PHYSICAL REVIEW E 102, 042219 (2020)

Equilibration of kinetic temperatures in face-centered cubic lattices
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We study thermal equilibration in face-centered cubic lattices with harmonic and anharmonic (Lennard-Jones)
interactions. Initial conditions are chosen such that the kinetic temperatures, corresponding to three spatial
directions, are different. We show that in the anharmonic case the approach to thermal equilibrium has two
time scales. The first time scale is the period of atomic vibration. At times of the order of several atomic
periods, the approach to equilibrium is accompanied by decaying high frequency oscillations of the temperatures.
The oscillations are described analytically using the harmonic approximation. In particular, the characteristic
frequencies of the oscillations are calculated. It is shown that the oscillations decay in time more slowly than
expected. The second time scale, presented in the anharmonic case only, depends on the initial temperature of
the system. Normalizing time by this scale, we obtain numerically a universal curve describing equilibration in
the Lennard-Jones crystal over a wide range of temperatures.
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I. INTRODUCTION

The concept of kinetic temperature as a single scalar pa-
rameter, characterizing the thermal state of a system, works
well at (or close to) a thermal equilibrium. Far from the
thermal equilibrium, the kinetic energies, corresponding to
various degrees of freedom, may be different and there-
fore several kinetic temperatures are introduced [1-13]. For
example, solids under laser excitation have two distinct tem-
peratures, corresponding to lattice and electronic subsystems
[2,3]. In shock waves, the kinetic temperatures, correspond-
ing to the motion of particles along and across the front,
are different [4—10]. Multiple temperatures are also observed
during steady [12] and unsteady [13] ballistic heat trans-
port in diatomic chains. In the present paper, we address
the question of how these temperatures equilibrate after
excitation.

After external excitation, systems tend toward a ther-
mal equilibrium. This approach to the thermal equilibrium
is accompanied by changes in the kinetic temperatures. In
this paper we focus on two physical processes, responsible
for these changes, namely redistribution of the total energy
among kinetic and potential forms and redistribution of the
kinetic energy among degrees of freedom. In the harmonic
approximation, these processes may be described analytically.
For example, in the pioneering work of Klein and Prigogine
[14], thermal equilibration is investigated in a monoatomic
harmonic one-dimensional chain with random initial con-
ditions. It was shown that oscillations of the kinetic and
potential energies of the chain are described by the Bessel
function. This result was also obtained by entirely differ-
ent means in Ref. [15], while a theory describing thermal
equilibration in the harmonic approximation is developed in
Refs. [15-22]. This theory has been successfully applied to
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various one-dimensional [15,16,20,21] and two-dimensional
[17,19,22] lattices.

In spite of significant progress in the analytical descrip-
tion of the thermal equilibration in harmonic crystals, many
questions remain open. In particular, theory predicts that
equilibration is accompanied by oscillations of the kinetic
temperatures. Calculation of the characteristic frequencies
of these oscillations is not straightforward even for simple
two-dimensional lattices [23]. Therefore, in the present paper
we present a simple numerical procedure for calculation of
these frequencies, based on the Fourier transform. Another
open question is the decay rate of temperature oscillations.
In principle, the decay rate may be calculated by the station-
ary phase method [24,25]. This method predicts that in the
d-dimensional case the oscillations decay in time as =42,
provided that the dispersion relation contains no degenerate
stationary points.! This simple power law is satisfied for many
lattices [15-17,19]. However, we show below that for the
face-centered cubic (fcc) lattice this is not the case.

The description of thermal equilibration in anharmonic
crystals is even more challenging. At short times, the equili-
bration can be described using the harmonic approximation
with reasonable accuracy [17,26]. At large times, however,
the harmonic approximation is inapplicable. In particular,
the harmonic theory predicts generally different equilibrium
values for the kinetic temperatures [19], while in the anhar-
monic crystals they are equal. The mechanism, leading to the
equalization of the temperatures, is the exchange of energy

!'The stationary point is the point in the wave-vector space, corre-
sponding to zero group velocity. It is called degenerate if Hessian
of the dispersion relation at this point is equal to zero (see, e.g.,
Refs. [24,25]).
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among normal modes of the system [27]. In the literature,
this mechanism is intensively studied in the context of the
Fermi-Pasta-Ulam-Tsingou (FPUT) problem [28]. The cur-
rent status of solution of the FPUT problem is summarized
in Refs. [26,29-34]. In particular, in Ref. [26] it has been
shown that the FPUT recurrence paradox is eliminated at finite
temperatures. However, in spite of significant progress in the
solution of the FPUT problem, a comprehensive theory, de-
scribing the exchange of energy among the normal modes and
therefore equalization of the temperatures in the anharmonic
crystals, has yet to be developed.

We also mention Ref. [17], where the equilibration of tem-
peratures in the two-dimensional Lennard-Jones crystal was
studied numerically. It was shown that in the anharmonic case
equilibration is faster at higher temperatures. The existence of
an additional time scale, determined by anharmonic effects,
was also demonstrated. However, the temperature dependence
of this time scale was not studied. Therefore, we address this
important issue below.

In this paper, we report results on the equilibration of
kinetic temperatures, corresponding to three spatial directions
in fce lattices with harmonic and anharmonic interactions. We
show that in the anharmonic case the approach to thermal
equilibrium has two time scales. At the first (small) time
scale, the equilibration is accompanied by decaying high fre-
quency oscillations of the kinetic temperatures. Frequencies
and decay rates of these oscillations are calculated using the
harmonic approximation. At the second (large) time scale,
the temperatures tend to equilibrium values. The temperature
dependence of this time scale is calculated using molecular
dynamics simulations. A universal curve describing the equi-
libration at different initial temperatures is then obtained.

II. EQUATIONS OF MOTION AND INITIAL CONDITIONS

In this section, we formulate equations of motion and
initial conditions for the harmonic fcc lattice. The initial
conditions are chosen such that the kinetic temperatures, cor-
responding to three spatial directions, are different.

We consider an infinite harmonic crystal possessing an fcc
lattice, consisting of identical particles. Each particle interacts
with its 12 nearest neighbors, numbered by index «. Vectors,
connecting a particle with its neighbors, are denoted by a,,’
a=0,%£1,...,+6. Obviously ay = 0. Corresponding unit
vectors n, = a,/|a,| are given by

n = (e, +e,)/+2,
n = (e, +e,)/v2,
n3 = (ex + ez)/\/za

ny = —N_g,

ny =n3 — Ny,
ns =n; —ng, (1)
nNg =MN; — Ny,

where e,, e, e; are Cartesian unit vectors, directed along the
axes of cubic symmetry [35]. The position vector, X, of a
particle is represented by

x =a(An; + A + Aznz), 2

where a is the lattice constant; A, A,, A3 are integers.

2Here and below, invariant vectors (e.g., position vector) are de-
noted by bold symbols. Matrices are denoted by bold italic symbols.

The neighboring particles are connected by linear springs.
The equation of motion for the particle, x, is written as

mit(x) = ) Cott(x + ), 3)

where u(x) = (uy, u,, uz)T is a column vector, consisting of
the components of displacements; T stands for the transpose
sign. The matrices C, for the fcc lattice are given by

110
C1:C_1:—<1 1 0),
2\o0 0 o
L0 00
C,=C,=<[0 1 1),
2\o0 1 1
01
Ci=Cs=2[0 0 0),
2\1 0 1

~1 0

! o),

0 0

Cy = —4cl, 4)

where c is the bond stiffness; I is the 3 x 3 identity matrix.
Note that matrices C,, are symmetric.

We consider the following initial conditions for particles,
corresponding to a uniform spatial distribution of kinetic tem-
peratures in the crystal:

ity = Be(X)\/ ks T3 /m,
l;ty = ﬂ},(X) kB’ZjV?,/m, I;Lz = ﬂZ(X) kBT:’(Z)/m’

uy =uy, = u; =0,

()

where kg is the Boltzmann constant; 7,2, Ty(;, T are initial ki-
netic temperatures, corresponding to spatial directions x, y, z
[see definition (11)]; B((x), By(x), B.(x) are uncorrelated
random values with zero mathematical expectation and unit
variance,’ i.e., (B:(X)) = (B,(x)) = (B.(x)) =0, (B.(x)*) =
(By(x)?) = (B.(x)*) = 1, and (B.(X)B,(¥)) = (B:(X)B.(¥)) =
(By(x)B.(y)) = 0. The case of a spatially nonuniform distri-
bution of initial temperatures is discussed in Sec. VI.

In the next section, the dispersion relation, corresponding

to (3), is derived for further analysis of thermal equilibration.

II1. DISPERSION RELATION

In Refs. [18,19], it has been shown that the dispersion
relation is required to describe thermal equilibration in the

3In numerical simulations, uniform distribution of the random val-
ues By, By, B in formula (5) is used.
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harmonic approximation. To obtain the dispersion relation

w(k), we seek a solution of (3) in the form
u(x) =AY = 1, 6)
k = (01fy; + 6,0, + 05fi3)/a,

where A is a constant column vector; k is the wave vector; 6,
65, 65 € [0; 2r]; f1y, fip, fi3 are vectors of a reciprocal basis
such thatn; - fi; = §;;, where §;; is the Kronecker delta.

Substituting (6) into (3), we obtain a homogeneous system
of linear equations

| A
(SZ _ (L)ZI)A — 07 SZ = _E ane‘k‘au7 (7)

where £2 is the dynamical matrix of the lattice. Substitution of
expressions (4) for matrices C,, into (7) yields

211 = f(01,05,02), $£215 = 291 = g(01, 03, 02),
213 = 231 = g(63, 65, 01), 22 = f(62,01,63),
§23 = §230 = g(61,01,63), 233 = f(63,62,01),
0—60; . ,0
> -+ sin >

9
101,05, 05) = 207 (sin2 El + sin?
0, — 0
2 3
—+ sin —2 ),

201, 02, 0) = 2w§(sin2 AR u), =2
2 m
®)
These formulas show that the matrix £2 is real and symmetric.
It can be therefore represented as

2 =PAP", A =5, )

where wjz are eigenvalues of 2; w;, j =1, 2, 3, are branches
of the dispersion relation for the lattice; P is an orthogonal
matrix, composed of the unit eigenvectors of the dynamical
matrix 2. Note that all branches of the dispersion relation are
symmetric with respect to a permutation of any two compo-
nents of the wave vector, i.e., w;(01, 62, 03) = (03, 02, 0) =
a)j(Gz, 61, 03), etc.

Thus the dispersion relation is represented via eigenvalues
of the dynamical matrix. In the next section, the dispersion
relation is employed in the description of transient thermal
processes.

IV. THERMAL EQUILIBRATION (HARMONIC
APPROXIMATION)

Initial conditions (5) specify finite kinetic energy and
zero excess potential energy. The motion of particles leads
to equilibration of kinetic and potential energies and partial
redistribution of the energy among the degrees of freedom.
These transient processes cause high frequency oscillations of
the kinetic temperatures, corresponding to the spatial direc-
tions x, y, z. In this section, we present an analytical solution
describing these oscillations in the harmonic approximation,
and calculate decay rates and characteristic frequencies of
these oscillations.

A. Analytical solution

To define the kinetic temperatures, we consider an infi-
nite number of realizations of the same crystal, which differ

only by random initial conditions (5). According to (5), the
initial kinetic temperatures, corresponding to different spatial
directions, are generally not equal. Therefore, to describe the
thermal state of a crystal, the temperature matrix, T, is intro-
duced [19]:
(i2)  (eiy)  Ggc)
ksT = m| () (i) () |. (10)
(i) (i) ()

In numerical simulations, the mathematical expectation indi-
cated by (. ..) in (10) may be replaced either by one or both of
averaging over realizations or particles. The corresponding re-
sults coincide when the numbers of particles and realizations
tend to infinity.

The diagonal elements of the temperature matrix are pro-
portional to the kinetic temperatures, corresponding to the
three spatial directions

ksTow = m{iiy),  kpTyy =m(ii}), ksTo = m{iiZ).  (11)

The off-diagonal elements are proportional to correlations
between components of the velocity.

We use the following exact formula, describing the evolu-
tion over time of the temperature matrix [19]:

1 ST
T — | PTP dKk,
2 Ji

T;j = {PTToP};j[cos (w; — wj)t)

+ cos ((w; + wj)t)],

1 2 2 2
/...dk: —3f f / L d6ydodes. (12)
K 877 Jo Jo Jo

where T is the initial value of the temperature matrix; {...};;
is the element i, j of the matrix; P is defined by (9). We also
consider the average kinetic temperature

T =T /3 = (Tu + Ty + T..)/3,

which is proportional to the total kinetic energy of the system.
Calculation of the trace in (12) yields the following expres-
sion for the average kinetic temperature:

Ty T o
T=5+7¢ ;fkcos Qw;(K)t)dk

1 3
+ E/k;{PTdeVTQP}jj COoS (2w](k)t)dk, (13)

where Ty = tr T¢/3 is the average kinetic temperature; dev T’
is the deviator of the initial temperature matrix. Analysis of
(13) shows that the third term is equal to zero. Therefore, the
initial distribution of temperature among the spatial directions
has no influence on oscillations of the average kinetic temper-
ature

T To
T = > +T+hL+T, Ti= 3 cos2w;(K)t)dK.
k

(14)
Here, T; are the contributions of branches of the dispersion
relation to the oscillations of the average kinetic temperature
(see Fig. 3). The characteristic frequencies and decay rates of
these oscillations are calculated below.
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Eventually, the system tends to a state wherein the temper-
atures are constant in time. This state is henceforth referred to
as the thermal equilibrium. Since in harmonic crystals there
is no energy exchange among the normal modes, the classical
equipartition theorem, predicting equal equilibrium tempera-
tures, is inapplicable. In the harmonic case, these equilibrium
values are different and dependent on the initial conditions
(see Fig. 2). Therefore, we use the following formula, referred
to as the nonequipartition theorem [19]:

1 1
T, = 6tr(TO)I +3 / Pdiag(P"dev ToP)P"dk, (15)
k

where diag(...) yields the diagonal part of the matrix.
The theorem relates the equilibrium values of temperatures
T, Ty, T;; to the initial conditions (matrix T'p).

The approach to the thermal equilibrium in the harmonic
fcc lattice is thus described analytically by (12), (14), and (15).
The formulas describe oscillations of the kinetic temperatures
caused by equilibration of kinetic and potential energies and
redistribution of the energy among spatial directions. The
characteristic time scale of these oscillations is determined by
the atomic period 7, = 2w /m/c.

B. Comparison with a numerical solution

In this subsection, we compare the predictions of formulas
(12), (14), and (15), describing the behaviors of the temper-
atures, with a numerical solution of the initial value problem
(3) and (5), where T # O and T,) = T2 = 0.

The numerical integration is carried out using the sym-
plectic leap-frog scheme with a time step equal to 10~2z,. In
simulations, the lattice consists of 723 particles under periodic
boundary conditions. Numerical results are averaged over 60
realizations with random initial conditions (5). The integrals
in (12), (14), and (15) are calculated numerically using the
Riemann sum approximation, where the integration domain is
divided into 10® equal cubes.

Oscillations of the average kinetic temperature 7', caused
by equilibration of kinetic and potential energies in the har-
monic fcc lattice, are presented in Fig. 1. It can be seen that
analytical and numerical solutions practically coincide.

An analysis of (12) shows that T,; = T,,. Therefore, we
consider below only 7., and 7;,. Time evolution of the differ-
ence of the kinetic temperatures T, — T, is shown in Fig. 2.
The difference tends to the equilibrium value 0.217p, as pre-
dicted by the nonequipartition theorem (15).

Thus formulas (12), (14), and (15) accurately describe ther-
mal equilibration in the harmonic fcc lattice. The formulas
have a single characteristic time scale, which is equal to the
atomic period t,. In Sec. V, we show numerically that the
presented harmonic theory is also valid in anharmonic lattices
at short times (low temperatures).

C. Characteristic frequencies and decay rates
of temperature oscillations

In this subsection, we calculate the characteristic fre-
quencies and decay rates of the temperature oscillations. To
simplify the analysis of temperature oscillations, we con-
sider the individual contributions 7i, 7>, 75 of branches of
the dispersion relation separately. The contributions, calcu-
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FIG. 1. Oscillations of the average kinetic temperature, 7', in the
harmonic fcc lattice with random initial velocities. The analytical
solution [solid line, Eq. (14)] and numerical solution of the lattice dy-
namics equations in the harmonic approximation (circles) are shown.

lated by (14), are presented in Fig. 3. In principle, the decay
rates and frequencies of temperature oscillations may be ob-
tained by the asymptotic analysis of the integrals (14) by the
stationary phase method [24,25]. However, this analysis is
rather cumbersome even in the two-dimensional case (see,
e.g., Ref. [23]). Therefore, we will use a simple numerical
approach.

We estimate the decay rates of the oscillations, given by
T\, T;, and T3, as follows. Multiplication of 7, and 73 by ¢
yields nondecaying oscillations. Then 7, and 73 indeed decay
as 1 /t%. In contrast, amplitude of oscillations described by
the function I%Tl grows in time. Therefore, 7} decays more
slowly than 1. Using a trial and error approach, we have
shown numerically that 77 decays approximately like 1/¢. A
possible explanation for this slow decay is presented below.

The frequencies of the temperature oscillations are calcu-
lated using formula (14) and the discrete Fourier transform.
We introduce dimensionless complex-valued functions F;

1 :
Lo —Tyy

FIG. 2. Redistribution of kinetic energy (temperature) among x
and y directions in the harmonic fcc lattice. The analytical solution
(12) (solid line), numerical solution of the lattice dynamics equations
(3) (circles), and the equilibrium value (15) (dashed line) are shown.
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0.2 w w

FIG. 3. Contributions of the branches of the dispersion relation
to oscillations of the average kinetic temperature. The quantities 7;
(solid line), 7, (dashed line), and 75 (dash-dotted line), defined by
formula (14), are shown.

such that

ER
Fi = 0T /Ty, Fo= (Tt} /Ty)),

N—1
Fyo=o(Twit/h), o)=Y f@e ™0,
j=0
W(k) = 21k/(N, A1), ;= jAL. (16)

In our calculations, N, = 500 and Ar = 0.027,. The posi-
tions of the local maxima of |F;| = \/Re(F;)? + Im(F,)?
determine the frequencies of the temperature oscillations.
Functions |F;|, calculated using the analytical solution (14),
are shown in Fig. 4. It can be seen that the |F;| have local
maxima at frequencies

Wi /w, ~ 1.41 £0.03,
Ws/w, ~ 2.44 £ 0.03,
Ws/w, ~ 2.66 £ 0.03,

Wh/w, ~ 1.99 £ 0.03,
Wiwe ~2.50£0.03, (17)
We/w, ~ 2.82 £ 0.03.

140 w
‘-7:1|7 |f2‘a |F3’ "
120 i 1
100 1 " 1
80t !
60 - il
]

20 r 0N s

FIG. 4. Functions |F;|, defined by (16) [|.F;| (solid line), |F>]
(dashed line), and | F3| (dash-dotted line)].

Here W), W), are characteristic frequencies, corresponding
to the contribution of the first branch, 77; W, W,, Ws—of the
second branch T>; Wy, W5, We—of the third branch 75. Some
of these frequencies coincide with maxima of the branches,
specifically

W, ~ max w1 = 2w,, Wi X maxw, = \/ga)e,
k k

We ~ max w3 = 2V 2w,. (18)

From the stationary phase method [24] it follows that the
characteristic frequencies of the temperature oscillations may
correspond to zeros of the group velocities. To check this
statement, we calculate the frequencies, corresponding to
V§ = 0, using the definition

' dw;
g _ — gn. g — 2%
Vi=a—= =a E vimg, v = 36, (19)

Our calculations show that V‘f =0 for w1 = Wi, o1 =W,
v =0 for oy =Wy, w, =W, and v§ =0 for w3 = Wi,
w3 = Ws, w3 = Wy. Then, all the frequencies (17), except
for Ws, correspond to zero group velocities. For w; = Ws the
group velocity v} is discontinuous.

Thus oscillations of the kinetic temperature 7' have six
different characteristic frequencies (17). Five of these cor-
respond to zero group velocities, while W5 corresponds to
a discontinuity in the group velocity. The oscillations decay
more slowly than 1 /t% (approximately like 1/¢). This slow
decay may be due to the fact that the dispersion relation has
zero Hessian at w; = W,. However, since no general analyt-
ical results are available for this degenerate case [25], more
detailed analysis of the asymptotic behavior is required. This
analysis is beyond the scope of the present paper.

V. THERMAL EQUILIBRATION IN A LENNARD-JONES
CRYSTAL

In this section, we investigate the influence of nonlinear-
ity of interatomic interactions on equilibration of the kinetic
temperatures T, T,,. We show that, in the anharmonic case,
approach to thermal equilibrium has a second time scale,
depending on the initial temperature.

A. Numerical results

We consider the fcc lattice with interparticle interactions
described by the Lennard-Jones potential

mo=(@)° 3] e

where ¢ is the bond energy and a is the equilibrium distance.
The potential is smoothly truncated at a., = 1.4a using the
spline function [36]. Therefore, at least at low temperatures,
the interactions are limited to between the nearest neighbors
(as in the harmonic model considered above).

Initially, particles have zero displacements and random
velocities, directed along the x axis and uniformly distributed
in the interval [—wvg; vo] (in this case, T,y # 0, T, = T;; = 0).
For small vy (at low temperatures), the system is almost lin-
ear and it may be approximately described by the harmonic

042219-5
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t/7e

FIG. 5. Equilibration of kinetic temperatures T, T,, = T, in the
Lennard-Jones crystal at short times. The analytical solution (12)
(solid line) and simulation results for vy /v, = 0.05 (circles) and 0.25
(black points) are shown. The dashed line shows the equilibrium
value, as predicted by the nonequipartition theorem (15).

equations of motion (3), where the stiffness of the spring is
equal to ¢ = I7"”(0) = 72¢/a*. To investigate the influence of
anharmonic effects, we vary the amplitude vy of the initial
velocities, determining the initial temperature of the system

i)

2y
Va

where vy = 4/2¢/m is the dissociation velocity, i.e., the ve-
locity which is required for a particle to leave a potential
well of depth ¢. In simulations, the difference of temperatures
T — T,y is calculated.

The simulation results for vg/v; = 0.05, 0.1, 0.25 are pre-
sented in Figs. 5 and 6. Figure 5 shows that at short times
the behavior of the temperatures is well described by the
harmonic approximation [formula (12)]. The difference of

1 ‘
09l T.’zrm_T‘yy

Ty
0.8

0.7}
0.6
0.5}
0.4
0.3}
0.2 porome3
0.1t

e
SRR RS sSeers et e veves ot Sersenseee
; OOORO; R 505 xR g

. * * x

O 1 1 1 1 1 1
15 45 75 105 135 165 195 225 255
t/7e

FIG. 6. Equilibration of kinetic temperatures T, T, = T in the
Lennard-Jones crystal at large times. The analytical solution (12)
(solid line) and simulation results for vy/v, = 0.05 (circles), 0.1
(asterisks), and 0.25 (black points) are shown. The dashed line shows
the equilibrium value, as predicted by the nonequipartition theorem
(15).

1.4

Ta

1.2}

0.8r
0.6 -7
0.4r 7

0.2r ol

0 0.1 02 03 04 05 06 0.7
kpTy

£

FIG. 7. Temperature dependence of the anharmonic time scale
7, for vo/vy = 0.25,0.5,0.75, 1. Numerical results (circles), cubic
approximation [formula (23), solid line], and linear approximation
(dashed line) are shown.

temperatures rapidly reaches the equilibrium value 0.217,
predicted by the nonequipartition theorem (15). At large
times, the difference deviates from the equilibrium value and
slowly tends to zero (see Fig. 6). The rate of this slow process
depends on the initial temperature.

Thus the simulations show that in the anharmonic case
the second characteristic time scale, depending on the initial
temperature, is present.

B. Dimensional analysis

We determine the anharmonic time scale of the approach
to thermal equilibrium using numerical results and the dimen-
sional analysis (see, e.g., Ref. [37]). From this dimensional
analysis it follows that the difference (Ty, — T,,)/To depends
on three dimensionless parameters /7., kgTo/e, and acy/a.
In further analysis, we focus on the influence of the first two
parameters, while fixed value for the dimensionless cutoff dis-
tance dacy/a = 1.4 is used. This value is chosen such that, at
least at low temperatures, interactions are limited to between
the nearest neighbors.

Simulation results suggest that at large times (t/7, > 1),
the function (7, — T5,)/T, can be approximated by

T =T (kgTo/e). (22)

where 7, is the anharmonic time scale, which is dependent
on the initial temperature. According to the nonequipartition
theorem, W(0) ~ 0.21.

We seek an expression for 7, /7, in the form of a series with
respect to kgTy/e. The coefficients in the series are calculated
by fitting to values of t, obtained via numerical simulations.
The calculation of 7, is based on the observation® that the
integral of (Ty, — T,,)/Ty over time from time 0 to +00 is
proportional to t,. The resulting dependence of t, on the
initial temperature is shown in Fig. 7. The numerical results

erx - Tyy = TO\IJ(Z/fa)’

“Linear dependence of the integral on t, follows from formula (22).
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0.2

0.15¢

01+ °

0.05¢

FIG. 8. Equilibration of kinetic temperatures in the Lennard-
Jones crystal at different temperatures 7y [vo/vy = 0.25 (black
circles), vo/vy = 0.5 (blue crosses), vo/vy = 0.75 (dark green as-
terisks), and vo/vy = 1 (red circles)]. The dashed line shows the
equilibrium value, as predicted by the harmonic approximation (15).

are fitted to a cubic polynomial

z_z ~ "BTT" n 1.496(kBTT0)2 - 0.469(]“37%)3. (23)

It can be seen that at low temperatures (kgTp < 0.05¢) the an-
harmonic time scale is approximately inversely proportional
to the initial temperature.

To find the function W, we plot T, — T}, against the dimen-
sionless time 7 /7, for different values of Ty (see Fig. 8). Here,
7, is calculated by formula (23). Figure 8 shows that the simu-
lation results for vy /vy = 0.25, 0.5, 0.75 practically coincide.
Therefore, the assumption of the existence of the universal
curve (22), describing equilibration at different temperatures,
is satisfied, at least approximately. For vy/v; = 1, numerical
results deviate from the universal curve. This deviation may be
caused by the influence of the dimensionless cutoff distance
acut/a. As expected, this parameter, neglected in formula (22),
becomes important at high temperatures.

To investigate the behavior of the function W at¢/t, > 1,
we plot the time dependence of In ¥ (see Fig. 9). The figure
shows that at large times W decays exponentially and it may
be approximated by

WA Ae B, (24)

The parameters A, B in formula (24) are estimated using the
data points in Fig. 9 for t/t, > 45. These calculations yield
A =0.044 £ 0.004 and B = 0.046 £ 0.005.

Thus, in the anharmonic case, the second time scale, t,,
is present. This time scale significantly depends on the initial
temperature [see formula (23)]. Equilibration at different tem-
peratures is approximately described by the function W, which
depends only on the dimensionless time ¢ /7, [see formula (22)
and Fig. 8].

FIG. 9. Equilibration of kinetic temperatures in the Lennard-
Jones crystal at different Ty [vo/vs = 0.25 (black circles), vy/vy =
0.5 (blue crosses), and vy/vy; = 0.75 (dark green asterisks)]. The
dashed lines correspond to linear approximations at large times.

VI. CONCLUSIONS

We have shown that the equilibration of kinetic tem-
peratures, corresponding to three spatial directions in the
anharmonic fcc lattice, has two distinct time scales.

The first time scale is the period of atomic vibrations 7.
At times of the order of several atomic periods, the approach
to equilibrium is accompanied by decaying high frequency
oscillations of the temperatures. The oscillations are caused by
the redistribution of energy among kinetic and potential forms
and among degrees of freedom. These physical processes
are described analytically using the harmonic approximation
[formula (12)].

It has been shown that oscillations of the average kinetic
temperature have six distinct characteristic frequencies (17).
Five of these frequencies are such that corresponding group
velocities are equal to zero. The remaining frequency corre-
sponds to a discontinuity in the group velocity. It has been
shown that, quite unexpectedly, the temperature oscillations
decay in time like 1/t rather than 1 /t%. We suspect that this
slow decay may be caused by the Hessian of the dispersion
relation being equal to zero at some points. However, addi-
tional analysis is required in order to describe the asymptotic
behavior of the temperature rigorously.

The second time scale, t,, which is present in the an-
harmonic case only, depends on the initial temperature Tj.
The temperature dependence of the time scale was obtained
using molecular dynamics simulations. In particular, it was
shown that at low temperatures, t, is approximately inversely
proportional to Tp. At the time scale t,, the difference of
the kinetic temperatures deviates from the equilibrium value,
predicted by the harmonic approximation, and monotonically
tends to zero. It was shown that this process is approxi-
mately described by a function, which depends only on the
dimensionless time ¢ /7, [see formula (22)]. In other words,
equilibration at different temperatures differs only by a time
scaling.
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The presented analytical results are exact in the case of
a spatially uniform distribution of kinetic temperatures. In
the case of a nonuniform temperature profile, heat transport
should be considered in addition to the transient processes
described above. In the harmonic case, relaxation is much
faster than heat transport (see, e.g., Ref. [18]). Moreover,
relaxation at different spatial points of a harmonic crystal
with a nonuniform temperature profile is nearly independent
[13,18]. Therefore, in the harmonic case these processes may
be considered separately. Our results suggest that, in the
weakly anharmonic case, the characteristic time scales of re-
laxation and heat transfer may be of the same order. Therefore,
there may be some mutual influence between these processes.
Investigation of this important issue is a subject for future
work.

Our results may serve in the development of multicom-
ponent continuum models (see, e.g., Refs. [1,2,8,38,39]). In
these models, each component has it own temperature. The
behavior of these temperatures is governed by a coupled sys-
tem of heat transfer equations, where the coupling is caused
by energy exchange among the components. Formulas (22)

and (23) can be used in the proper formulation of constitu-
tive relations, describing the coupling. In particular, formula
(23) shows how the rate of thermal equilibration depends on
temperature. This dependence may be incorporated into the
constitutive relations.

Finally, the presented results can be used for the estimation
of the range of applicability of the harmonic theory of thermal
equilibration [15-22]. We have shown that the theory is ap-
plicable at times less than the anharmonic time scale 7,. For
a given initial temperature of the system, t, is calculated by
formula (23).
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