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The unique mechanical properties of graphene [1]
offer wide possibilities for its practical application in
various fields of science and engineering. In particular,
graphene is currently used in development and fabri�
cation of nanocavities [2]. Therefore, an urgent prob�
lem is the development of models for description of
the mechanical properties of graphene and other car�
bon nanostructures with various loadings. In practice,
the mechanical behavior of carbon structures is often
simulated using discrete�continuum models [3, 4].
Thermal motion can be taken into account explicitly
by the molecular dynamics method [5] based on inte�
gration of classical equations of motion of interacting
particles. In simulation by this method, the key role is
played by laws of interactions between particles (inter�
action potentials). In the case of graphene, construc�
tion of such potentials is complicated by the fact that
interatomic bonds are directed. This problem is often
solved using many�body potentials, which depend on
the positions of a large number of particles [6, 7].
These potentials describe the physicochemical prop�
erties of graphene with high accuracy. However, the
mechanical properties are reproduced, as a rule, with
a large error [8]. The literature data reviewed in [8]
show that the overwhelming majority of the known
many�body potentials describe elastic moduli (in par�
ticular, Poisson’s coefficient) of graphene incorrect.
According to the results reported in [8, 9], the
mechanical properties of graphene are describe most
accurately by the AIREBO potential (see table) [7].

An alternative approach based on the moment
interactions is described, for example, in [10]. It was
shown that, at an appropriate choice of interaction

parameters, the elastic properties of graphene in a
sheet plane can be reproduced accurately. In study
[10], however, building the potential describing strong
deformation and destruction is not discussed. The use
of such a potential for description of in�plane proper�
ties of graphene was proposed in [1] and generalized to
the three�dimensional case in [12]. However, the
potential proposed in [12] cannot be used at large rel�
ative rotations of particles during strong deformation
and destruction of graphene.

This study was aimed at development of the
approach described in [10]. The main relations are
presented that describe the interactions of particles
with rotational degrees of freedom; the approaches
proposed in [10, 5] are combined. These relations are
used to build the potential for carbon in the sp2 hybrid�
ization state. The correlation between parameters of
the potential and characteristics of an interatomic
bond is determined. Molecular�dynamic simulation
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Table 1. Mechanical characteristics of graphene. Experimen�
tal data and results of the molecular�dynamic simulations

Parameter Potential
(4)

Potential
AIREBO [9]

Experimen�
tal

[data]

E, N/m 346.5 338 350 [13]

ν 0.171 0.21 0.17 [13]

σcr(zigzag), N/m 45.8 43 42* [1]

σcr(seat), N/m 42.6 34 42* [1]

εcr(zigzag) 0.196 0.20 0.25* [1]

εcr(seat) 0.186 0.13 0.25* [1]

KB, nN ⋅ nm 0.225 0.225** –

Error ≤1% ≤5% ≤20%

Note:  * Strength properties of graphene were considered to be iso�
tropic [1].
** The value of bending rigidity was calculated in [15] on the
basis of the first�generation Brenner potential.
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of deformation and destruction of graphene upon
extension is performed. During simulation, elastic and
strength characteristics of graphene are calculated.
The obtained values are compared with the known
experimental data [1, 13] and the results of the molec�
ular�dynamic simulation on the basis of the many�
body AIREBO potential [9].

We build the potential describing the interatomic
interactions in graphene using the approaches pro�
posed in [10, 5]. We use a point solid as a model of the
carbon atom [10]. For brevity, hereinafter the point
solids are referred to as particles. Let the interactions
between particles be implemented by forces and
moments that depend on the mutual position and ori�
entation of particles. In this study, we limit our consid�
eration solely to pair interactions [10]. Our argumen�
tation is demonstrated by the example of two particles
marked with indices 1 and 2. Make the following
denotations:  and  are the force and moment
affecting the i�th particle from the side of the second
particle; moment  is calculated relative to the i�th

particle. The values of  and  satisfy Newton’s third
law for the forces analogous to Newton’s third law for
the moments and the energy balance equation [10]:

(1)

where ,  is the radius�vector of the i�th
particle, ω1 and ω2 are the angular velocities of parti�
cles, and U is the internal energy of the system. Let us
determine the correlation of the forces and moments
in the system of two particles with the internal energy.
For this purpose, we introduce two sets of unit vectors

 and  that tightly bond with particles 1
and 2, respectively, where Λ1 and Λ2 are the index sets.
Let the introduced vector sets be such that they can
completely specify the orientation of the particles. The
maximum number of vectors is not limited and does
not affect our consideration. In the general case, U
depends on the position and orientation of the parti�
cles. Let the orientation of a particle be unambigu�

ously specified by vectors  and ; then,
we may write

(2)

Using formula (2) and energy balance equation (1)
and assuming that forces  and moments  do not
depend on the linear and angular velocities of the par�
ticles, it can easily be shown that
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If internal energy (2) is known, formulas (3) determine
the expressions for the forces and moments necessary
for the molecular�dynamic simulation. Function U
should satisfy the material objectivity principle. Note
also that, in the case when the internal energy is objec�
tive, the forces calculated by formulas (3) automati�
cally satisfy Newon’s third law for moments. Herein�
after, function U is referred to as the particle interac�
tion potential.

On the basis of the above approach, we build the
potential describing the covalent interactions between
carbon atoms in the sp2 hybridization state. We seek
the potential in the form 

where . To obtain the required symmetry of

interactions in graphene, we choose the vectors related

to the particles as follows. Let the unit vectors  (j =
1, 2, 3, 4) be related to the i�th particle. We place vec�

tors , , and  in one plane by the angles 2π/3 to
one another (this is analogous to arrangement of the

bonds in a strainless graphene sheet). Vector  is

determined by the relation . For the inter�

actions to be symmetrical, we require the potential to

be invariable upon permutation of vectors , , and

 and upon the replacement  (– ). We also
require the bonds in graphene to be strong for exten�
sion/compression, shear, bending, and torsion [10].
According to the above general considerations, we
express the energy of the interaction between particles
1 and 2 as

(4)

Functions ϕA and ϕR describe attraction/repulsion
between the particles, and UB and UT provide bond
resistance against shear, bending, and torsion. We
choose the functions entering formula (4) to satisfy
exactly the following parameters of the interatomic
bond: bond energy D; longitudinal, transversal, bend�
ing, and torsion strengths cA, cD, cB, and cT, [10]; crit�
ical bond length (i.e., the distance corresponding to
the maximum force arising between particles upon
bond stretching) b; and the nonlinearity coefficient
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, where f∗ is the bond strength. In addi�

tion, we require the considered functions to be smooth
along with their first derivatives. This ensures continu�
ity of the forces and moments (3). The set of the func�
tions satisfying these requirements is

(5)

where a is the equilibrium state and acut is the cutting
radius. An important feature of functions (5) is that
parameters Bi entering these functions are fairly sim�
ply expressed by the mechanical characteristics of the
interatomic bond. It can be shown that the expressions
for Bi have the form

(6)

It is seen from formulas (6) that, by fitting the
parameters of potential (5), the values of D, a, b, cA, cD,
cB, cT, and k∗ characterizing the interatomic bonds in

graphene can be satisfied exactly. The properties of the
interatomic bonds determine, in turn, the mechanical
properties of graphene on the macroscale. In particu�
lar, it was shown in [10, 14] that the values of cA, cD, cB,
cT unambiguously determine the elastic moduli of
graphene (Young’s modulus, Poisson’s coefficient,
and bending rigidity). Within the proposed model,
bending and shear rigidities of the bond, cB and cD, are
independent. Note that, in the widely used rod models
of graphene [4], the relation cB = cDa2/12 is found.
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Quantities k∗ and b are uniquely related to the strength

and critical deformation of graphene upon extension.
In this study, we used the following values of the char�
acteristics of the carbon–carbon bond:

(7)

The values of D and a were taken from [6, 10]. Longi�
tudinal and transversal bond strengths cA and cD were
determined in a series of the molecular�dynamic
experiments on uniaxial deformation of graphene at a
temperature of 300 K. In the simulation, the following
set of equations of motion was solved numerically:

(8)

where m and J are the mass and moment of inertia of a
particle (for simplicity, the particles were assumed to

have a spherical tensor of inertia). Forces  and

moments  affecting the i�th particle from the side of

the j�th particle were calculated on the basis of poten�
tial (4) by formulas (3). In the simulation, Young’s
modulus E and Poisson’s coefficient v of graphene
were calculated. The values of cA and cD were chosen
from the condition of the best correspondence
between the simulation and experimental elastic mod�
uli [1]. Note that the values of cA and cD used in this
study differ from the values from [10] (cA = 730 N/m
and cD = 402 N/m) by 10%, since in [10] thermal
motion was not taken into account. Parameters cB and
cT were chosen from the correspondence of bending
strength of a graphene sheet determined by potential
(4) and the results of the calculation on the basis of the
first�generation Brenner potential [15]. In this study,
the bending rigidity was determined as [14]

To determine bond strength characteristics b and k∗,

the molecular�dynamic simulation of the uniaxial
extension of a graphene sheet in the zigzag and seat
directions was performed. In the simulation, strength

limit σcr and critical deformation  were determined.
Parameters b and k∗ were chosen from the condition

of best consistency between the calculated and exper�
imental data [1]. The molecular�dynamic simulation
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resulted in the following values of the parameters of
potential (4):

(9)

Parameters B7 and acut characterizing the long�range
character of the potential were found by solving the set

of equations ϕR(acut) = 0 and (acut) = 0. The values
of the mechanical characteristics of graphene
obtained in the simulation and the results of the calcu�
lation on the basis of the AIREBO potential [9] and
the experimental data [1, 13] are given in the table. It
can be seen that the values of the mechanical charac�
teristics of graphene are in good agreement with the
experimental data from [1, 13] and the results of the
calculation on the basis of the AIREBO potential [9].
The values of the elastic moduli differ from the exper�
imental data from [13] by no more than 1%. Strength
characteristics coincide with the experimental data
from [1] accurate to the experimental error. Note also
that, unlike the AIREBO potential, potential (4)
makes it possible to satisfy the experimental Poisson
coefficient from [13] accurately.

Thus, potential (4) proposed in this study allows
describing the elastic and strength properties of
graphene within the experimental error.
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