-linear partial differential equations of motion
for the functions 𝑢(𝑥, 𝑌 , 𝑡), 𝑣(𝑥, 𝑌 , 𝑡),

𝑀𝑢𝑡𝑡 −
1
5
(5𝐶1 + 5𝐶2 + 34𝐶3)𝑢𝑥𝑥 −

2
5
(5𝐶2 + 16𝐶3)𝑣𝑥,𝑌

− 4ℎ (𝑃 + 20�̄�)𝑣𝑥 𝑣𝑥𝑥 = 𝑂(𝜀), (20)

𝑀𝑣𝑡𝑡 −
1
5
(5𝐶2 + 16𝐶3)𝑣𝑥𝑥

− 𝜀2
(

1
5
(5𝐶1 + 5𝐶2 + 34𝐶3)𝑣𝑌 𝑌 + ℎ2

12
(𝐶2 + 8𝐶3)𝑣𝑥𝑥𝑥𝑥

+ 2
5
(5𝐶2 + 16𝐶3)𝑢𝑥,𝑌 + 4ℎ (𝑃 + 20�̄�)(𝑣𝑥(𝑢𝑥 + 2𝑣𝑌 ))𝑥

+ 6ℎ2(𝑃3 + 32𝑆3)𝑣2𝑥𝑣𝑥𝑥

)

= 𝑂(𝜀3). (21)

The asymptotic solution to Eqs. (20), (21) is

𝑢 = 𝐺 (𝜃, 𝑇 , 𝑌 ) ; 𝑣 = 𝐹 (𝜃, 𝑇 , 𝑌 ) ,

where the fast and slow variables are introduced similar to the case of
longitudinal waves,

𝐺 = 𝐺0 + 𝜀2𝐺1 +⋯ , 𝐹 = 𝐹0 + 𝜀2𝐹1 +⋯

The leading order solution is

𝐺0,𝜃 = −
2
(

(5𝐶2 + 16𝐶3)𝐹0,𝑌 + 5ℎ(𝑃 + 20�̄�)𝐹 2
0,𝜃

)

5𝐶1 + 18𝐶3

𝑉 =

√

5𝐶2 + 16𝐶3
5𝑀

.

The next order solution, 𝑂(𝜀2)), gives rise to a model equation for 𝐹0,

𝐹0,𝜃𝑇 + 𝐵1 𝐹
2
0,𝜃 𝐹0,𝜃𝜃 + 𝐵2 𝐹0,𝜃𝜃𝜃𝜃 + 𝐵3 𝐹0,𝑌 𝑌 + 𝐵4 𝐹0,𝑌 𝐹0,𝜃𝜃 = 0, (22)

where

𝐵1 =
3
√

5ℎ2
(

(5𝐶1 + 18𝐶3)(𝑃3 + 32𝑆3) − 20(𝑃 + 20�̄�)2
)

2(5𝐶1 + 18𝐶3)
√

𝑀(5𝐶2 + 16𝐶3)
,

𝐵2 =

√

5ℎ2(𝐶2 + 8𝐶3)

24
√

𝑀(5𝐶2 + 16𝐶3)
,

𝐵3 =
25

(

𝐶2
1 + 𝐶1𝐶2 − 4𝐶2

2
)

+ 10𝐶3(26𝐶1 − 55𝐶2) − 412𝐶2
3

2
√

5(5𝐶1 + 18𝐶3)
√

𝑀(5𝐶2 + 16𝐶3)
,

𝐵4 =
2
√

5ℎ(𝑃 + 20�̄�)(5𝐶1 − 2(5𝐶2 + 7𝐶3))

(5𝐶1 + 18𝐶3)
√

𝑀(5𝐶2 + 16𝐶3)
.

The cubic non-linear term coefficient, 𝐵1, can be of either sign due to
either sign of 𝑃 , �̄� and 𝑃3, 𝑆3; the coefficient 𝐵2 at the dispersion term
is always positive. Both coefficients at linear and non-linear terms with
transverse derivatives, 𝐵3 and 𝐵4, of either sign, and now the sign of 𝐵3
also depends on the long-range linear rigidity 𝐶3. The sign of 𝐵1 defines
the type of localized plane waves, bell-shaped or kink-shaped, while the
signs of 𝐵3 and 𝐵4 may be responsible for a transverse instability of
plane waves.

3.3. Transverse instability of longitudinal and shear waves

The transverse instability of the longitudinal plane solitary wave
solution to Eq. (19) is studied by analysis of the solution [23]:

𝑤 = 𝑤𝑝 + 𝛿𝑤𝑖(𝜃, 𝑇 ) exp(𝜆𝑇 + 𝚤 𝑝 𝑌 ),

where 𝛿 ≪ 1, and𝑤𝑝 is the following known plane solitary wave solution
to Eq. (19),

𝑤𝑝 =
12𝛽2 𝐴2
𝐴1

sech2(𝜃 − 4𝛽2 𝐴2𝑇 ). (23)

At order 𝑂(𝛿) one obtains the linear equation,
(

𝑤𝑖,𝑇 + 𝜆𝑤𝑖 + 𝐴1(𝑤𝑝 𝑤𝑖)𝜃 + 𝐴2 𝑤𝑖,𝜃𝜃𝜃
)

𝜃
− 𝐴3𝑝

2𝜂1 = 0.

Assume that 𝑝 ≪ 1, and

𝜆 = 𝑝 𝜆1 + 𝑝2 𝜆2 +⋯

𝑤𝑖 = 𝑤0 + 𝑝 𝑤1 + 𝑝2 𝑤2 +⋯

Then the leading order equation,
(

𝑤0,𝑇 + 𝐴1(𝑤𝑝 𝑤0)𝜃 + 𝐴2 𝑤0,𝜃𝜃𝜃

)

𝜃
= 0, (24)

yields the solution

𝑤0 = 𝑤𝑝,𝜃 . (25)

The next order equation,
(

𝑤1,𝑇 + 𝐴1(𝑤𝑝 𝑤1)𝜃 + 𝐴2 𝑤1,𝜃𝜃𝜃

)

𝜃
+ 𝜆1𝑤0,𝜃 = 0,

has the solution

𝑤1 = −
𝜆1

8𝐴2𝛽2
(

2 𝑤𝑝 + 𝜃 𝑤𝑝,𝜃
)

. (26)

In the next order, the solution 𝑤2 is obtained from equation,
(

𝑤2,𝑇 + 𝐴1(𝑤𝑝 𝑤2)𝜃 + 𝐴2 𝑤2,𝜃𝜃𝜃

)

𝜃
+ 𝜆1𝑤1,𝜃 + 𝜆2𝑤0,𝜃 − 𝐴3 𝑤0 = 0,

which, however, contains secular terms. To avoid them, the secularity
condition is obtained using Eq. (24) [23], as

∫

∞

−∞
𝑤𝑝

(

𝜆1𝑤1 + 𝜆2𝑤𝑝,𝜃 − 𝐴3 𝑤𝑝
)

𝑑𝜃 = 0.

It gives rise to a solution for 𝜆1,

𝜆21 = −
16 𝐴2 𝐴3 𝛽2

3
.

Since 𝐴2 > 0, 𝐴3 > 0, then 𝜆21 < 0 that corresponds to stability.
Similarly an instability of shear waves can be studied. First, the

following transformation of variables should be done in Eq. (22), 𝑞 =
𝐹0,𝜃 . Then we get
(

𝑞2,𝑇 + 𝐵1(𝑞3)𝜃 + 𝐵2 𝑞𝜃𝜃𝜃
)

𝜃
+ 𝐵3 𝑞𝑌 𝑌 + 𝐵4

(

𝑞𝜃 ∫ 𝑞𝑌 𝑑𝜃
)

= 0.

Again, the solution is sought as

𝑞 = 𝑞𝑝 + 𝛿𝑞𝑖(𝜃, 𝑇 ) exp(𝜆𝑇 + 𝚤 𝑝 𝑌 ),

where 𝑞𝑝 satisfies the equation
(

𝑞2,𝑇 + 𝐵1(𝑞3)𝜃 + 𝐵2 𝑞𝜃𝜃𝜃
)

𝜃
= 0.
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The localized bell-shaped solution,

𝑞𝑝 =

√

𝐵2𝛽2

6𝐵1
sech(𝜃 − 𝛽2 𝐵2 𝑇 ), (27)

exists for 𝐵1 > 0. The solution for 𝑞𝑖 is sought similar to 𝑤𝑖 using
expansions similar to those used for the function 𝑤𝑖 and the parameter
𝜆. Then one obtains in the leading order

𝑞0 = 𝑞𝑝,𝜃 . (28)

The next order solution is

𝑞1 = −
𝜆1

2𝐴2𝛽2
(

𝑞𝑝 + 𝜃 𝑞𝑝,𝜃
)

−
𝚤 𝐵4

6𝐵2𝛽2
𝑞2𝑝 . (29)

The condition of the absence of secular terms in the next order solution
gives rise to the solution of 𝜆1 of the form,

𝜆21 = −4𝐵2 𝛽
2

(

𝐵3 +
𝐵2
4

108 𝐵1

)

.

Therefore, stability occurs for 𝐵3 > 0, while a positive value of 𝜆1 can be
achieved at a negative 𝐵3 that results in the transverse instability of the
plane shear waves in a square lattice. Then the linear rigidity coefficient
𝐶3 of the long-range interactions can be responsible for instability.

4. Conclusions

Extended interactions in the square lattice first produce additional
extrema in the dispersion curve for linear longitudinal plane waves.
An asymptotic procedure is applied in the non-linear case to obtain
governing equations for transversely perturbed longitudinal and shear
strain waves in the long-wave continuum limit. We note that the
one-dimensional limits of the equations for longitudinal and shear
waves differ only by non-linear terms (quadratic or cubic) while two-
dimensional consideration results in different transverse variation terms
which are non-linear for the shear waves; contrary to the linear term
for the longitudinal waves. Moreover, the sign of the coefficients in the
governing equations can vary more for the shear waves descriptions.
It results in different stability criteria for the longitudinal and shear
localized plane strain waves. The influence of extended interactions is
found in the variation of the sign of some coefficients in the equations.
The sign in the non-linear terms gives rise to either compression or
tensile plane waves propagation or in the change of the type of localized
waves, from the bell-shaped to the kink-shaped type. The sign of the
terms with transverse derivatives affects the stability of the plane waves.

This, in turn, allows us to predict different scenarios of the wave
amplification and localization due to the transverse instability caused
by the values of the coefficients of rigidity. In the stable case of
the Kadomtsev–Petviashvili equation (19), two-dimensional localized
wave amplification occurs due to the interaction of localized plane
waves [23,30,32,34,35]. The curvature of the plane wave front causes
extreme wave localization and amplification [30]. An unstable case
of Eq. (19) results in the transverse periodic modulation of the plane
waves [33] or two-dimensional localized waves formation [23,31,32].
However, this case is not realized for a description of our lattice.
An instability occurs for the solution to Eq. (22); however, the two-
dimensional solutions of this equation are probably unknown and
deserve further investigation.

Another subject for further studies is short-wavelength continual-
ization. Previously, new modulation two-dimensional equations in the
short-range limit for a hexagonal lattice were obtained in Refs. [37–39].
Also, nonlocal interactions can be studied, in particular, utilization of
the operators of shift [8] for obtaining two-dimensional model equations
for dynamical processes in a nonlocal square lattice. Of special interest
is taking into account the surface effects, imperfect surfaces/interfaces
or coatings with an inner microstructure [40] and study their influence
on non-linear strain waves propagation.
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