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Transition from ballistic to diffusive heat transfer in a chain with breaks
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The transition from a ballistic to a diffusive regime of heat transfer is studied using two models. The first model
is a one-dimensional chain with bonds, capable of dissociation. Interparticle forces in the chain are harmonic for
bond deformations below a critical value, corresponding to the dissociation, and zero above this value. A kinetic
description of heat transfer in the chain is proposed using the second model, namely, a gas of noninteracting
quasiparticles, reflecting from randomly occurring barriers. The motion of quasiparticles mimicks heat (energy)
transfer in the chain, while the barriers mimic dissociated bonds. For the gas, a kinetic equation is derived
and solved analytically. The solution demonstrates the transition from the ballistic regime at small times to
the diffusive regime at large times. In the diffusive limit, the distance traveled by a heat obeys square-root
asymptotics as in the case of classical diffusion. However, the shape of the fundamental solution for temperature
differs from the Gaussian function and therefore the Fourier law is not satisfied. Two examples are considered to
demonstrate that the presented kinetic model is in good qualitative agreement with the results of the numerical
solution of the chain dynamics. The presented results show that bond dissociation is an important mechanism
underlying the transition from ballistic to diffusive heat transfer in one-dimensional chains.
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I. INTRODUCTION

At macroscopic spatial and temporal scales, the heat trans-
fer is usually diffusive and well described by the Fourier
law. Experiments of the last decades show that at micro-
and nanoscale, significant deviations from the Fourier law are
observed (see, e.g., reviews [1,2]). In particular, in materials
with low defect density the heat propagates in a wavelike
manner and the so-called ballistic heat transfer regime is
realized [3–6]. Therefore heat transfer regimes at small and
large scales are different, and an understanding of the physical
mechanisms underlying the transition between these regimes
is of great fundamental and practical importance.

In literature, one-dimensional chains are often used for
the investigation of different heat transfer regimes (see, e.g.,
reviews [7–9]). In harmonic chains, the heat transfer is purely
ballistic [10–12]. Adding anharmonicity allows one to con-
sider both quasiballistic (at small spatial and temporal scales
[13–16]) and diffusive [9] heat transfer. However, in the ma-
jority of one-dimensional systems the diffusion of heat is
anomalous: the Fourier law is not satisfied and the effective
thermal conductivity diverges with increasing system size [9].
In papers [17,18], it is shown numerically that convergence
of the thermal conductivity is achieved in chains with bonds
capable of dissociation. Bond dissociation, caused by thermal
motion, leads to reflection of elastic waves carrying energy.
Multiple reflections results in a transition from a ballistic to a
diffusive regime of heat transfer. The present paper focuses on
an analytical description of this transition.

Different regimes of heat transfer can be described, for
example, in the framework of kinetic theory [19]. In the
kinetic theory, the heat transfer is modeled by the motion
of the so-called quasiparticles, carrying energy. The key

quantity of the kinetic theory is the distribution function,
describing the distribution of a quasiparticle’s coordinates and
velocities. Evolution of the distribution function is governed
by the Boltzmann equation. For harmonic and weakly an-
harmonic chains the relation between lattice dynamics and
kinetic models of heat transfer can be obtained rigorously.
In particular, harmonic chains are considered, for example, in
papers [20,21], while weakly anharmonic chains are consid-
ered in papers [20,22,23]. However, these papers are limited
to the β-FPUT (Fermi-Pasta-Ulam-Tsingou) model without
bond dissociation. To the best of our knowledge, derivation
of kinetic equations from lattice dynamics for chains with
bond dissociation is not presented in the literature. However,
in some cases the heat transfer is described using heuristic
assumptions about the motion of quasiparticles. In particular,
in papers [24–26] it is shown that anomalous heat transfer can
be described by assuming that the quasiparticles perform the
Levy walk. In the present paper, we use a similar heuristic
approach. The simplest chain with bond dissociation, further
refered to as the chain with breaks, is considered. In this
chain, the interparticle force is harmonic for deformations
of the bonds below a critical value, corresponding to bond
dissociation, and zero above this value. This model allows one
to ignore the interaction of quasiparticles, caused by “smooth
nonlinearity,” and to assume that the quasiparticles are re-
flected from the dissociated bonds and move freely between
the reflections.

The main goal of the present paper is an analytical descrip-
tion of heat transfer in the chain with breaks in the framework
of kinetic theory. Unsteady heat transport, i.e., the evolution
of the initial temperature profile (or initial heat flux) is consid-
ered. The transition from a ballistic to a non-Fourier diffusive
regime is demonstrated and analyzed.
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The paper is organized as follows. In Sec. II, equations of
motion for the chain with breaks and initial conditions, cor-
responding to the initial temperature profile, are formulated.
The probability of bond dissociation at different temperatures
is calculated. In Sec. III, a kinetic equation describing the
heat transfer is derived and solved. In Sec. IV, two functions
allowing one to distinguish different regimes of heat transfer
are introduced. Ballistic and diffusive regimes and the tran-
sition between them are investigated. In Sec. V, the relation
between properties of the fundamental solution and length de-
pendence of the effective thermal conductivity is discussed. It
is demonstrated, in particular, that finite thermal conductivity,
in general, is not necessarily equivalent to fulfillment of the
Fourier law. In Sec. VI, decay of a sinusoidal temperature
profile is studied analytically and numerically at different
densities of bond breaks. In Sec. VII, the decay of the initially
excited heat flux in the chain with uniform temperature profile
is investigated. The relation between lattice dynamics and
kinetic theory is discussed in Sec. VIII.

II. CHAIN WITH BREAKS

A. Statement of the heat transport problem

We consider a one-dimensional chain consisting of parti-
cles interacting with the nearest neighbors. The interparticle
force is linear until the bond deformation reaches some critical
value, corresponding to the dissociation. For bond deforma-
tions above the critical value, the force is equal to zero.
Dynamics of the crystal is described by equations of motion

mün = Fn+1 − Fn,

Fn = C(un − un−1)θ (aε∗ − un + un−1), (1)

where m is the particle mass, un is the displacement of the
particle n, θ is the Heaviside step function,1 C is the bond
stiffness, a is the equilibrium bond length, and ε∗ is the critical
strain corresponding to bond dissociation. Further, it is shown
that bond dissociation, caused by the thermal motion, leads to
the reflection of waves carrying energy and the transition from
a ballistic to a diffusive (non-Fourier) regime of heat transfer.

The model (1) can be considered as the simplest modifi-
cation of the harmonic crystal, which allows one to consider
the influence of bond dissociation and to exclude all other
anharmonic effects, influencing the heat transfer in more com-
plicated models of Lennard-Jones type. In the case ε∗ = 0, it
coincides with the elastic rod model, numerically studied in
paper [17]. We note that the case ε∗ = 0 corresponds to poorly
repulsive interactions between the particles.

Since the interparticle force (1) vanishes for bond strains
exceeding ε∗, each dissociated bond separates the chain into
two noninteracting fragments. If the chain is subjected to free
boundary conditions, then these fragments after the separation
may not meet again. To prevent this irreversible fragmenta-
tion, we fix the total length of the chain L = Na using the
periodic boundary conditions

un+N ≡ un, (2)

where N is the number of particles in the periodic cell.

1By the definition θ (x) = 0 for x < 0 and θ (x) = 1 for x � 0.

In the absence of breaks (ε∗ = ∞), interactions between
the particles are linear and Eq. (1) describes the dynamics of
the so-called Hooke chain [27]:

mün = C(un+1 − 2un + un−1). (3)

The dispersion relation ω(κ ) and the group velocity cg(κ ) for
the Hooke chain are given by

ω2(κ ) = 4C

m
sin2(πκ ), cg(κ ) = c cos(πκ ), (4)

where κ ∈ [0; 1], c = a
√

C/m is the sound speed.
The initial temperature profile and zero heat fluxes are

created in the system using the following stochastic initial
conditions (nonzero flux is considered in Sec. VII):

un = 0, u̇n = �n

√
2kB

m
T0(na), 〈�n〉 = 0,

〈�n�p〉 = δnp, (5)

where T0(na) is the desired kinetic temperature profile (6)
[limitations on the function T0(x) are discussed below; see
formula (8)], �n are uncorrelated random numbers with zero
mean and unit variance, δnp is the Kroneker delta, and brackets
〈· · ·〉 stand for mathematical expectation. The multiplier

√
2

in the expression for initial velocities is introduced in order to
compensate the decrease of temperature due to the transition
of nearly a half of the kinetic energy into the potential en-
ergy (discussion of this transition is presented, e.g., in papers
[11,28]). The initial conditions (5) can be considered, for
example, as a result of heating by an ultrashort laser pulse.

To introduce the kinetic temperature, the infinite number
of realizations of the system (1) with random initial condi-
tions (5) is considered. The kinetic temperature T (na) of the
particle n is defined as

kBT (na) = m
〈
u̇2

n

〉
, (6)

where kB is the Boltzmann constant. In numerical modeling,
the mathematical expectation in (6) is approximately replaced
by the average over a large number of realizations:

kBT (na) ≈ m
〈
u̇2

n

〉
r = m

Nr

Nr∑
i=1

(
u̇(i)

n

)2
, (7)

where u̇(i)
n is the velocity of particle n in the realization number

i and Nr is the total number of realizations.
Further, we study the evolution of the temperature profile

in the chain and propose a kinetic model of this process.

B. Temperature dependence of density of breaks

The key quantity of the considered model is the density
of breaks q, defined as the mathematical expectation of the
number of dissociated bonds per unit length. This parameter
enters the kinetic model of heat transfer, developed in Sec. III.
In the present subsection, we find the relation between q and
the parameters of the initial value problem for the chain (1),
(5).

The density of breaks depends on temperature and there-
fore it may change during the heat transfer process. To
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minimize the influence of changes in temperature on the den-
sity of breaks, we consider functions T0(x) such that

T0(x) = Tb + 
T (x), max|
T (x)| 
 Tb, (8)

where Tb is the background temperature.
The question arises as to how small the ratio

max|
T (x)|/Tb should be such that the influence of the
nonuniform distribution of temperature on the density of
breaks and on heat transfer can be neglected. To answer this
question, we calculate the density of breaks q corresponding
to temperature Tb. We use the following expression for the
strain distribution function ζ (ε)2 (see the Appendix for
derivation):

ζ (ε) = ζ0 exp

(
−Ca2 min(ε, ε∗)2 + 2pT aε

2kBTb

)
, (9)

where pT is the thermal pressure, equal to the negative average
force acting between two neighboring particles. To find the
unknown ζ0 and pT in formula (9), we use the normalization
condition for the distribution function ζ and the fact that the
average strain under periodic boundary conditions is equal to
zero: ∫ +∞

−∞
ζ (ε)dε = 1,

∫ +∞

−∞
εζ (ε)dε = 0. (10)

Substituting (9) into (10) yields the system of equations with
respect to ζ0 and pT . The first equation in (10) relates ζ0 and
pT , while the second equation serves for calculation of pT .

Given the known strain distribution function ζ (ε), the den-
sity of breaks is calculated as

qa =
∫ +∞

ε∗
ζ (ε)dε, (11)

where the right-hand side is the probability that the strain
exceeds ε∗. Using (9)– (11) we derive the following relation
between the density of breaks, Tb and pT :

qa = p2
T

C(pT aε∗ + kBTb)
. (12)

The thermal pressure is calculated by substituting (9) into
the second equation from (10). The substitution yields a tran-
scendental equation with respect to pT , which can be solved
numerically.

At low temperatures (Tb → 0), the density of breaks q
and the thermal pressure pT are represented as the explicit
functions of the temperature:

qa ≈ 1
3
√

2π
e−Ca2ε2

∗/(3kBTb), pT ≈
√

CkBTb
6
√

2π
e−Ca2ε2

∗/(6kBTb).

(13)

According to formula (13) the dependence of the thermal
pressure on temperature is strongly nonlinear. We note that
for crystals with smooth interactions such nonlinearity is not
typical. Usually the dependence pT (Tb) is close to linear and

2The strain distribution function is defined such that ζ (ε)
ε is
equal to the probability of observing the strain in the interval [ε; ε +

ε].

it is well described by the Mie-Gruneisen equation of state
(see, e.g., [29,30]). Strongly nonlinear pressure-temperature
dependence is usually observed in systems close to instability
[29,31]. We also note that the thermal expansion coefficient,
proportional to dpT /dTb, tends to zero as Tb → 0. Similar
temperature dependence of the thermal expansion coefficient
is observed in real experiments and attributed to quantum
effects (see, e.g., [32]). For Tb > 0 the thermal expansion
coefficient is finite. Therefore under the initial conditions (5),
thermoelastic effects such as the ballistic resonance [13] may
occur. In the present paper, we ignore these effects and focus
on the heat transfer. Investigation of thermoelastic effects
requires a separate study.

We note that the density of breaks is sensitive to a small
variation of temperature. Consider, for example, the densities
of breaks at temperatures Tb and Tb + 
T . Using formula
(13), we obtain for 
T 
 Tb

q(Tb + 
T )

q(Tb)
≈ exp

(
Ca2ε2

∗
3kBTb


T

Tb

)
= ( 3

√
2πaq(Tb))−
T /Tb .

(14)

Here Ca2ε2
∗

3kBTb
is a large parameter, while 
T/Tb and aq(Tb) are

small parameters. Formula (14) shows that q(Tb + 
T )/q(Tb)
strongly depends on 
T/Tb. This fact should be taken into
account in numerical experiments.

Formulas (9)–(13) allow one to estimate the density of
breaks at a given temperature. To check the accuracy of these
formulas, the equations of motion (1) with initial conditions
(5) and T0(x) = Tb = const (uniform temperature profile) are
solved numerically. The solution of equations of motion (1) is
carried out under periodic boundary conditions (2) using two
numerical schemes. Both schemes are based on the following
central difference approximation:

vn

(
t + 
τ

2

)
= vn

(
t − 
τ

2

)
+ 
τ

m
(Fn+1 − Fn),

un(t + 
τ ) = un(t ) + vn

(
t + 
τ

2

)

τ, (15)

where vn = u̇n, 
τ is the time step. In the first scheme, the
discontinuous interparticle force (1) is modified for relative
displacements un − un−1 in the interval [aε∗ − 2v̄
τ, aε∗ +
2v̄
τ ], where v̄ is the root-mean-squared particle velocity,
corresponding to the background temperature Tb. In this in-
terval the force is replaced by a continuous piecewise linear
function such that for |un − un−1 − aε∗| < 2v̄
τ

Fn = C
( aε∗

4v̄
τ
− 1

2

)
(un−1 − un + aε∗ + 2v̄
τ ). (16)

The second numerical scheme explicitly accounts for bond
dissociation during the integration step. Before each step, it is
predicted whether the bond will dissociate or form during this
step. To predict these events, the time, tbr , at which the inter-
particle force reaches the maximum value Caε∗ is estimated
as

tbr − t ≈ aε∗ − un+1(t ) + un(t )

vn+1(t − 
τ/2) − vn(t − 
τ/2)
. (17)

If |tbr − t | > 
τ/2, then none of the events occur and the inte-
gration step is performed using the formulas (15). Otherwise,
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FIG. 1. Temperature dependence of the average density of breaks
in the uniformly heated chain. The exact analytical solution (9)–(12)
(solid line), approximate solution (13) (dashed line), and results of
numerical simulations (points) are shown.

the formulas (15) for un,vn are corrected including values of
order of 
τ 2. In all further simulations, the results obtained
by the two numerical schemes practically coincide. For both
numerical schemes small drift of the total energy of the chain
was observed. However, the rate of increase of the total energy
was at an acceptable level—of the order of 0.1% per 107 time
steps.

To calculate the temperature dependence of the density of
breaks, the following values of parameters are used:

N = 5 × 104, Nr = 1.4 × 103,

τ

τ∗
= 1

120
, (18)

where N is the number of particles, Nr is the number of re-
alizations, and τ∗ = 2π

√
m/C. Dependence of the density of

breaks, averaged over time and realizations, on the parameter
Ca2ε2

∗/(kBTb) is shown in Fig. 1. It is seen that the analytical
solution (9)–(12) coincides with the numerical results. In the
case of low density of breaks (small temperatures), simplified
formula (13) can be used. Further, formulas (9)–(13) are used
for choosing the temperature Tb and other parameters of the
chain, corresponding to the desired density of breaks q.

III. GAS WITH BARRIERS AS A KINETIC MODEL OF
HEAT TRANSFER

A. Kinetic equation for a gas with barriers

In the present section, a kinetic model of heat transfer is
developed. The heat transfer is modeled by a motion of quasi-
particles, carrying energy. It is assumed that bond dissociation
causes elastic reflection of the quasiparticles. From a math-
ematical point of view, velocities of quasiparticles change
sign with a certain probability, proportional to the density
of breaks q. Between reflections, quasiparticles move with
constant speed.

Consider the motion of noninteracting quasiparticles (ideal
gas) in a one-dimensional channel. Distribution of coordinates
and velocities of the qusiparticles at time t is described by the
distribution function f (t, x, v) defined as

f (t, x, v) = lim

x,
v→0


N (t, x, v)


x
v
, (19)

where 
N (t, x, v) is the number of quasiparticles having at
time t coordinates in the interval [x; x + 
x] and velocities in
the interval [v; v + 
v]. We assume that each quasiparticle
carries the same amount of thermal energy. Then tempera-
ture T (t, x) is proportional to gas density ρ(t, x) (number of
quasiparticles per unit length in the vicinity of point x at time
t), while the heat flux h(t, x) is proportional to the flux of
quasiparticles, i.e.,

T (t, x) = ρ(t, x)

γ1
= 1

γ1

∫ ∞

−∞
f (t, x, v) dv,

h(t, x) = γ2

γ1

∫ ∞

−∞
f (t, x, v)v dv, (20)

where γ1, γ2 are dimensional proportionality coefficients.
To derive the balance equation, describing the evolution

of the distribution function f (t, x, v), we consider changes in
number of quasiparticles with coordinates and velocities in the
intervals [x; x + 
x], [v; v + 
v] from time t to t + 
t :

( f (t + 
t, x, v) − f (t, x, v))
x
v

= ( f (t, x, v) − f (t, x + 
x, v))v
t
v

− P(t, x, v) 
t f (t, x, v)
x
v

+ P(t, x,−v)
t f (t, x,−v)
x
v, (21)

where P(t, x, v) 
t is the probability for a quasiparticle to be
reflected during the interval 
t . Series expansion of f with
respect to 
x,
v,
t in Eq. (21), yields

ḟ (t, x, v) = − v f ′(t, x, v) + P(t, x,−v) f (t, x,−v)

− P(t, x, v) f (t, x, v), (22)

where the overdot stands for time derivative and the prime
stands for spatial derivative. If the function P(t, x, v) is
known, then Eq. (22) is closed. In general, the function
f (t, x, v) depends on three variables. However, the derivative
of f (t, x, v) with respect to v is absent in Eq. (22), and there-
fore v can be considered as a parameter of this equation.

We note that integrating (22) with respect to the velocities
of the quasiparticles and using formulas (20), yields the fol-
lowing balance equation:

γ2Ṫ = −h′. (23)

This equation has the same form as the heat conduction equa-
tion for a medium with constant heat capacity. Using the
distribution function for deformation (9), it can be shown that
the heat capacity of the chains with breaks depends on temper-
ature. However, we further assume that under conditions (8)
this dependence can be neglected in the first approximation.

To obtain a closed equation for the distribution func-
tion f (t, x, v), we assume that the probability of reflection
P(t, x, v)
t is independent of time and spatial coordinates.
The probability is calculated as a density of breaks q multi-
plied by the distance |v|
t traveled by a quasiparticle, i.e.,

P(t, x, v) 
t = q |v|
t . (24)

We note that according to (24), q is inversely proportional to
the mean free path of the quasiparticle, i.e., q = 1/lmfp.

Substitution of (24) into Eq. (22) yields

ḟ + v f ′ = q|v|( f ∗ − f ), f (t, x, v)∗ = f (t, x,−v). (25)
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A similar equation is derived for f ∗. Then excluding f ∗, we
obtain

f̈ + 2q|v| ḟ = v2 f ′′. (26)

Therefore the evolution of the distribution function is gov-
erned by Eq. (26) of a telegraph type.

In the general case, the initial conditions for Eq. (22) have
the form

f (0, x, v) = f0(x, v), (27)

where f0(x, v) is the initial distribution function. We assume
that the quasiparticles move in an infinite space or a periodic
domain. The initial conditions for Eq. (26), corresponding to
(27), are obtained using Eq. (25):

f (0, x, v) = f0, ḟ (0, x, v) = −v f ′
0 + q|v|( f ∗

0 − f0). (28)

Further, we mostly focus on the following particular case of
(28):

f0(x, v) = ρ0(x)φ(v) = γ1T0(x)φ(v),∫ ∞

−∞
φ(v)dv = 1, φ(−v) = φ(v), (29)

where ρ0(x) = ρ(0, x), T0(x) = T (0, x) are the initial density
and the corresponding initial temperature, and φ(v) is the ini-
tial velocity distribution of quasiparticles such that φ(v)
v is
proportional to the number of quasipartices with velocities in
the interval [v; v + 
v] [see, e.g., formula (91)]. Since func-
tion φ(v) is even, initial fluxes are absent3 (initial conditions
with nonzero flux are considered in Sec. VII). In Sec. VIII
it is shown that under initial conditions (29) there is a direct
relation between an initial problem for motion of quasiparti-
cles and a heat transfer problem (at least in a harmonic case).
In particular, it is shown that function φ is determined by the
relation between the group velocity and the wave number for
a considered crystal.

Thus in the framework of kinetic theory, the heat transfer
in the chain with breaks is described by the initial prob-
lem (26),(28),(29) with respect to the distribution function
f (t, x, v). Given the known distribution function, the temper-
ature profile is calculated using formula (20).

B. Solution of the kinetic equation

We derive an exact solution of the initial problem
(26),(28),(29). Since Eq. (26) is linear, it is sufficient to find its
fundamental solution f̂ (t, x, v), i.e., the solution under initial
conditions f (0, x, v) = δ(x), ḟ (0, x, v) = −vδ′(x). Using the
known solution of the telegraph equation (see, e.g., [33]), we
obtain4

f̂ (t, x, v) = e−q|v|tδ(x − vt ) + q

2
e−q|v|t

×
(

sgn(v)
x + vt√

z
I1(q

√
z) + I0(q

√
z)

)
θ (z),

z = v2t2 − x2, (30)

3We note that this is a sufficient, but not necessary condition for the
absence of fluxes.

4Note that these conditions correspond to zero initial flux.

where I0, I1 are modified Bessel functions of the first kind.
The general solution for the distribution function f (t, x, v)

is obtained by convolution of the fundamental solution (30)
and the initial temperature distribution T0(x):

f (t, x, v) = γ1

∫ ∞

−∞
f̂ (t, ξ , v)T0(x − ξ )φ(v)dξ

= γ1e−q|v|tφ(v)

[
T0(x − vt ) + q

2

∫ x+vt

x−vt
T0(x − ξ )

×
(

sgn(v)
ξ + vt√

z
I1(q

√
z) + I0(q

√
z)

)
dξ

]
,

z = v2t2 − ξ 2. (31)

The corresponding temperature profile can be obtained using
Eq. (20). Further, we analyze several particular cases of the
general solution (31).

IV. FUNDAMENTAL SOLUTION FOR TEMPERATURE

In this section, we analyze the behavior of the temperature
profile T̂ (t, x) corresponding to T0 = δ(x) and φ(v) = φ(−v),
which is further referred to as the fundamental solution for
temperature. In particular, we investigate the transition from
the ballistic to the diffusive regime of heat transfer.

The fundamental solution for temperature T̂ (t, x) is related
to the fundamental solution (30) of the kinetic equation as

T̂ (t, x)
def=

∫ ∞

−∞
f̂ (t, x, v)φ(v)dv. (32)

For the known fundamental solution, the general solution with
an arbitrary T0(x) is calculated as

T (t, x) =
∫ ∞

−∞
T̂ (t, ξ ) T0(x − ξ ) dξ . (33)

We note that introducing the fundamental solution T̂ and
representing temperature through its initial distribution T0(x)
is only possible under multiplicative initial conditions (29).

The velocities of the quasiparticles and function φ(v) in
(32) are chosen as

v = cg(κ ), dκ = −φ(v)dv. (34)

In Sec. VIII, it is shown that formula (34) guarantees that the
solution of the kinetic equation in the ballistic limit coincides
with the expression describing heat transfer in the Hooke
chain under initial conditions (5) (see, e.g., papers [11,12]).

Substituting the expression (30) for f̂ into (32), and chang-
ing the integration variable as in (34), we obtain

T̂ (t, x) =
∫ 1

0
e−q|cg|tδ(x − cgt )dκ

+ q

2

∫ 1

0
e−q|cg|t

( |cg|t√
z

I1(q
√

z) + I0(q
√

z)

)
θ (z)dκ,

z = c2
gt2 − x2. (35)

If the group velocity is given by formula (4), then the fun-
damental solution in dimensionless variables x̃ = qx and t̃ =

054123-5



KRIVTSOV, KUZKIN, AND TSAPLIN PHYSICAL REVIEW E 110, 054123 (2024)

qct , c̃g = cg/c takes the form

T̂

q
= e−|x̃|θ (t̃2 − x̃2)

π
√

t̃2 − x̃2
+ 1

2

∫ 1

0
e−|c̃g|t̃

×
[ |c̃g|t̃√

z̃
I1(

√
z̃) + I0(

√
z̃)

]
θ (z̃)dκ, (36)

where z̃ = c̃2
gt̃2 − x̃2. Formula (36) shows that T̂ /q depends

on the density of breaks q only through the scaling of coordi-
nate and time. Therefore the behavior of the dimensionless
fundamental solution in chains with different densities of
breaks is identical.

Further in this section, we analyze the behavior of the
fundamental solution for temperature (36).

A. Transfer function and shape function

To simplify the analysis of the fundamental solution for
temperature, we introduce two single-variable functions re-
ferred to as the transfer function and the shape function. These
functions allow one, in particular, to distinguish ballistic, dif-
fusive, and anomalous heat transfer regimes.

The transfer function is defined as

r(t )
def=

(∫ ∞

−∞
x2T̂ (t, x)dx

)1/2

. (37)

This function shows how far the initial disturbance, initially
localized at x = 0, spreads over time t . We note that this func-
tion is finite even when the “front” propagates with infinite
speed (as in the case of the Fourier heat conduction).

Using the transfer function, we rigorously define ballistic,
anomalous, and diffusive regimes of heat transfer. The trans-
fer functions, corresponding to these regimes, are denoted as
ra, rb, and rd . In the ballistic regime, the transfer function is
linear in time:

rb(t ) = c̄t, (38)

where c̄ is the root-mean-square velocity of quasiparticles
[see (48)]. In the diffusive regime, the transfer function is
proportional to the square root of time:

rd (t ) =
√

2b̄t, (39)

where b̄ is the effective diffusion coefficient, independent of
time. In literature, the anomalous heat transfer regime is also
introduced (see, e.g., paper [7]). In this regime, the transfer
function has the form [34]

ra(t ) ∼ tα, 1
2 < α < 1. (40)

To calculate the coefficients c̄,b̄ in numerical simulations,
the formulas, following from (38) and (39), can be used:

c̄ = r(t )

t
, b̄ = r2(t )

2t
, (41)

where r(t ) is calculated using (37). If the regime of heat
transfer is purely ballistic or purely diffusive, then coefficients
c̄,b̄ are time independent.

To describe the spatial distribution of temperature, we in-
troduce the shape function defined as

g(t, s)
def= r(t )T̂ (t, r(t )s). (42)

Here and below s is a dimensionless coordinate. The shape
function satisfies the relations, following from the properties
of the fundamental solution:∫ ∞

−∞
g(t, s)ds =

∫ ∞

−∞
s2g(t, s)ds = 1. (43)

If the fundamental solution can be represented as

T̂ (t, x) = 1

r(t )
g

(
x

r(t )

)
, (44)

the shape function is time independent, i.e., g(t, s) ≡ g(s).
Then using formula (44), we rewrite the general solution (33),
corresponding to an arbitrary T0(x), via r(t ) and g(s) as

T (t, x) =
∫ ∞

−∞
g(s)T0(x − r(t )s)ds. (45)

This formula is further used in Sec. V.
Thus introducing the transfer and the shape functions al-

lows one to simplify the analysis of the fundamental solution.
Instead of analyzing the function of two variables T̂ (x, t ),
two single-variable functions r(t ) and g(s) are considered.
Examples of these functions for ballistic and diffusive regimes
are given below [see formulas (48) and (54)]. We note that the
ballistic and diffusive regimes may correspond to the same
shape function. In this case, for the same initial conditions,
identical spatial distributions of temperature are realized, but
at different moments in time.

B. Ballistic limit

The ballistic heat transfer is realized either in the absence
of breaks (q = 0) or at sufficiently small times (qct 
 1). In
these cases, the kinetic equation (25) and its solution with
initial conditions (29) take the form

ḟ + v f ′ = 0 → f (t, x, v) = γ1T0(x − vt )φ(v). (46)

Then using formulas (20), we obtain the expression for tem-
perature

T (t, x) =
∫ ∞

−∞
T0(x − vt )φ(v)dv

=
∫ 1

0
T0(x − cg(κ )t )dκ. (47)

The relation between the two integrals in formula (47) is
discussed in Sec. VIII. The fundamental solution, the transfer
function rb(t ), and the shape function gb(s), corresponding to
(47), have the form

T̂ (t, x) = 1

rb(t )
gb

(
x

rb(t )

)
, gb(s) = c̄φ(c̄s),

rb(t ) = c̄t, c̄2 =
∫ ∞

−∞
v2φ(v)dv =

∫ 1

0
c2

gdκ. (48)

It is seen that the shape function is determined by the initial
velocity distribution of quasiparticles φ. The transfer function
is linear in time as it should be in the ballistic regime of heat
transfer.
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FIG. 2. Logarithm of the transfer function. The exact solution
(36) of the kinetic equation (solid line), the ballistic limit rb = c̄t
(green dashed line), and the diffusive limit rd =

√
2b̄t (red dashed

line) are shown. Parameters c̄ and b̄ are determined by formulas (49)
and (55). The dashed lines intersect at qct = 4/π .

If the group velocity is given by (4) (for the Hooke chain),
functions (48) for gb and c̄ take the form

gb(s) = θ (2 − s2)

π
√

2 − s2
, c̄ = c√

2
. (49)

In the absence of breaks (q = 0), formulas (48) and (49) yield
the exact solution of the kinetic equation, while for nonzero q
the formulas give reasonable approximation of the solution at
small times, i.e., qct 
 1 (see Figs. 2 and 3).

C. Diffusive limit

We consider the approximation of the fundamental solution
T̂ at large times far from the ballistic fronts. This solution has
diffusive character, i.e., the corresponding transfer function is
proportional to

√
t .

According to formula (30), the fundamental solution of the
kinetic equation f̂ for any fixed v has fronts at x = ±vt . We

FIG. 3. Fundamental solution for temperature (36) at t̃ = qct =
0.05 (red), 0.5 (orange), 2.5 (green), 5 (blue), and 10 (light blue).
Dashed lines correspond to the ballistic limit [formula (49)] and the
diffusive limit [formula (53) at t̃ = 10].

consider the behavior of f̂ at large times far from the fronts,
i.e., for

q|v|t � 1, |x| 
 |v|t . (50)

Note that as the time t increases, the conditions (50) are
satisfied for an increasing number of quasiparticles (larger
range of velocities v), hence the accuracy of the approximate
solution obtained below increases with time.

The conditions (50) allow one to neglect the delta function
in (30), because it is equal to zero everywhere except for the
fronts. We also use the asymptotics of the Bessel function
Iν (u) ≈ eu/

√
2πu, valid for large u, and use the approxima-

tion
√

v2t2 − x2 ≈ |v|t − x2/(2|v|t ), valid under conditions
(50). Then from (30) it follows that the fundamental solution
has the form

f̂ (t, x, v) ≈
√

q

2π |v|t e−qx2/(2|v|t ). (51)

It it seen that the fundamental solution of the kinetic equation
has the same form as the solution of the Fourier heat con-
duction equation. Therefore if all quasiparticles had the same
velocity, then the Fourier law would be satisfied. Evidently, in
the chain with breaks it is not the case, because the quasipar-
ticles have different velocities due to dispersion.

We note that the approximate solution (51) can also be
derived from (26). Neglecting the second time derivative in
Eq. (26), we obtain the diffusion equation

ḟ = |v|
2q

f ′′. (52)

The fundamental solution of this equation coincides with (51).
This approach is shorter, however it does not yield the condi-
tions (50), under which the approximate solution (51) is valid.

Using formula (51), we derive the fundamental solution for
temperature T̂ in the diffusive limit. Substituting (51) into (32)
and using the fact that functions f̂ and φ are even with respect
to v, yields

T̂ (t, x) ≈
√

2q

πt

∫ ∞

0

e−qx2/(2vt )

√
v

φ(v)dv

=
√

q

2πt

∫ 1

0

e−qx2/(2|cg|t )√|cg|
dκ. (53)

Here the second formula follows from the first one, provided
that the substitution v = cg(κ ) is made (see Sec. VIII). In the
first formula from (53) integration is carried out with respect
to all velocities v, including small velocities for which the
conditions (50) are not satisfied. However, the contribution of
these velocities to the temperature decreases with time. This
fact is demonstrated in the next subsection (see Fig. 3).

To analyze the fundamental solution (53), we represent
it in the form (44) using the transfer function rd (t ) and the
shape function gd (s). In turn, the diffusive shape function gd is
represented via the ballistic shape function gb using formulas
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(37), (42), and (53):

T̂ (t, x) = 1

rd (t )
gd

(
x

rd (t )

)
,

gd (s) =
√

4ψ

π

∫ ∞

0

e−ψs2/z

√
z

gb(z)dz,

rd (t ) =
√

2b̄t, b̄ = ψ c̄

q
, ψ =

∫ ∞

0
zgb(z)dz, (54)

where b̄ is the effective diffusion coefficient. The possibility
of representing the diffusive characteristics gd and b̄ via the
ballistic shape function gb is due to the fact that gb is pro-
portional to the initial velocity distribution of quasiparticles
φ(v) [see formula (48)], which in turn affects the diffusive
transport. If the group velocity is given by the formula (4),
the shape function and the diffusion coefficient in the formula
(54) can be expressed as

gd (s) =
√

2

π3
|s|K2

1/4

(
s2

2π

)
, b̄ = c

πq
, (55)

where K is the modified Bessel function of the second kind.
We compare the transfer function (54) and the shape func-

tion (55) for the chain with breaks, with similar functions for
the Fourier thermal conductivity, described by the equation
Ṫ = βT ′′. Here β is the thermal diffusivity. The fundamental
solution of this equation, the corresponding transfer function
rF , and shape function gF have the form

T̂F (t, x) = 1

rF (t )
gF

(
x

rF (t )

)
, rF (t ) =

√
2b̄t,

gF (s) = 1√
2π

e−s2/2, b̄ = β. (56)

A comparison of formulas (53), (55), and (56) shows that the
transfer functions rd (t ) and rF (t ) have the same form. How-
ever, the shape function gd (s) is generally different from the
Gaussian function gF (s), which is characteristic of classical
Fourier thermal conductivity. In particular, the shape function
gd (s) (55) has a kink (discontinuity of the first derivative) at
s = 0 (see Fig. 3), while the Gaussian function gF (s) (56) has
zero derivative at this point. This difference is crucial, because
in isolated systems, obeying the Fourier law, temperature pro-
files with kinks are not possible in principle (discontinuity in
the derivative of temperature leads to the discontinuity in the
heat flux, which is forbidden by the law of energy balance for
an isolated system).

This result may seem unexpected, since the distribution
function (51) in the problem under consideration is described
by the Gaussian function and the classical diffusion equa-
tion (52). Indeed, for each group velocity v, the process is
described by the diffusion equation (52), but with a coeffi-
cient depending on v. The summation of solutions of these
equations with respect to v yields a curve different from the
Gaussian. The reason for this behavior of the system lies in
the fact that in the considered model, the processes, described
by different group velocities, are independent.

Thus, at large times, the reflection of quasiparticles from
barriers (dissociated bonds) leads to a diffusive regime of heat
transfer with a transfer function proportional to the square root

of time. The effective coefficient of thermal conductivity in
this case is finite as in the paper [17] (see Sec. V). However,
the shape function (55) differs significantly from the Gaussian
curve, so the Fourier law is not satisfied.

D. Transition from ballistic to diffusive regime

The solutions obtained above show that the ballistic regime
of heat transfer is realized in the system at small times, and
the diffusive regime is realized at large times. We show below
how the fundamental solution changes during the transition.

Using the fundamental solution (36), we show that the
dimensionless transfer function qr depends only on the di-
mensionless time qct . The transfer function calculated using
the solution (36) is shown in Fig. 2. For comparison, the plot
also shows the transfer functions for the ballistic and diffusive
limits, calculated by the formulas (49) and (55) (dashed lines).
It can be seen from Fig. 2 that at small times the transfer
function, corresponding to the exact solution, is proportional
to t , and at large times it is proportional to

√
t . Therefore, there

is a transition from the ballistic to the diffusive regime of heat
transfer.

The time of transition from the ballistic regime to diffusive
can be estimated by calculating the intersection point of the
curves rb(t ) and rd (t ). Using (49) and (55), we get

qcttrans = 4

π
. (57)

For t < ttrans the exact transfer function is closer to the ballistic
limit, while for t > ttrans it is closer to the diffusive limit.

The fundamental solution is shown in Fig. 3. It is seen
that at small times the heat transfer is almost ballistic and
the fundamental solution is well described by the formulas
(49) obtained in the ballistic limit. Most of the energy is con-
centrated near the fronts propagating at the speed of sound c.
At lager times, the diffusive nature of the heat transfer begins
to prevail, and most of the energy remains in the vicinity of
the center. For qct > 5, almost all energy is transferred in a
diffusive manner, and the fundamental solution becomes close
to the formula (53) obtained in the diffusive limit. Note that
the ballistic fronts at x = ±ct are formally present at any t .
However, at large times they become very narrow and their
contribution to heat transfer decreases.

Thus, the fundamental solution (36) describes the transi-
tion from the ballistic regime of heat transfer, which is realized
at small times qct 
 1, to the diffusive (non-Fourier) regime
at large times qct � 1.

V. THE TRANSFER FUNCTION AND LENGTH
DEPENDENCE OF EFFECTIVE THERMAL

CONDUCTIVITY

In one-dimensional chains, the Fourier law is usually
not satisfied and the effective thermal conductivity diverges,
i.e., tends to infinity with increasing length (see, e.g., [7]).
In the literature, this dependence is mainly determined in
the nonequilibrium steady-state formulation (stationary heat
transfer problem for a finite chain connected to two ther-
mal reservoirs having different temperatures is considered).
Using this formulation, in paper [17] it is shown that bond
dissociation leads to a convergence of the effective thermal
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conductivity to a finite value. In the present section, a similar
result is obtained in the unsteady formulation. We show, in
particular, that in the unsteady formulation, the dependence
of the effective thermal conductivity on the length is directly
related to the characteristics of the transfer function (37) and
does not depend on the shape function (42).

Using the approach described in [28], we consider the heat
transfer problem with the initial temperature profile

T0(x) = Tb + 
T θ (x), (58)

where Tb, Tb + 
T are initial temperatures of the left (x < 0)
and the right (x > 0) parts of the chain. We define the effective
thermal conductivity as the mean flux in the system divided by
the mean temperature gradient, e.g.,

μ = −
∫ +∞
−∞ h(t, x)dx


T
. (59)

From the energy balance equation (23) it follows that the
following relation holds between the flux and the temperature
profile (see also paper [28]):

h(t, x) = −γ2

∫ x

−∞
Ṫ dx. (60)

Substituting the initial temperature profile (58) into formula
(45), we obtain

T (t, x) = Tb + 
T
∫ +∞

−∞
θ (x − r(t )s)g(s)ds,

Ṫ = −
T g
(x

r

) ṙ

r
. (61)

Substituting (60) and (61) into formula (59) yields the expres-
sion for the effective thermal conductivity:

μ = −γ2

2

d

dt
(r2)

∫ +∞

−∞

∫ s

−∞
g(s)ds ∼ d

dt
(r2). (62)

In particular, for the power-law dependence of the transfer
function on time r(t ) ∼ t p the thermal conductivity has the
form

μ ∼ r (2p−1)/p (63)

Formula (63) can be considered as the length dependence of
the effective thermal conductivity in the unsteady problem.
The exponent in this dependence (2p − 1)/p is determined
by the exponent p in time dependence of the transfer function.
We note that a similar relation between these two exponents
is obtained by different means in paper [34].

Formulas (62) and (63) show that the effective thermal
conductivity does not depend on time only if r(t ) ∼ √

t .
As shown above, in the chain with breaks, such a time
dependence of the transfer function is realized at qct � 1.
Therefore, for this system, the effective thermal conductivity
converges to a finite value.

Note that the shape function does not affect the length
dependence of the thermal conductivity. Therefore, the ab-
sence of this dependence, generally, does not guarantee the
fulfillment of the Fourier law. In particular, for the chain with
breaks, the effective thermal conductivity in the diffusive limit
does not depend on the length, but the Fourier law is not
satisfied.

VI. EXAMPLE: SINUSOIDAL TEMPERATURE PROFILE

In this section, we check how accurately the kinetic model
reproduces the results of the numerical integration of equa-
tions of motion (1) for the chain with breaks with the initial
conditions (5). The comparison is carried out using the exam-
ple problem with sinusoidal initial temperature profile

T0(x) = Tb + B0 sin(λx), λ = 2π

L
, (64)

where L is the wavelength of sine, Tb is the background
temperature, and B0 < Tb is the initial amplitude of sine.
This profile is chosen for two reasons. First, it can be imple-
mented in experiments based on the transient thermal grating
technique [35–37]. Second, as shown below, the temperature
profile remains sinusoidal. As a result, only the time depen-
dence of the amplitude of sine can be considered, which
significantly reduces the number of realizations required to
achieve acceptable accuracy.

A. Analytical solution

We construct an analytical solution of the heat transfer
problem, corresponding to the sinusoidal initial temperature
profile (64). In this case, the initial conditions are given by
formulas (28) and (29) with the initial distribution function

f0 = γ1(Tb + B0 sin(λx))φ(v). (65)

Substituting expression (65) into formula (31) and taking into
account the properties of the fundamental solution (30), we
obtain

T (t, x) = Tb + B(t ) sin(λx),

B(t ) = B0

∫ ∞

−∞

∫ ∞

−∞
f̂ (ξ, v, t ) cos(λξ )φ(v)dξ dv. (66)

It is seen that the temperature distribution remains sinusoidal.
Substituting the fundamental solution (30) into (66), we show
that the temperature amplitude B varies with time according
to the formulas

B(t ) = Bb(t ) + Bd (t ),

Bb(t ) = B0

∫ ∞

−∞
e−q|v|t cos (λvt )φ(v)dv,

Bd (t ) = B0q

2

∫ ∞

−∞
e−q|v|tφ(v)

∫ vt

−vt

( |v|t√
z

I1(q
√

z)

+ I0(q
√

z)

)
cos (λξ )dξ dv, z = v2t2 − ξ 2. (67)

Changing the integration variable in (67) as described in
Sec. VIII, yields

Bb(t ) = B0

∫ 1

0
e−q|cg|t cos(λcgt )dκ,

Bd (t ) = B0q

2λ

∫ 1

0
e−q|cg|t

∫ λcgt

−λcgt

[
λ|cg|t√

z1
I1

(
q
√

z1

λ

)

+ I0

(
q
√

z1

λ

)]
cos ξ dξ dκ, z1 = λ2c2

gt2 − ξ 2.

(68)
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It is seen from formula (68) that Bb and Bd depend on the
dimensionless time t̃ = qct and the dimensionless density of
breaks q/λ. Therefore, in further calculations we fix λ and
change only q.

If the group velocity is given by the formula (4), the in-
tegrals in formula (68) can be expressed in terms of special
functions. For the case (q �= λ), formula (68) takes the form

B(t ) = B0

2

[
Q(τ+) + Q(τ−) − Q(τ+) − Q(τ−)√

1 − λ2/q2

]
,

Q(τ±) = I0(τ±) − L0(τ±),

τ± = qct (1 ±
√

1 − λ2/q2), (69)

where L0 is the modified Struve function. The case of small
density of breaks corresponds to complex values τ±, while
the case of large density of breaks corresponds to real val-
ues. Note that for a real argument, both functions I0 and L0

increase, while their difference decreases.
For small density of breaks q/λ 
 1, formula (69) has the

following asymptotics at large times:

B(t )

B0
≈

√
2q

πλt̃
e−t̃ cos

(
λ

q
t̃ − π

4

)
+ 4q2

πλ2t̃
. (70)

Note that the two terms in the asymptotics have different order
with respect to the small parameter q/λ and decay at different
speeds.

For a large density of breaks q/λ � 15 the asymptotics of
(69) takes the form

B(t )

B0
≈ 4q2

πλ2t̃
. (71)

The formulas (70) and (71) show that the decay of ampli-
tude of sine is oscillatory at small densities of breaks, and
monotonic at large densities of breaks. In the latter case, it
is described by a power function, not an exponent. The latter
fact once again demonstrates that the diffusion realized in the
chain with breaks differs from the classical Fourier diffusion.

B. Numerical modeling

To check the analytical solution (68), it is compared with
the results of numerical integration of the dynamic equations
(1) with the initial conditions (5) and (64).

The initial conditions are set in two stages. At the first
stage, the particles are given random velocities corresponding
to the background temperature Tb. At the second stage (at
qct = 1), a sinusoidal disturbance is added. Between the two
stages the density of breaks increases from zero (at t = 0)
to the equilibrium value corresponding to the background
temperature.

In simulations, the temperatures of all particles in the chain
are calculated by formula (7) and then used to determine the
amplitude of sine B(t ) by formula

B(t ) = 2

L

∫ L

0
T (t, x) sin(λx)dx. (72)

5Here Q(x) ∼ 2
πx is used.

FIG. 4. Time dependence of the amplitude of the sinusoidal tem-
perature profile for chains of different length for q/λ = 1.6, Nr =
1.4 × 103. Simulation results for N = 103 (circles), 104 (squares),
5 × 104 (triangles), and analytical solution (68) (solid line) are
shown.

According to the analytical solution (68), the dimension-
less amplitude of sine B/B0 depends on dimensionless time
qct and parameter q/λ. The numerical solution is more com-
plicated as it additionally depends on B0/Tb, N , and Nr . The
parameter B0/Tb should be taken as small as possible to min-
imize the variation of the density of breaks along the chain.
We use the value B0/Tb = 0.05. A further decrease of this
parameter practically does not change the simulation results
(see Fig. 7).

We fix q/λ = 1.6 and investigate the decay of the ampli-
tude of sine B(t ) for chains containing different numbers of
particles N . Note that as N increases, the density of breaks q
decreases (for a fixed q/λ). Simulation results for q/λ = 1.6
and N = 103, 104, 5 × 104 are shown in Fig. 4. It is seen
that for N = 103 an oscillatory decay of the temperature is
observed, while for N = 104 the decay is monotonic. A fur-
ther increase in the number of particles does not qualitatively
change the results. Therefore, for further calculations, we
use N = 104 or N = 5 × 104. Note that in the absence of
breaks (q = 0), the convergence of the results with respect
to the number of particles is significantly faster, and 102–103

particles is usually sufficient (see, e.g., the work [11]).
We consider the effect of the density of breaks on the decay

of the sinusoidal temperature profile. The time dependence
of the amplitude of sine for q/λ = 2.7 × 10−3, 0.18, 2.7 is
shown in Figs. 5–7. At small densities of breaks (e.g., at
q/λ = 2.7 × 10−3, Fig. 5) the decay of sine can be described
approximately by a harmonic model in which the ballistic
regime of heat transfer is realized. An increase in the density
of breaks leads to a faster decay of temperature (Fig. 6). At
large densities of breaks, the heat transfer is diffusive and the
decay is monotonic (Fig. 7).

Thus, an increase in the density of breaks leads to a
transition from the ballistic regime of heat transfer, which
is characterized by the oscillatory decay of temperature, to
the diffusive regime, corresponding to monotonic decay. This
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FIG. 5. Time dependence of the amplitude of the sinusoidal
temperature profile for q/λ = 2.7 × 10−3, N = 104, Nr = 4.8 × 103.
Analytical solution (68) (black solid line) and simulation results
(blue dashed line) are shown.

transition is described by the analytical solution (68). At small
times, the analytical solution has a high accuracy, while at
large times, the accuracy is lower (see Fig. 7). Determining
possible reasons for this discrepancy requires a separate study.

VII. EXAMPLE: UNIFORM TEMPERATURE PROFILE
WITH NONZERO FLUX

In this section, we minimize the number of parameters that
affect the heat transfer and consider the initial conditions such
that the temperature profile is spatially uniform, while the heat
flux is not equal to zero. In a purely ballistic regime, which

FIG. 6. Time dependence of the amplitude of the sinusoidal tem-
perature profile for q/λ = 0.18, N = 104, Nr = 4 × 103. Analytical
solution (68) (black solid line) and simulation results (blue dashed
line) are shown.

FIG. 7. Time dependence of the amplitude of the sinusoidal
temperature profile for q/λ = 2.7, N = 5 × 104, Nr = 1.4 × 103.
Analytical solution (68) (black solid line) and simulation results for
B0/Tb = 0.05 (blue dashed line) and 0.025 (red dots) are shown.

is realized, e.g., in the Hooke chain, the total heat flux is a
conserved quantity [27]. Bond dissociation (barriers) leads
to decay of the flux due to reflection of the quasiparticles.
Therefore in the chain with breaks, the physical mechanism of
flux decay is the same as the mechanism, underlying the tran-
sition from the ballistic to the diffusive regime of heat transfer.
Below we analyze the decay analytically and numerically at
different densities of breaks.

We note that the considered statement of the problem dif-
fers significantly from the Green-Kubo formalism [38,39]. In
the Green-Kubo formalism, the autocorrelation function for
the flux at equilibrium is investigated, while in this section we
consider the behavior of the flux itself in unsteady nonequilib-
rium conditions.

A. Analytical solution

In the kinetic model, the following initial conditions are
used to specify a uniform temperature profile and a uniform
nonzero heat flux:

f (0, x, v) = γ1(Tbφ1(v) + 
T φ2(v)),

ḟ (0, x, v) = γ1
T q|v|(φ2(−v) − φ2(v)),

φ1(v) = φ1(−v), φ2(v) =
{
φ+(|v|), v > 0,

φ−(|v|), v < 0,∫ ∞

−∞
φi(v)dv = 1, i = 1, 2,

∫ ∞

−∞
vφ2(v)dv �= 0. (73)

Here, the function φ1 sets the velocity distribution of quasipar-
ticles corresponding to the background temperature Tb with
zero flux [since function φ1(v) is even]. The finite initial heat
flux [the last of the conditions (73)] is created by a suitable
choice of functions φ+, φ−, which determine the number of
quasiparticles with positive and negative velocities. In par-
ticular, we further consider the case when all quasiparticles,
creating a flux, initially have positive velocities (φ− ≡ 0,
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φ+ �= 0). Formulation of the corresponding initial conditions
for the equations of motion (1) is discussed in the next sub-
section.

To obtain the solution of the kinetic equation (26) with
the initial conditions (73), we use the fact that the initial
conditions are independent from the spatial coordinate. Then
the distribution function has the form f (t, v) and Eq. (26) is
simplified:

f̈ + 2q|v| ḟ = 0. (74)

Solving this equation with the initial conditions (73), we ob-
tain

f (t, v) = γ1T0φ1(v) + γ1
T

2
(φ2(v) + φ2(−v)

+ [φ2(v) − φ2(−v)]e−2q|v|t ). (75)

The corresponding temperature and heat flux, calculated by
formulas (20), have the forms

h(t ) = γ2
T
∫ ∞

0
(φ+(v) − φ−(v))e−2qvtv dv,

T (t ) = Tb + 
T . (76)

This formula shows that in the presence of breaks (q �= 0), the
flux decays in time, while the temperature remains constant.

We consider a special case when all quasiparticles initially
have positive velocities

φ− ≡ 0, φ+ �= 0,

∫ ∞

0
φ+(v)dv = 1. (77)

Then using the substitution

v = cg(κ ), dκ = − 1
2φ+(v)dv, φ+(v) = −2

(
c−1

g (v)
)′
,

(78)

we rewrite formula (76) as

h(t ) = 2γ2
T
∫ 1/2

0
cg(κ )e−2qcg(κ )t dκ. (79)

If the group velocity is given by formula (4), the flux (79) is
expressed in terms of special functions:

h(t ) = 2γ2c
T
∫ 1/2

0
e−2qct cos πκ cos πκ dκ

= γ2c
T (L−1(2qct ) − I1(2qct )), (80)

where L−1(x) is the modified Struve function and I1(x) is the
modified Bessel function.

An analysis of formula (80) shows that the heat flux h de-
creases monotonically with time from the initial value to zero.
The dimensionless flux depends on a single argument—the
dimensionless time qct . Consequently, the decay of the flux at
different densities of breaks differs only by a time scale.

B. Numerical modeling

To specify a uniform temperature profile and a finite flux
in numerical simulations, the approach described in papers
[14,40] is used. The particles are given initial velocities and
displacements corresponding to a superposition of harmonic

waves traveling in one direction and having random phases.6

In addition, to create a thermal background, all particles are
given random velocities corresponding to a uniform spatial
distribution of temperature. As a result, the initial velocities
and displacements of particles are set using the formulas

un =
N/2−1∑

j=1

Aj sin

(
2π jn

N
+ χ j

)
,

vn = �n

√
2kBTb

m
−

N/2−1∑
j=1

Ajω j cos

(
2π jn

N
+ χ j

)
,

ω j = 2

√
C

m
sin

π j

N
, A2

j = 4kB
T

(N − 2)mω2
j

,

〈χ j〉 = 0, 〈χ jχk〉 = π2

3
δ jk, 〈χ j�n〉 = 0, (81)

where Tb is the background temperature, 
T is a part of
temperature, corresponding to a finite flux, �n are random
numbers [see formula (5)], and χ j are random phase shifts
(uncorrelated random numbers uniformly distributed in the
interval [−π ; π )). Here, the wave amplitudes Aj are chosen
in such a way as to ensure a uniform distribution of energy
among wave numbers.7

Under initial conditions (81), the initial kinetic tempera-
tures of all particles are equal, and the energy flux at each
point is the same. In the absence of bond dissociation, the
energy flux is conserved [27]. The dissociation leads to re-
flection of waves and decay of the flux. To demonstrate this
fact, in simulations the average value of the total energy flux
is calculated by formula

H (t ) = a

2

N∑
n=1

〈Fn(vn + vn−1)〉r . (82)

Due to the spatial homogeneity of the problem, the ratio of
the total energy flux to its initial value H (t )/H0 coincides with
the analogous ratio for the local heat flux h(t )/h0. The latter
is calculated below using formula (80).

In the analytical solution (80), the dimensionless flux
h(t )/h0 depends only on the dimensionless time qct .
Simulation results can additionally depend on parameters
qa,
T/Tb, N , and Nr . Further, we consider the influence of
the density of breaks q, while other parameters are chosen
such that

Nr = 2.8 × 103, N = 5 × 104,

T

Tb
= 0.05. (83)

Decay of the flux is shown in Fig. 8. It is seen that the
characteristic time of the decay is of the order of the time of
ballistic-diffusive transition (57). Note that, as in the previous
example, in numerical simulations the flux decays faster than

6Here it is assumed that the chain contains an even number of
particles N .

7Here we use the fact that the average energy per particle in a wave
with an amplitude of Aj and a frequency of ω j is equal to 1

2 mA2
jω

2
j .

Therefore, a uniform distribution of energy among wavenumbers is
achieved at Aj ∼ 1/ω j .
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FIG. 8. Decay of the heat flux in a chain with uniform tempera-
ture profile and finite initial flux. Analytical solution (80) (solid line)
and simulation results for qa = 1.78 × 10−4 (triangles), 4 × 10−6

(squares), and 1.6 × 10−6 (circles) are shown.

predicted by the analytical solution (80). At the same time,
as the density of breaks decreases, the difference between the
analytical and numerical solutions also decreases.

VIII. ON RELATION BETWEEN LATTICE DYNAMICS
AND KINETIC THEORY

In this section, we consider the relation between descrip-
tions of heat transfer in the framework of lattice dynamics
and kinetic theory. In particular, we discuss the relation be-
tween the velocity distribution of quasiparticles φ(v) and the
group velocity cg(κ ). The reasoning is carried out for one-
dimensional harmonic crystals with a fairly general dispersion
relation.

In Sec. IV B, it is shown that in the ballistic limit (at q = 0)
evolution of the initial temperature profile T0(x) is described
by the formula

T (t, x) =
∫ ∞

−∞
T0(x − vt )φ(v)dv. (84)

In papers [11,28], a similar formula is obtained using lattice
dynamics:

T (t, x) =
∫ 1

0
T0(x − cg(κ )t )dκ. (85)

Formula (85) is valid for harmonic crystals with a simple
structure and interaction of an arbitrary number of neighbors
[28]. We show that formulas (84) and (85) can be derived from
each other.

We use the following representation of the initial tempera-
ture:

T0(x) =
∫ ∞

−∞
δ(ξ ) T0(x − ξ )dξ . (86)

Here, the initial temperature profile is divided into a set of
point disturbances expressed by delta functions. Substituting
the representation (86) into the formula (85) after simple
transformations gives

T (t, x) =
∫ ∞

−∞

∫ 1

0
δ(ξ − cg(κ )t )T0(x − ξ )dκ dξ . (87)

In this expression, each delta function can be associated with
a quasiparticle moving at the group velocity cg(κ ). Using this
analogy, we consider the following substitution of variables in
formula (85)

v = cg(κ ), κ = c−1
g (v), dκ = (

c−1
g (v)

)′
dv. (88)

Here c−1
g (v) is the inverse function with respect to cg(κ ). Only

the dependencies cg(κ ) that monotonically decrease over the
interval κ ∈ [0, 1] are considered [see, e.g., (91)]. Using the
substitution (88) in formula (85), we get8

T (t, x) =
∫ c

−c
T0(x − vt )

(−c−1
g (v)

)′
dv. (89)

It can be seen that this formula coincides with the solution of
the kinetic equation (84) if we choose the function φ(v) such
that

φ(v) = −(
c−1

g (v)
)′
θ (c2 − v2). (90)

Formula (90) determines the relation between the dependence
of the group velocity on the wavenumber and the velocity dis-
tribution of quasiparticles, provided that quasiparticles with
different velocities carry the same amount of energy.

For example, we give explicit formulas for the functions cg,
c−1

g , and φ in the case of the Hooke chain:

cg(κ ) = c cos (πκ ), c−1
g (v) = 1

π
arccos

(v

c

)
,

φ(v) = θ (c2 − v2)

π
√

c2 − v2
, (91)

where arccos(· · · ) is the principal value of the arccosine func-
tion.

Thus, formulas (84) and (85) are equivalent up to the
substitution of variables (88) and (90). In other words, heat
transfer in a one-dimensional harmonic crystal is described by
the same equations as motion of an ideal gas of quasiparticles.
Formulas (88) and (90) yield the relation between the veloc-
ity distribution of quasiparticles φ(v) and the group velocity
cg(κ ).

IX. CONCLUSIONS

A kinetic description of heat transfer in the chain with
breaks was presented. The heat transfer was modeled by the
motion of quasiparticles in a channel with randomly appearing
barriers, mimicking dissociated bonds and leading to reflec-
tion of quasiparticles. The kinetic equation (26), describing
the evolution of the distribution function for quasiarticles,
was obtained and solved analytically. Using the distribution
function, the fundamental solution for temperature was ob-
tained. Analysis of the fundamental solution has shown that
the presence of bond dissociation leads to a transition from the
ballistic regime, which is realized at small times (qct 
 1), to
the diffusive regime at large times.

To analyze the fundamental solution for temperature, we
have introduced the transfer function and the shape function.

8Here the minus sign before c−1
g (v) occurs due to the fact that when

variables are replaced, the integration limits are reversed.
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The transfer function characterizes the time dependence of the
distance traveled by heat, while the shape function character-
izes the spatial distribution of temperature. These functions
allow one, in particular, to distinguish between ballistic, dif-
fusive, and anomalous regimes of heat transfer. It has been
shown that the transport function in the chain with breaks at
large times is proportional to the square root of time, which
corresponds to the diffusive regime of heat transfer. At the
same time, the shape function differs significantly from the
Gaussian function, corresponding to the Fourier law. In par-
ticular, the shape function for the chain with breaks has a
discontinuity of the first derivative (“a tip”) at zero, while the
Gaussian function has zero derivative at this point. Therefore,
the diffusive regime of heat transfer in the considered system
is not described by the Fourier law.

We note that the effective thermal conductivity of the
chain with breaks, calculated using the solution of the un-
steady problem, in the diffusive regime does not depend on
length. This fact is consistent with the results obtained in
nonequilibrium steady-state formulation in papers [17,18] for
several potentials allowing for bond dissociation. Addition-
ally, we have shown that the length dependence of the thermal
conductivity is determined by the transfer function and it is in-
dependent of the shape function. Therefore the independence
of the effective thermal conductivity on length, generally
speaking, does not guarantee the fulfillment of the Fourier law.
This fact should be taken into account when interpreting the
results of numerical simulations and real experiments on heat
transfer.

The question arises as to how to modify the considered
chain in order to fulfill the Fourier law. Our solutions of
kinetic equations show that if wave propagation in a medium
occurs at a single speed (no dispersion), then the Fourier law is
satisfied (in the diffusive limit). Hence, classical thermal con-
ductivity can be realized in a hypothetical crystal with bond
dissociation, but without dispersion (or with weak dispersion).
To create such a model, one can, for example, choose the inter-
actions in the crystal with further neighbors in such a way as
to minimize the dispersion. However, testing this hypothesis is
beyond the scope of the present paper. Another possibility for
achieving Fourier thermal conductivity is to create a system
in which the probability of reflection from dissociated bonds
is proportional to the squared velocity of quasiparticles in
formula (24) it is a linear function of velocity. In this case, the
coefficient in the right-hand side of Eq. (52) does not depend
on the velocity, and classical diffusion is realized. However,
the mechanism that may cause the quadratic dependence of
the probability of reflection on the velocity of quasiparticles
is not clear yet.

Note that in the chain with breaks (as well as in all other
lattices), the initial temperature profile and the initial heat
flux can be set independently. In particular, we have pre-
sented the initial conditions corresponding to the spatially
uniform temperature profile with nonzero heat flux. These
initial conditions make it possible, in particular, to exclude
the influence of nonuniform distribution of the density of
breaks along the chain on the heat transfer. An analyti-
cal solution describing decay of the heat flux caused by
bond dissociation was obtained. The solution shows that
the decay at different densities of breaks differs only in

timescaling, i.e., the flux depends only on the dimensionless
time qct .

In conclusion, we note that the presented kinetic model
does not reproduce the simulation results exactly. Some dif-
ferences between the model and simulation results have been
demonstrated at large times (see Fig. 7). Our results also sug-
gest that the accuracy of the kinetic model increases with the
decreasing density of breaks. However, further investigations
of the reasons for these discrepancies are required.
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APPENDIX: DISTRIBUTION FUNCTION FOR
BOND STRAINS

In this Appendix, we derive formula (9) for the distribution
function for strains

εn = un − un−1

a
. (A1)

Using the equations of motion (1), we show that the strains
satisfy the equation

ν̇n = fn+1 − 2 fn + fn−1, ε̇n = νn, (A2)

where

fn = f (εn) = Fn

ma
= Cεn

m
θ (ε∗ − εn). (A3)

We consider the probability density function
�(ε1, .., εN , ν1, .., νN , t ), determining the probability
of observing the chain in the vicinity of the point
(ε1, .., εN , ν1, .., νN ) in the phase space. The probability
density function is related to the strain distribution function
ζ (εi ) as

ζ (εi ) =
∫

p

∫
s �=i

� dεsdνp

=
∫ +∞

−∞
· · ·

∫ +∞

−∞
� dε1...dεi−1dεi+1...dεN dν1...dνN .

(A4)

According to the Liouville’s theorem, � satisfies the balance
equation:

∂�

∂t
+

N∑
n=1

(
∂�

∂εn
νn + ∂�

∂νn
ν̇n

)
= 0. (A5)

To find ζ (εi ), we consider a stationary case of Eq. (A5) and
integrate it with respect to all εs, s �= i and all νp, p �= i, using
identities

(�νs)
∣∣εs→+∞
εs→−∞ → 0, (�ν̇p)

∣∣νp→+∞
νp→−∞ → 0. (A6)
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Here � → 0 at infinity due to the normalization condition.
Then (A5) takes the form

∂�i

∂εi
νi + ∂

∂νi

∫ +∞

−∞

∫ +∞

−∞
�∗

i ν̇idεi−1dεi+1 = 0,

�∗
i (εi, νi, εi−1, εi+1) =

∫
p�=i

∫
s<i−1,s>i+1

� dεsdνp,

�i(εi, νi ) =
∫ +∞

−∞

∫ +∞

−∞
�∗

i dεi−1dεi+1. (A7)

We assume that strains and velocities of at least three neigh-
boring bonds are independent and seek for a solution of (A7)
in the form

�∗
i = ζ (εi )η(νi )ζ (εi−1)ζ (εi+1), (A8)

where functions ζ , η satisfy the normalization conditions

∫ +∞

−∞
ζ (εi )dεi =

∫ +∞

−∞
η(νi )dνi = 1. (A9)

Substituting formula (A8) into Eq. (A7), we obtain

ζ ′(ε)η(ν)ν + 2ζ (ε)η′(ν)( f̄ − f (ε)) = 0,

f̄ =
∫ +∞

−∞
ζ (ε) f (ε)dε. (A10)

Here index i is omitted for brevity. Since ε and ν are indepen-
dent, then Eq. (A10) is equivalent to the system of equations

η(ν)

η′(ν)
ν = A,

2ζ (ε)

ζ ′(ε)
( f (ε) − f̄ ) = A. (A11)

From the first equation in (A11) and normalization condition
(A9) it follows that η is the Gaussian distribution

η(ν) = e−ν2/(2σ 2 )

√
2πσ 2

, σ 2 = 〈ν2〉 = 2kBT

ma2
. (A12)

Then the second equation from (A11) has the solution

ζ = ζ0 exp

[
ma2

kBT

(
f̄ ε −

∫ ε

0
f (ε)dε

)]
, (A13)

where ζ0 is determined by the normalization condition. Sub-
stituting f̄ = −pT /(ma) and formula (A3) into (A13), we
obtain formula (9). A similar result was obtained by different
means in papers [41,42].
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