Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра теоретической механики

Разработка магнитной системы ориентации и стабилизации малых космических аппаратов стандарта CubeSat

Исполнитель: Буй Ван Шань Руководитель: Мурачёв А.С.

Разработка магнитной системы управление космическим аппаратом

2 Задача

 Создание магнитной системы управления угловым движением КА.

 Разработка алгоритма управления при стабилизации КА по МПЗ.

3 Введение

- Стандарт CubeSat разработан Стэндфордским университетом в 1999 г.
- Спецификации: paзмеp10x10x10 см, масса не более 1.33 кг.

Элементарный спутник 1U

Спутник 3U

Разработка магнитной системы управление космическим аппаратом

4 Введение

- Виды систем управления движением:
 - Магнитные системы
 - Системы с реактивными двигателями
 - Системы с солнечным парусом
 - Гравитационные системы ориентации
 - Системы с маховиками

5 Магнитное управление космическим аппаратом (К.А.) – Основное уравнение управления

Момент взаимодействия магнитной системы К.А с магнитным полем Земли (МПЗ):

$$\mathbf{M} = \mathbf{L} \times \mathbf{B} \tag{1}$$

Где: L – вектор магнитного момента К.А.;

В – вектор индукции МПЗ.

Магнитное управление космическим аппаратом (К.А.)

В проекциях на оси управления космического аппарата выражение (1) принимает вид

$$M_{x} = L_{y}B_{z} - L_{z}B_{y}$$

$$M_{y} = L_{z}B_{x} - L_{x}B_{z}$$

$$M_{z} = L_{x}B_{y} - L_{y}B_{x}$$
(2)

Изменяя соответствующим образом L и изменяя тем самым по определенному закону управляющие моменты M_x , M_y , M_z , можно в принципе обеспечить в этой или иной степени желаемый режим управления.

7 Особенности магнитного управления:

 Нельзя создать управляющий момент вдоль направления поля. Все возможные положения М заключены в плоскости, лерпендикулярной В.

- •Управление по осям оказывается зависимым.
- При совпадении вектора магнитного момента L и поля В управление невозможно

8 Магнитное поле Земли

Приближенное представление о величине МПЗ на поверхности Земли можно получить, воспользовавшись выражением магнитного потенциала шара:

 $U = \frac{M_3}{R^2} \cos \theta_M$ Где θ =90- ϕ - дополнение к геомагнитной широте, R – радиус Земли, M_3 ($\approx 8.1 \cdot 10^{25}$ ед. СГСМ) -магнитный момент Земли Составляющие полного вектора напряженности Т:

$$Z = -\frac{\partial U}{\partial z_{\Gamma}} = \frac{\partial U}{\partial R} = -\frac{2M_{3}}{R^{3}}\cos\theta_{M}, H = -\frac{\partial U}{\partial x_{\Gamma}} = -\frac{\partial U}{R\partial\theta_{M}} = \frac{M_{3}}{R^{3}}\sin\theta_{M}$$

Причем:
$$T = \frac{M_{3}}{R^{3}}\sqrt{1 + 3\cos^{2}\theta_{M}}$$

В ≈ 31 – 62 мкТл.

• Требования к имитатору геомагнитного поля

• Напряженность

9

$$H = \frac{B}{\mu_0} = \frac{4\pi^2 A J}{\mu_0 m_m T^2}$$

Где: A= π – Амплитуда колебания, T = 60 с - период колебания J = $\frac{mR^2}{2}$ = 0.5 · 10⁻² Кг. м² - Момент инерции цилиндра массой 1кг радиусом 0.1 м.

 $m_{\rm m} = 0.4 \ {\rm Am}^2$

Получаем: Н ≈ 250 А/м

• Однородность 95%

Разработка имитатора геомагнитного поля 10

• Выбор конструкции имитатора: Кольца Гельмгольца

$$H = \frac{NI}{a_c \left(\left(\frac{d_c}{2a_c} \right)^2 + 1 \right)^{\frac{3}{2}}}$$

$$d_c / a_c = 1.116$$
• Электрические параметры
NI=258 А⋅витк.

$$a_c = 50 \text{ см}$$

Выберем N=110 → I = 2.3A

 $a_c =$

11 Моделирование имитатора поля

Индукция в точке х магнитного поля контура, содержащего N витков с током I:

12 Моделирование имитатора поля

13 Моделирование имитатора поля

14 Экспериментальный образец имитатора поля

N=110 вит.
 d_{провод} = 0.75мм
 Масса катушек ≈ 2кг
 Напряженность поля
 В ≈ 320мкТл

Магнитные исполнительные катушки КА 15

Параметры катушек:

$$H = \frac{B}{\mu_0} = \frac{4\pi^2 A J}{\mu_0 m_m T^2}$$

Дипольный момент катушки вычисляется формуле:

$$m = ISN = 0.4 \text{ Am}^2$$

2

Площадь сечения провода

$$S_r = \frac{4\rho m}{Ul} = \frac{\pi d_{np}^2}{4}$$
Диаметр провода $d_{np} = \sqrt{\frac{4S_r}{\pi}} = 4\sqrt{\frac{\rho m}{\pi Ul}} \approx 0.2$ мм

U= 11.1 B

- N= 300 вит.
- I=0.26 A

Лагранжиан системы спутника: L = T - П Где: Т – Кинетическая энергия, П – Потенциальная энергия макета.

• Система уравнений Лагранжа второго рода $\frac{\mathrm{d}}{\mathrm{dt}}\frac{\partial \mathrm{L}}{\partial \mathrm{d_i}} - \frac{\partial \mathrm{L}}{\partial \mathrm{d_i}} = 0$ (5)где q_i (i=1,2,...6) - сопряженные координаты системы \checkmark Если oz \equiv oz' \rightarrow p = q = 0, r = $\dot{\psi} = \omega$ Получаем: $T = \frac{Cr^2}{2}$, $\Pi = -mB = -mB_0 \cos\psi$ $\rightarrow \frac{d}{dt} \frac{\partial L}{\partial \dot{\psi}} - \frac{\partial L}{\partial \psi} = \frac{d}{dt} Cr + mB_0 \sin\psi = \frac{d}{dt} C\dot{\psi} + mB_0 \sin\psi = 0$ $\rightarrow J\ddot{\psi} + mB_0 \sin\psi = 0$ (6)

- Суммарный дипольный момент: $\vec{m} = \vec{m_1} + \vec{m_2}$
- (6) $\rightarrow J\ddot{\psi} + m_1 B_0 \sin\psi + m_2 B_0 \cos\psi = 0 \rightarrow J\ddot{\psi} = -m_1 B_0 \sin\psi m_2 B_0 \cos\psi$ (7)

• Численно проинтегрируем (7): $m_1 = I_1 SN = 0.4 Am^2$ $m_2 = I_2 SN = 0 Am^2$ $\psi_0 = \frac{\pi}{2}, \omega_0 = 0$ град. $J = 0.005 \ \kappa\Gamma \ m^2$

- Суммарный дипольный момент: $\vec{m} = \vec{m_1} + \vec{m_2}$
- (6) $\rightarrow J\ddot{\psi} + m_1 B_0 \sin\psi + m_2 B_0 \cos\psi = 0 \rightarrow J\ddot{\psi} = -m_1 B_0 \sin\psi m_2 B_0 \cos\psi$ (7)

• Численно проинтегрируем (7): $m_1 = I_1 SN = 0.4 Am^2$ $m_2 = I_2 SN = 0 Am^2$ $\psi_0 = \frac{\pi}{2}, \omega_0 = 0$ град. $J = 0.005 \ \kappa\Gamma \ m^2$

Вектор коррекции ошибки ориентации спутника можно представить в виде:
 m = K_дω + K_oε

где: К_д, К_о - коэффициенты демпфирующего и ориентирующего моментов;

є – угловое отклонение КА от заданного положения

• Необходимый дипольный момент:

$$L = \begin{bmatrix} L_x \\ L_y \\ L_z \end{bmatrix} = \frac{m \times B}{|B|} = m \times b = \begin{bmatrix} m_y b_z - m_z b_y \\ m_z b_x - m_x b_z \\ m_x b_y - m_y b_x \end{bmatrix}$$

где $b = \frac{B}{|B|}$ – нормированный вектор индукции поля в связанной системе

координат.

• Получаем дипольные моменты для первой и второй катушки:

$$\begin{split} & L_x = m_y b_z - m_z b_y \\ & L_y = m_z b_x - m_x b_z. \end{split}$$

При небольших углах, вектор индукции в связанной системе координат можно приблизительно записать:

$$B = A(\varphi, \theta, \psi) B^{0} = \begin{bmatrix} 1 & \psi & -\theta \\ -\psi & 1 & \varphi \\ \theta & -\varphi & 1 \end{bmatrix} \begin{bmatrix} B^{0}{}_{x} \\ B^{0}{}_{y} \\ B^{0}{}_{z} \end{bmatrix} = \begin{bmatrix} B^{0}{}_{x} + \psi B^{0}{}_{y} \\ -\psi B^{0}{}_{x} + B^{0}{}_{y} \\ \theta B^{0}{}_{x} - \varphi B^{0}{}_{y} \end{bmatrix}$$
$$b_{x} = \frac{B_{x}}{|B|} = \frac{B^{0}{}_{x} + \psi B^{0}{}_{y}}{|B|}$$
$$b_{y} = \frac{-\psi B^{0}{}_{x} + B^{0}{}_{y}}{|B|}.$$

22

Вращение спутника при $K_{d} = 0.5$, $K_{o} = 0.1$ (--); $K_{o} = 0.2$ (--); $K_{o} = 0.3$ (···)

23

Разработка магнитной системы управление космическим аппаратом

25 Выводы

- Изучен принцип магнитного управления малыми космическими аппаратами, подробно рассмотрены его особенности, достоинства и недостатки.
 - Выбрана конструкция и проведены расчеты электрических, магнитных рараметров, также создан имитатор геомагнитного поля.
 - Проведены расчеты параметров токовых катушек и создана система магнитного управления спутника.
- Вывод уравнение движения спутника, построена математическая модель и проведено численное решение.
- Реализован закон управления спутника при стабилизации КА относительно МПЗ.

Разработка магнитной системы управление космическим аппаратом

26 Спасибо за внимание!