К определению упругих характеристик кристаллической решетки алмаза при учете углового взаимодействия между частицами С.С. Хакало, А.М. Кривцов, О.С. Лобода

В работе рассматривается модель решетки алмаза при угловом взаимодействии между частицами. Выводятся коэффициенты и модули тензора жесткости. Результаты сопоставляются с экспериментальными данными. Проводится сравнение с моделью решетки алмаза при моментном взаимодействии.

1 Описание модели. Вывод коэффициентов

Алмаз — одна из аллотропных форм углерода, минерал со сложной кристаллической структурой. Алмаз является ортотропным материалом, то есть он имеет 3 взаимно перпендикулярные плоскости симметрии. Это хорошо показано на рисунке 1, где в качестве плоскостей симметрии выступают грани куба.

Рис. 1: Фрагмент кристаллической решетки алмаза

Рассмотрим модель решетки алмаза, представленную на рисунке 2. Она представляет собой идеальную двухатомную кристаллическую решетку, атомы которой в недеформированном состоянии расположены в центре и вершинах правильного тетраэдра.

Рис. 2: Модель решетки алмаза

Связь между атомами будет осуществляться при помощи продольных пружин с жесткостью *c* и угловых пружин с жесткостью γ . Элементарная ячейка такой решетки содержит два атома. Будем условно называть их атомами первого и второго типа. Атомы каждого типа образуют простую кристаллическую решетку, причем эти решетки при наложении друг на друга совпадут. Выберем один из атомов первого типа и назовем его отсчетным. Будем считать, что каждый атом взаимодействует только с ближайшими. Из рисунка 2 видно, что каждый атом окружает только 4 соседних. Соответствующие связи пронумеруем от 1 до 4. Впишем базис так, чтобы его векторы были перпендикулярны плоскостям симметрии решетки. Тогда орты направлений связей между атомами будут иметь следующий вид:

$$\mathbf{n}_{1} = \frac{1}{\sqrt{3}}(\mathbf{i} - \mathbf{j} + \mathbf{k}), \qquad \mathbf{n}_{2} = \frac{1}{\sqrt{3}}(-\mathbf{i} + \mathbf{j} + \mathbf{k})$$
(1)
$$\mathbf{n}_{3} = \frac{1}{\sqrt{3}}(\mathbf{i} + \mathbf{j} - \mathbf{k}), \qquad \mathbf{n}_{4} = \frac{-1}{\sqrt{3}}(\mathbf{i} + \mathbf{j} + \mathbf{k}).$$

В работе [1] были получены следующие формулы для ортотропного материала:

$${}^{4}\mathbf{C} = \kappa \mathbf{e}_{k} \mathbf{e}_{k} \mathbf{e}_{k} \mathbf{e}_{k} + \lambda \mathbf{J}_{1} + \mu \mathbf{J}_{23}, \qquad (2)$$

где

$$\mathbf{J}_1 \stackrel{\text{def}}{=} \mathbf{e}_k \mathbf{e}_k \mathbf{e}_n \mathbf{e}_n, \qquad \qquad \mathbf{J}_{23} \stackrel{\text{def}}{=} \mathbf{e}_k \mathbf{e}_n \mathbf{e}_n \mathbf{e}_k + \mathbf{e}_k \mathbf{e}_n \mathbf{e}_k \mathbf{e}_n$$

Здесь $\,{}^{\scriptscriptstyle 4}\mathbf{C}$ – макроскопический тензор жесткости ортотропного материала; \mathbf{J}_1 и \mathbf{J}_{23} – изотропные тензоры 4-го ранга; κ , λ и μ – обобщенные коэффициенты Ляме; \mathbf{e}_k и \mathbf{e}_n – орты некоторого произвольного базиса.

Макроскопический тензор жесткости получается из выражения для энергии деформирования материала:

$$W = \frac{1}{2}\varepsilon \cdot \cdot^{4}\mathbf{C} \cdot \cdot \varepsilon, \qquad {}^{4}\mathbf{C} = {}^{4}\mathbf{C}^{*} - {}^{3}\mathbf{C} \cdot {}^{2}\mathbf{C}^{-1} \cdot {}^{3}\mathbf{C}^{T}, \qquad (3)$$

где

$${}^{4}\mathbf{C}^{*} = \frac{2}{V_{0}} \left(H_{1} \sum_{\alpha=1}^{4} \mathbf{n}_{\alpha} \mathbf{n}_{\alpha} \mathbf{n}_{\alpha} \mathbf{n}_{\alpha} \mathbf{n}_{\alpha} + H_{2} \sum_{\alpha,\beta=1}^{4'} \mathbf{n}_{\alpha} \mathbf{n}_{\alpha} \mathbf{n}_{\beta} \mathbf{n}_{\beta} + H_{3} \sum_{\alpha,\beta=1}^{4'} (\mathbf{n}_{\alpha} \mathbf{n}_{\beta} \mathbf{n}_{\beta} \mathbf{n}_{\alpha} + \mathbf{n}_{\alpha} \mathbf{n}_{\beta} \mathbf{n}_{\alpha} \mathbf{n}_{\beta}) \right)$$

$$(4)$$

$${}^{3}\mathbf{C} = \frac{1}{V_{0}} H_{4} \sum_{\alpha=1}^{4} \mathbf{n}_{\alpha} \mathbf{n}_{\alpha} \mathbf{n}_{\alpha}, \qquad {}^{2}\mathbf{C} = \frac{2}{V_{0}} H_{5} \sum_{\alpha=1}^{4} \mathbf{n}_{\alpha} \mathbf{n}_{\alpha}, \qquad V_{0} = \frac{16\sqrt{3}}{9} a^{3}.$$

Здесь W – энергия деформирования материала; ε – тензор деформации; ${}^{4}\mathbf{C}^{*}$, ${}^{3}\mathbf{C}$ и ${}^{2}C$ – промежуточные тензоры жесткости; V_{0} – объем элементарной ячейки кристалла; а – длина межатомной связи. Штрих у знака суммы означает, что суммирование ведется по смежным связям.

Коэффициенты H_k для алмаза принимают вид:

 $\overline{\alpha=1}$

$$H_{1} = \frac{1}{2}ca^{2} - \frac{9}{8}c_{\gamma}a^{2}, \qquad H_{2} = \frac{1}{8}c_{\gamma}a^{2}, \qquad H_{3} = \frac{9}{8}c_{\gamma}a^{2},$$

$$H_{4} = ca^{2} - 4c_{\gamma}a^{2}, \qquad H_{5} = \frac{1}{2}ca^{2} + 4c_{\gamma}a^{2},$$
(5)

где $c_{\gamma} = \frac{\gamma}{a^2}$ – приведеннная жесткость углового взаимодействия. Подставляем полученные коэффициенты H_k и значения векторов \mathbf{n}_k из выражения (1) в формулы для промежуточных тензоров жесткости (4). С помощью полученных формул находим макроскопический тензор жесткости (3) для алмаза. Приводя этот тензор к виду (2), получаем следующие выражения для обобщенных коэффициентов Ляме:

$$\kappa = \frac{3\sqrt{3}}{2a}c_{\gamma}\frac{8c_{\gamma}-c}{c+8c_{\gamma}}, \qquad \lambda = \frac{\sqrt{3}}{12a}(c-6c_{\gamma}), \qquad \mu = \frac{3\sqrt{3}}{2a}\frac{cc_{\gamma}}{c+8c_{\gamma}}.$$
 (6)

Воспользуемся формулами для компонентов тензора жесткости C_{11}, C_{12}, C_{66} ; модуля объемного сжатия K, модуля упругости E, коэффициента Пуассона ν и параметра анизотропии η , выраженными через обобщенные коэффициенты Ляме [3]:

$$C_{11} = \kappa + \lambda + 2\mu, \qquad C_{12} = \lambda, \qquad C_{66} = \mu, \qquad K = \frac{\kappa + 3\lambda + 2\mu}{3},$$

$$(7)$$

$$E = \frac{(\kappa + 2\mu)(\kappa + 3\lambda + 2\mu)}{\kappa + 2\lambda + 2\mu}, \qquad \nu = \frac{\lambda}{\kappa + 2\lambda + 2\mu}, \qquad \eta = \frac{2\mu}{\kappa + 2\mu}.$$

Тогда подставляя соотношения для обобщенных коэффициентов Ляме (6) в формулы выше, получаем:

$$C_{11} = \frac{\sqrt{3}}{12a}(c+12c_{\gamma}), \qquad C_{12} = \frac{\sqrt{3}}{12a}(c-6c_{\gamma}), \qquad C_{66} = \frac{3\sqrt{3}}{2a}\frac{cc_{\gamma}}{c+8c_{\gamma}} \quad (8)$$

$$K = \frac{\sqrt{3}}{12a}c, \qquad E = \frac{9\sqrt{3}}{4a}\frac{cc_{\gamma}}{c+3c_{\gamma}}, \qquad \nu = \frac{1}{2}\frac{c-6c_{\gamma}}{c+3c_{\gamma}}, \qquad \eta = \frac{2c}{c+8c_{\gamma}}.$$
 (9)

2 Сопоставление экспериментальных данных с полученными формулами

Эксперимент #	1	2	3	4	5
$C_{11},$ ГПа	1079	1076	1076	1100	950
$C_{12}, \Gamma \Pi a$	124	275	125	330	390
$C_{66}, \Gamma \Pi a$	578	519	576	440	430
расчетное C_{66} , ГПа	502	500	498	502	400
расхождение, %	13	4	14	14	7
с, Н/м	472	578.3	471.6	626	615.3
$c_{\gamma},\mathrm{H/M}$	472	578	472	626	615
$c_{\gamma}/c~\%$	12	8.2	12	7.3	5.4

Табл. 1: Экспериментальные данные

В табл.1 приведены экспериментальные значения компонентов тензора жесткости [2]. Такой разброс данных обусловлен различными методиками проведения эксперимента.

Используя значения упругих постоянных алмаза C_{11} , C_{12} из табл.1 и зная длину межатомной связи *a* (для алмаза *a*=0.154нм), можно из формул (8) для компонент тензора жесткости получить значения жесткостей *c* и c_{γ} межатомных связей в кристалле алмаза. Подставляя полученные значения в формулу (8) для C_{66} , находим расчетное значение этого компонента. Из табл.1 видно, что максимальное расхождение расчетного значения C_{66} с экспериментальным составляет 14%, а минимальное – 4%.

Учитывая столь существенные отличия в экспериментальных данных, полученные расхождения можно считать приемлемыми. Таким образом, можно утверждать, что данный способ подсчета коэффициентов дает хорошее совпадение с экспериментальными значениями.

3 Сравнение моделей алмаза при моментном и угловом взаимодействиях между частицами

3.1 Моментное взаимодействие

В работе [3] были выведены следующие формулы для коэффициентов тензора жесткости C_{11}, C_{12}, C_{66} ; модуля объемного сжатия K; модуля сдвига G и коэффициента Пуассона ν для модели алмаза при учете моментного взаимодействия между частицами:

$$C_{11} = \frac{\sqrt{3}}{12a}(c_A + 2c_D), \qquad C_{12} = \frac{\sqrt{3}}{12a}(c_A - c_D), \qquad C_{66} = \frac{3\sqrt{3}}{8a}\frac{c_Ac_D}{c_A + 2c_D},$$

$$K = \frac{\sqrt{3}}{12a}c_A, \qquad G = C_{66} = \frac{3\sqrt{3}}{8a}\frac{c_Ac_D}{c_A + 2c_D}, \qquad \nu = \frac{(c_A - c_D)(c_A + 2c_D)}{2c_A^2 + 2c_D^2 + 5c_Ac_D},$$
(10)

где c_A и c_D – продольная и поперечная жесткости связей.

Условием макроскопической устойчивости материала является положительность модулей объемного сжатия K и модуля сдвига G:

$$K > 0, \qquad G > 0 \qquad \Rightarrow \qquad c_A > 0, \qquad \begin{vmatrix} c_D > 0 \\ c_D < -\frac{c_A}{2} \end{vmatrix}$$
(11)

Это условие устойчивости допускает отрицательные значения для поперечной жесткости связей.

Условием микроскопической устойчивости, согласно формуле для промежуточного тензора жесткости 2-ого ранга, полученной в работе [3]

11

$$^{2}\mathbf{C} = \frac{4}{3V_{0}}(c_{A} + 2c_{D})\mathbf{E},$$
(12)

является положительность коэффициента перед единичным тензором Е

$$c_A + 2c_D > 0 \tag{13}$$

$$c_A > 0, \qquad c_D > 0. \tag{14}$$

Представим коэффициент Пуассона в виде функции от $\frac{c_D}{c_A}$:

$$\nu = \frac{(c_A - c_D)(c_A + 2c_D)}{2c_A^2 + 2c_D^2 + 5c_A c_D} = \frac{1 + \frac{c_D}{c_A} - 2\frac{c_D^2}{c_A^2}}{2 + 5\frac{c_D}{c_A} + 2\frac{c_D^2}{c_A^2}}$$
(15)

Рассмотрим предельные значения ν :

$$c_A \ll c_D \qquad \Rightarrow \qquad \nu \approx -1$$

$$c_A = c_D \qquad \Rightarrow \qquad \nu = 0 \qquad \Rightarrow \qquad -1 < \nu < \frac{1}{2}$$

$$c_A \gg c_D \qquad \Rightarrow \qquad \nu \approx \frac{1}{2}$$
(16)

Из полученных результатов видно, что данная модель дает достаточно широкую область допустимых значений коэффициента Пуассона, в которую попадает экспериментальное значение для алмаза [2]: $\nu = 0.07$.

3.2 Угловое взаимодействие

В первой части этой работы были получены следующие соотношения:

$$C_{11} = \frac{\sqrt{3}}{12a}(c+12c_{\gamma}), \qquad C_{12} = \frac{\sqrt{3}}{12a}(c-6c_{\gamma}), \qquad C_{66} = \frac{3\sqrt{3}}{2a}\frac{cc_{\gamma}}{c+8c_{\gamma}},$$

$$K = \frac{\sqrt{3}}{12a}c, \qquad G = C_{66} = \frac{3\sqrt{3}}{2a}\frac{cc_{\gamma}}{c+8c_{\gamma}}, \qquad \nu = \frac{1}{2}\frac{c-6c_{\gamma}}{c+3c_{\gamma}},$$
(17)

где
 c – продольная жесткость связи; c_{γ} – приведенная жесткость углового взаимо-
действия.

Отметим, что формулы C_{11} и C_{12} из (10) для моментного и из (17) для углового взаимодействия, очевидно, совпадут, если положить

$$c_A = c, \qquad c_D = 6c_{\gamma}. \tag{18}$$

В то время как формулы для C_{66} из (10) и из (17) не удается связать между собой столь простым соотношением.

Используя условия макроскопической устойчивости K > 0, G > 0 и условия микроскопической устойчивочти $H_5 > 0$, получаем следующие неравенства:

$$c > 0, \qquad c_{\gamma} > 0. \tag{19}$$

Представляем коэффициент Пуассона в виде функции от $\frac{c_{\gamma}}{c}$:

$$\nu = \frac{1}{2} \frac{c - 6c_{\gamma}}{c + 3c_{\gamma}} = \frac{1}{2} \frac{1 - 6\frac{c_{\gamma}}{c}}{1 + 3\frac{c_{\gamma}}{c}}$$
(20)

Предельные значения ν будут иметь следующий вид:

$$c \ll c_{\gamma} \quad \Rightarrow \quad \nu \approx -1$$

$$c = c_{\gamma} \quad \Rightarrow \quad \nu = -\frac{5}{8} \qquad \Rightarrow \qquad -1 < \nu < \frac{1}{2}$$

$$c \gg c_{\gamma} \quad \Rightarrow \quad \nu \approx \frac{1}{2}$$
(21)

Таким образом, видно, что рассматриваемая модель решетки алмаза дает такую же область допустимых значений коэффициента Пуассона, что и модель решетки алмаза при учете моментного взаимодействия. Полученная область значений ν покрывает экспериментальное значение.

4 Заключение

В данной работе была рассмотрена модель кристаллической решетки алмаза при учете углового взаимодействия между частицами. Были получены формулы для коэффициентов C_{11} , C_{12} , C_{66} макроскопического тензора жесткости ортотропного материала, модуля объемного сжатия K, модуля упругости E, коэффициента Пуассона ν , а также параметра анизотропии η , выраженные через продольную жесткость связи c и приведенную жесткость углового взаимодействия c_{γ} . На основе экспериментальных данных и выведенных формул были получены значения жесткостей межатомных связей c и c_{γ} . Было проведено сравнение рассматриваемой модели и модели алмаза при учете моментном взаимодействии между частицами. Было показано, что данные модели дают одинаковые области значений для коэффициента Пуассона, которые покрывают экспериментальное значение.

Список литературы

- [1] Кривцов А.М. Упругие свойства одноатомных и двухатомных кристаллов: учеб. пос. СПб.: Изд-во Политехн. ун-та, 2008. 124с.
- [2] Novikov N.V. Physical properties of diamond. Handbook. Kiev 1987.
- [3] Беринский И.Е., Двас Н.Г., Кривцов А.М., Кударова А.М., Кузъкин В.А., Ле-Захаров А.А., Лобода О.С., Нейгебауэр И.И., Подольская Е.А. Упругие и тепловые свойства кристаллов: учеб. пос. - СПб.: Изд-во Политехн. ун-та, 2008. - 135с.