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a b s t r a c t 

Single–layer molybdenum disulfide (SLMoS 2 ) is a promising two–dimensional material with a wide range 

of possible applications in NEMS. Traditional molecular dynamics (MD) simulations of SLMoS 2 are very 

time–consuming and cannot be applied to the real microscopic–level systems. We develop a coarse–

grained model combining the atoms of crystal lattice into rigid ‘grains’. The interaction between the 

grains is based on Stillinger–Weber potential with parameters recalculated to fulfill the elastic proper- 

ties of the original lattice. The model is applied to calculate the phonon spectrum and for the nanoin- 

dentation problem. It is shown that in the case of small strains the model is as accurate as regular MD 

simulations, but uses much less interatomic interactions; hence, it is much more time–efficient. 

© 2020 Elsevier Ltd. All rights reserved. 

1

 

e  

c  

m  

n  

t  

l  

d  

m  

i  

b  

(  

a  

t

l  

o  

t  

t

 

t  

u  

i  

t  

s  

c  

t  

v

u  

o  

t  

s  

T  

s  

t  

w  

s  

e  

a  

i  

b  

(

 

i  

l  

i

h  

h

0

. Introduction 

Single–layer molybdenum disulfide (SLMoS 2 ) has recently

merged as a promising 2D material due to its exceptional me-

hanical and piezoelectric properties. Unlike graphene, the most fa-

ous 2D material consisting of carbon atoms combined in one pla-

ar layer, SLMoS 2 is a part of hexagonal close-packed (HCP) struc-

ure, having three layers in the orthogonal direction. The structure

eads to the difference of properties of this two materials, as it is

iscussed in the review paper of Jiang [8] ; for example, the Young

odulus of SLMoS 2 reported to be equal Y = 180 N/m which

s smaller than that of graphene (Y = 335.0 N/m). However, the

ending rigidity of SLMoS 2 is much higher as well as its Q-factor

ability to preserve the oscillations). Also, whereas graphene has

n outstanding electrical conductivity, SLMoS 2 is a semiconduc-

or with a direct band gap which makes it applicable for single–

ayered nanoelectronic devices such as transistors [14] and mem-

ry cells [4] . The combination of these properties gives opportuni-

ies for using the single-layer molybdenum disulfide in nanoelec-

romechanical systems (NEMS). 

NEMS developing is not possible without the accurate compu-

ational simulations. Usually, molecular dynamics simulations are

sed to describe large displacements and strains of SLMoS 2 dur-

ng the stretching [11] or mechanical indentation [15,20] . Often,
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he Stillinger-Webber (SW) potential is applied for such kind of

imulations. This potential allows to describe the non–linear me-

hanical effects, but keeps the numerical simulations at a rela-

ively fast level. Unfortunately, such kind of simulations are still

ery time-consuming, so many phenomena of large-sized SLMoS 2 
sually observed in nanomechanical experiments cannot be the-

retically investigated using standard MD methods. To overcome

hese issues, the coarse–grained approach was proposed in [18] to

imulate folding of single-layer MoS 2 modeled as a chain of grains.

he interactions between the grains were described using various

implified potentials with the parameters derived from the SW po-

ential for the original MoS 2 structure. The advanced 2D model

as proposed in [19] . In this work, the original atomic structure is

ubstituted by the structure of the bounded grains, such that ev-

ry grain corresponds to the specific number of the Mo or S atoms

nd the hexagonal structure is maintained. The grains are interact-

ng with the SW potential as well as in original atomic structure,

ut new parameters are determined basing on valence force field

VFF) model. 

We propose another way to simulate the atomistic structure us-

ng the coarse-grained (CG) modeling: we do not substitute one

attice by another one, instead, we combine atoms of the lattice

nto ‘grains’. The grain combines three unit cells of the SLMoS 2 
exagonal close-packed (HCP) structure, which is infinite in the

lane of transverse isotropy and has only three layers in the or-

hogonal direction. The top and bottom layers are occupied by sul-

ur ( S ) and the medium layer consists of molybdenum ( Mo ). As a

https://doi.org/10.1016/j.mechrescom.2020.103515
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
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Fig. 1. Crystal lattice of MoS 2 , visualized using OVITO software [16] . 

Fig. 2. Pair of interacting grains of MoS 2 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Grains in MoS 2 lattice. 
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result, the grains form a two-dimensional triangular lattice. Un-

like previous approaches, we consider the grains not as material

points, but as the rigid bodies, taking their rotational degrees of

freedom into account. In this case, a specific potential has to be

developed to add torques arising between the grains to the forces

of interaction. Such type of potential was used before for the orig-

inal SLMoS 2 crystal lattice [3] , but not for the CG structure. 

The paper is organized as follows. First, the grains in lattice

are introduced and the forces and torques between the grains are

calculated using the potentials of interaction between the atoms.

Then, the parameters of SW potential are re-calibrated so that new

material fulfills the elastic moduli of the original lattice. Then, the

test problems are considered: phonon dispersion and nanoinden-

tation. 

2. Grains in MoS 2 and their interaction 

The structure of SLMoS 2 is geometrically imperfect, as the dis-

tance between Mo and S is smaller than distances M o − M o and

S − S. Each Mo has twelve neighboring atoms, i.e. six Mo in the

plane of isotropy and six S above and beneath ( Fig. 1 ). We choose

grains in the lattice in such a manner, so that any of them contain

3 atoms of Mo and 6 atoms of S ( Fig. 2 ). The grains are consid-

ered as the rigid bodies, so atoms are ‘freezed’ inside the grain. As

a result, the center of mass of the grain is located in the center

of the hexagonal prism and the inertia tensor �i has a diagonal

form (1) : 

m = 4 80 . 24 8u 

�i = 

( 

1257 . 96 0 0 

0 1257 . 96 0 

0 0 1525 . 39 

) 

u Å
2 

(1)

Even such small grains approach leads to the reduction of the

number of calculated interactions: the number of interactions per

grain decreases from 9 to 6 for M o − M o, from 18 to 12 for S − S,

from 18 to 6 for Mo − S, from 27 to 15 for Mo − S − S, from 18 to

12 for S − Mo − Mo. It should be noted that for 12 three-atom in-

teractions Mo − S − S and 12 S − Mo − Mo a pair of atoms belong

to the same grain, and the distance between them remains con-

stant, which also further reduces the number of calculated values.

Thus, on average, the number of calculated interactions decreases

by the factor of 1.76. When atoms are combined into a grain, the
umber of degrees of freedom decreases from 27 to 6 per grain.

owever, 70% of the calculation time is consumed by the calcula-

ion of interactions, thus, the calculation acceleration upon transi-

ion to grains is approximately 1.7 times. It should also be noted

hat the size of the grain can be scaled so that the shape of the

rain will be preserved. For example, seven grains shown in Fig. 3

an be combined into the one, which will significantly decrease the

nteractions number. 

We are going to determine the potential of interaction between

he grains. First, we will obtain the forces and torques acting on

he grain relative to its center of mass. To do it, let us consider

he interactions between the specific atoms. First, consider the

air bonding. The potential of interaction can be represented as a

unction of the position vector �αβ ( r αβ ) between two atoms (see

36) in Appendix for the details). The parameters of the potential

, σ , a , and ε are different for three types of interaction: M o − M o,

 − S, and Mo − S. The distance between two particles α and β is

iven by 

 αβ = | r αβ | , r αβ = r β − r α (2)

ere and after, vectors and tensors are denoted by the bold sym-

ols. The force of pair interaction F 2 
i j 

acting to the grain i from the

rain j can be found as a sum of forces F 2 α acting to the atoms α
rom the atoms β , where α = 1 , 4 , 5 , 6 , 7 and β = 2 , 3 , 8 , 9 . Con-

ider F 2 α: 

 

2 
α = −

∑ 

β

∂�αβ

∂r α
= 

∑ 

β

∂�αβ

∂r αβ
= 

∑ 

β

F 2 αβ, (3)

here it is denoted that F 2 
αβ

= 

∂�αβ

∂r αβ
. Hence, the total force 

 

2 
i j = −F 2 ji = F 2 Mo−S + F 2 M o−M o + F 2 S−S , (4)

here 

 

2 
Mo−S = F 2 18 + F 2 19 , F 2 M o−M o = F 2 12 + F 2 13 

F 2 S−S = F 2 48 + F 2 68 + F 2 59 + F 2 79 (5)

Now let us determine the torques between the grains. Let us

efine r i as a vector directed to the center of mass of the grain

 . The torque acting to the grain i from the grain j and calculated

elative to the center of mass of i is 

 

2 
i j = 

∑ 

α,β

r iα × F 2 αβ = 

∑ 

α,β

r iβ × F 2 αβ (6)

or our specific α and β

 

2 
i j = r i 1 × (F 2 18 + F 2 19 + F 2 12 + F 2 13 ) 

+ r i 8 × (F 2 48 + F 2 68 ) + r i 9 × (F 2 59 + F 2 79 ) (7)

onsidering a torque acting to the second grain one can obtain 

 

2 
ji = −r j1 × (F 2 18 + F 2 19 + F 2 12 + F 2 13 ) 
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− r j8 × (F 2 48 + F 2 68 ) − r j9 × (F 2 59 + F 2 79 ) (8) 

ne can notice that the distance between the centers of masses of

rains can be represented as 

 i j = r i 1 − r j1 = r i 8 − r j8 = r i 9 − r j9 . (9)

sing this one can check that (7) and (8) satisfy to the 3rd New-

on’s law for torques: 

 

2 
i j + M 

2 
ji = r i j × F 2 i j (10)

s a second step the three–body (angle bending) interaction
3 
αβγ

(r αβ, r αγ ) was taken into account (see (37) in Appendix for

he details). The interaction energy between two grains is found

s 

�3 = �3 
Mo−S−S + �3 

S−M o−M o , 

�3 
Mo−S−S = �3 

189 + �3 
179 + �3 

159 + �3 
168 + �3 

148 , 

3 
S−M o−M o = �3 

812 + �3 
813 + �3 

912 + �3 
913 (11) 

he three–body potentials of interaction �3 
αβγ

(r α, r β , r γ ) have the

orm (37) , where 

r αβ = r β − r α, r αγ = r γ − r α, 

os �αβγ = 

r αβ · r αγ

r αβr αγ
, r = | r | . (12) 

ext, we calculate the forces acting to the grains i and j caused by

hese interactions. Consider the force acting to the central particle

due to a single interaction �αβγ : 

 

3 
α = F 3 β + F 3 γ , F 3 β = 

∂�3 
αβγ

∂r αβ
, F 3 γ = 

∂�3 
αβγ

∂r αγ
. (13)

sing this, it is possible to calculate the sum of the forces acting

o the grain i : 

 

3 
i j = F 3 1 + F 3 4 + F 3 5 + F 3 6 + F 3 7 . (14)

rom (13) follows that the contribution from the 3–body interac-

ion to the atoms 4–7 is zero because of the fixed distances be-

ween the respective atoms and atom 1. Consequently 

 

3 
i j = F 3 1 = F 3 Mo−S−S + F 3 S−M o−M o , (15)

here 

F 3 Mo−S−S = 

∂(�3 
148 + �3 

168 + �3 
189 ) 

∂r 18 

+ 

∂(�3 
159 + �3 

179 + �3 
189 ) 

∂r 19 

 

3 
S−M o−M o = 

∂(�3 
812 + �3 

813 ) 

∂r 18 

+ 

∂(�3 
912 + �3 

913 ) 

∂r 19 

(16) 

onsideration of the force acting to the second grain gives 

 

3 
ji = F 3 2 + F 3 3 + F 3 8 + F 3 9 . (17)

t may be noted, that the contribution from the 3–body interaction

o the atoms 2 and 3 is zero, so finally 

 

3 
ji = F 3 8 + F 3 9 . (18)

sing this with (13) it is easy to check that 

 

3 
i j = −F 3 ji . (19) 

Calculation of the torque M 

3 
i j 

is possible after defining the direc-

ion of the interatomic 3–body forces. It can be noted, that atom of

o with index 1 participates in all interactions (see Fig. 3 ). From

13) and (44) it follows, that any force F 1 αβ can be represented as

 1 αβ = μr 1 α + νr 1 β, (20)

here μ and ν are the coefficients that can be determined from

13) . The similar relations can be obtained for F α1 β . Due to this,
he directions of the forces are connected with the atom 1, hence

he torque can be found as 

 

3 
i j = r i 1 × F 3 1 + r i 1 × F 3 4 + r i 1 × F 3 5 + r i 1 × F 3 6 + r i 1 × F 3 7 . (21)

s it was mentioned above, some of these forces are equal to zero,

o 

 

3 
i j = r i 1 × F 3 1 = r i 1 × F 3 i j (22)

In turn, the three–body torque acting to the other grain with

espect to its center is 

 

3 
ji = r j1 × F 3 2 + r j1 × F 3 3 + r j1 × F 3 8 + r j1 × F 3 9 

= r j1 × F 3 8 + r j1 × F 3 9 . (23) 

aking (19) into account, it is possible to obtain the connection be-

ween the torques: 

 

3 
i j + M 

3 
ji = (r i 1 − r j1 ) × F 3 i j = r i j × F 3 i j . (24)

ne can notice that in this case the third Newton’s law for the

orques is also satisfied. 

. Simulation technique 

.1. Dynamics of the grains 

The forces and torques defined in the previous section are ap-

lied for the particle dynamics simulations. The main idea of the

imulations method is close to the discrete [6] and distinct [12] el-

ment methods and other generalizations of classical molecular

ynamics. As it was noted earlier, grains are simulated as the rigid

odies with the masses and moments of inertia determined by (1) .

he position of the center of mass of a specific grain i is deter-

ined by the solution of the following equation of motion: 

 i ̈u i = 

∑ 

i � = j 

(
F 2 i j + F 3 i j 

)
, (25) 

Rotation of the grain i is described as 

i · (ω i ) ̇ = 

∑ 

i � = j 

(
M 

2 
i j + M 

3 
i j 

)
, (26) 

here ω i = ω i w i is an angular velocity. A unit vector w i deter-

ines the axis of rotation at current time step. The components of

ngular velocity vector can be found from integration of (26) . Us-

ng it, we apply the quaternions formalism [2] to calculate a new

rientation of the grain. Rotation around the vector w i is calculated

t each time step d t using quaternions q i : 

 i (t + d t) = q i (t) ∗ d q i , 

d q i = cos 

(
ω i d t 

2 

)
+ w i sin 

(
ω i d t 

2 

)
. (27) 

For small rotations, this formula can be simplified: 

 q i = 1 − 1 

2 

(
ω i d t 

2 

)2 

+ ω i 

d t 

2 

. (28)

Additionally, quaternion q i is normalized at every step. 

We define vectors r i α as the position vectors connecting the i

rain’s center of mass with the Mo and S atoms inside this grain

oted with α index. These vectors can be determined by the fol-

owing relation 

 iα(t + d t) = q i ∗ r iα(t) ∗ q 

−1 
i 

. (29)

The Eqs. (25) and (26) are integrated at each step using leap–

rog algorithm [1] . 
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Table 1 

Components of stiffness tensor of the lattice. C 1 
i j 

for atomic SLMoS 2 with param- 

eters of SW potential [9] , C 2 
i j 

for grain–structured SLMoS 2 with parameters of SW 

potential [9] , C 3 
i j 

for grain–structured SLMoS 2 with new parameters ( Table 2 ). 

C 1 
i j 
, GPa C 2 

i j 
, GPa Relative error, % C 3 

i j 
, GPa Relative error, % 

C 11 284 644 124 284 0 

C 12 82.3 168 104 73.2 11 

C 66 101 238 135 105 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Phonon spectrum for grain–structured SLMoS 2 with the new parameters 

( Table 2 ). 
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3.2. Elasticity of the CG–lattice 

In this section, we determine the parameters of interaction. As

the grains are rigid, the overall stiffness of the lattice increased

and we cannot use the original SW potential. Instead we need to

redefine its parameters. In order to determine the components of

stiffness tensor we need to solve a set of problems in which the

material is subject to homogeneous strain field with one non-zero

component. We write the Hooke’s law in the form 

�σkl 

�ε i j 

= 

1 

2 

(
C kli j + C i jkl 

)
, i, j, k, l = x, y, z, (30)

where εij and σ kl are the components of strain and Cauchy stress

tensors respectively, and C ijkl are the components of stiffness ten-

sor. The problems are solved using central differences for ε i j =
±10 −5 , and consequently �ε i j = 2 · 10 −5 . The boundary effects in

the plane of isotropy are eliminated by introduction of periodic

boundary conditions, whereas the upper and lower boundaries are

free. 

Further, Voigt notation is introduced for the stiffness tensor in-

dices: xx is replaced by 1, yy and zz are replaced by 2 and 3 re-

spectively, whereas yz, xz and xy become 4, 5 and 6. 

The non-zero components of stiffness tensor are determined by

the appearance of non-zero components of stress tensor as the re-

sult of the imposed strain. Note, that instead the original complex

3D lattice the coarse-grained lattice of grains is two–dimensional

triangular one. A lattice of such kind is isotropic, so its tensor of

stiffness has only 5 non-zero components: C 11 = C 22 , C 12 = C 21 , and

C 66 . These components were calculated for the original lattice us-

ing the SW proposed in [9] (see Table 1 ). We use the Cauchy stress

tensor calculated as 

σ = 

1 

2 V 

∑ 

α

a αF α, (31)

where V is the actual unit cell volume, F α are the respective in-

teratomic forces, and a α are the vectors connecting the given atom

with its neighbors (see e.g. [3,7] and the references therein) 

A Simulated Annealing (SA) algorithm [5] was used to deter-

mine the parameters of the SW potential using the known values

of the stiffness tensor. The idea of the algorithm is the following.

At each time step, the algorithm randomly selects parameters of

SW potential ε, a and B close to the current ones. Then, a sum of

absolute values of relative parameters deviations is calculated: 

f (C i j ) = 

∑ 

i j 

| C 1 
i j 

− C current 
i j 

| 
C 1 

i j 

, (32)

where C 1 
i j 

are the components of stiffness tensor for original

SLMoS 2 lattice with parameters of Stillinger-Weber potential [9] .

Our goal is to find a minimum of this function. Based on the new

value of the function, the algorithm decides whether to accept the

new parameters or to stay with the current solution. The obtained

elastic components and their relative deviation from the C 1 
i j 

are

shown in Table 1 . Here C 2 
i j 

are the values calculated for the coarse–

grained lattice with the original SW parameters, and C 3 
i j 

are those

obtained with the parameters optimized using the SA algorithm. 
The corrected SW potential parameters for coarse–grained

odel are given in Table 2 . 

. Applications 

We have developed a CG–model of SLMoS 2 and the parameters

f interaction between the grains have been determined. The next

tep is to check the possible applications of the model for two test

roblems: (i) determination of the phonon spectrum of the lattice,

nd (ii) nanoindentation experiment. 

.1. Phonon spectrum 

The parameters of the model were determined using the qua-

istatic approach based on elastic properties calculations. A phonon

pectrum determination can be used to validate the system dy-

amics. Phonon spectrum of the coarse–grained lattice is measured

sing an approach based on molecular dynamics simulations [10] .

ote, that the general approach proposed in [10] can be simplified

n our case. Indeed, the grains in SLMoS 2 crystal form a 2D trian-

ular lattice. The primitive cell of such lattice is simple. As a result,

he optical waves degrade, and the resulting phonon spectrum has

nly three acoustic waves. 

The displacements in the reciprocal space are defined as the

ourier transform of displacements in the real space 

 (q ) = 

1 √ 

N 

∑ 

i 

u i exp 

−i q ·r i (33)

here N is a number of grains, u i is a displacement of grain i , q is

 wave vector. 

The Green’s tensor is calculated as a time average of the tensor

roduct u ( q ) with a complex conjugate u 

∗( q ) 

 (q ) = 〈 u (q ) u 

∗(q ) 〉 (34)

Finally, the dynamical tensor D ( q ) is inverse to G ( q ) multiplied

y the coefficient: 

 (q ) = 

1 

m 

k B T 
[
G 

−1 (q ) 
]

(35)

here k B is the Boltzmann constant, and T is the temperature. 

Phonon dispersion curves are obtained by solving the eigenval-

es problem for D ( q ) for different q . The results are shown in a

ig. 4 . 

Even though we consider the phonon spectrum of grains in-

tead of atoms, we obtain a good agreement with the experimental
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Table 2 

Re-calibrated Stillinger-Weber potential parameters. 

ε, eV σ , Å a B λ γ cos ( �0 ) 

M o − M o 2.4436 0.6097 7.54817 119.751 0 0 0 

S − S 4.1082 0.6501 6.06338 103.629 0 0 0 

Mo − S 3.0014 0.7590 4.38728 37.8703 0 0 0 

Mo − S − S 3.0014 0.7590 4.38728 37.8703 1.02384 0.872786 0.1525 

S − Mo − Mo 3.0014 0.7590 4.38728 37.8703 1.02384 0.872786 0.1525 

Fig. 5. Simulation of nanoindentation in SLMoS 2 using CG–model. Top view (a), iso- 

metric view (b), side view (c). The color corresponds to a σ xx stress (d). 
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Fig. 6. Indentation procedure of SLMoS 2 . 
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esults. The lower and upper curves give a good approximation of

xperimental data from [17] . The middle curve varies significantly

rom the experimental data in case of long waves, but the differ-

nce decreases at higher values of the wave vector. 

.2. Nanoindentation 

A circular region around central grain with radius of 100 ̊A was

hosen for indentation procedure on a square plate of SLMoS 2 (see

ig. 5 ). All grains beyond this radius were fixed both in terms of

ranslational and rotational degrees of freedom. Grains, that were

ithin 10 ̊A radius from the indenter center, were assumed to in-

eract with the indenter by a repulsive force like Lennard–Jones re-

ulsive term. The spherical indenter was initially placed 10 ̊A above

he upper border of the plate and was moving with constant ve-

ocity of 0.1 ̊A/ ps along z-axis. Temperature of the system was sus-

ained equal to 0.2 K . These conditions are similar to those in calcu-

ations made by Wang [20] and Pang [13] for atomic SLMoS with
2 
EBO potential. The only difference lies in the indenter velocity,

hat was equal to 0.2 ̊A/ ps in [13] . 

Fig. (6 ) shows the comparative results of the indentation car-

ied out in this work (black circles), in [20] (blue triangles) and

n [13] (red squares). At the first stage of indentation, the behavior

redicted by our simulations is similar to that of [13] . After the de-

ection δ < 20 ̊A the deviation between the atomistic and coarse–

rained models increases. The maximum possible deflection given

y coarse–grained model is about 29 ̊A which is lower than the one

iven by Wang model ( ~ 37 ̊A) or Pang model ( ~ 41 ̊A). This effect

as the following explanation. Although the overall stiffness of the

G–lattice and atomic lattice are the same, on a microscopic level

hey are different. The grains in CG–lattice are rigid, so the bonds

etween them must have larger elongations than the correspond-

ng bonds in atomic lattice. This leads to the higher stresses in the

onds and as a result, decreases the critical deflection of indenta-

ion. Thus, CG–model, proposed in this work, is valid primarily in

inear stain regime. 

. Conclusions 

We developed a coarse–grained model of SLMoS 2 with the

rains considered as rigid bodies. For this specific study, the in-

eractions between the grains were based on Stillinger–Weber po-

ential with the parameters re-calibrated to fulfill the elastic prop-

rties of the original lattice. Note, that the same approach can be

sed with any other potential of interaction. The phonon spectrum

as calculated, and it shows a good correspondence to the acoustic

aves of the original lattice. 

In this work, we considered the minimal possible grains. In this

ase, the number of interaction reduces almost twice. The larger

rains with the same geometry can be used for the higher increase

f the calculation speed. 

The major advantage of the model is an opportunity to com-

ine the coarse–grained and the original lattices in one model. For

xample, the original lattice can be considered near the stress con-

entration points in the tasks of nanoindentation or crack initia-
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tion, and the CG–lattice can be merged with the original on the

relatively far distance from such points. In this paper, defect–free

structure has been considered. However, the defects can be intro-

duced naturally by adding or removing some particles from the lat-

tice. It must be noted that in a coarse–grained structure the min-

imal size of the defect is limited by the size of the grain. If the

atomic–size defects are considered, the CG–lattice needs first to be

merged with the original lattice with the defects added to it. 

The drawback of the model yields from its main feature: the

rigid grains ‘freeze’ part of the interactions. As a result, the bonds

between the grains are highly elongated in comparison with the

ones in the original lattice at the same strain, which lead to higher

stresses in the CG–lattice. This effect limits the application of the

model for problems with large deformations. However, in the small

strain cases such as elastic wave propagation, thermal tasks, and

others the model can be used successfully. A possible solution to

the aforementioned disadvantage may be considered by using elas-

tic grains instead of rigid ones, which is a topic of further investi-

gation. 
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sian Federation (grant No. MK-1820.2017.1). 

Declaration of Competing Interest 

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper. 

Appendix 

Let us calculate the first derivatives of Stillinger–Weber poten-

tial with respect to interparticle distance. The pair (36) and three-

body (37) interaction potentials have the form: 

�αβ(r αβ ) = εA 

(
Bσ p r αβ

−p − σ q r −q 

αβ

)
e 

[ 
σ

r αβ −aσ

] 
, (36)

�3 
αβγ (r αβ, r αγ ) = ελe 

[ 
γ σ

r αβ −aσ + γ σ
r αγ −aσ

] 
� cos �2 

αβγ , (37)

where r αβ and r αγ are distances between particles α and β
and α and γ , respectively, and r αβ · r αγ = r αβ r αγ cos �αβγ , and

� cos �αβγ = ( cos �αβγ − cos �0 ) , whereas all the other variables

are the potential parameters, which are calibrated for the particu-

lar material. 

These functions can be simplified taking the parameters for

SLMoS 2 into account, i.e. A = 1 . 0 , q = 0 , p = 4 : 

�αβ = ε 

( 

B 

(
σ

r αβ

)4 

− 1 

) 

e 

[ 
σ

r αβ −aσ

] 
, (38)

�3 
αβγ = ελe 

[ 
γ σ

r αβ −aσ + γ σ
r αγ −aσ

] 
� cos �2 

αβγ . (39)

First, let us write down several auxiliary derivatives: 

∂ r αβ

∂ r αβ
= 

r αβ

r αβ
, 

∂ r 2 
αβ

∂ r αβ
= 2 r αβ, 

∂ r −4 
αβ

∂ r αβ
= −4 r αβr αβ

−6 . (40)

Next, we obtain the following set of equalities: 

∂ γ σ

( r αβ−aσ ) 

∂ r αβ
= − γ σ(

r αβ − aσ
)2 

r αβ

r αβ ≡ p 0 αβr αβ

∂ γ σ

( r αγ −aσ ) 

∂ r αγ
= − γ σ(

r αγ − aσ
)2 

r αγ

r αγ ≡ p 0 αγ r αγ
∂ cos �αβγ

∂ r αβ
= −cos �αβγ

r αβ
2 

r αβ + 

1 

r αβr αγ
r αγ ≡ n αβ

∂ cos �αβγ

∂ r αγ
= −cos �αβγ

r αγ
2 

r αγ + 

1 

r αγ r αβ
r αβ ≡ n αγ (41)

As the result, the derivative of (36) has the form: 

∂ �αβ

∂ r αβ
= −ε 

[ 

4 Bσ 4 

r 6 
αβ

+ 

σ

r αβ

(
r αβ − aσ

)2 

(
Bσ 4 

r 4 
αβ

− 1 

)] 

× e 
σ

r αβ −aσ r αβ . (42)

Passing over to three-body potential, we can write down 

∂ �3 
αβγ

∂ r αβ
= ελe 

[ 
γ σ

r αβ −aσ + γ σ
r αγ −aσ

] 
� cos �2 

αβγ

∂ γ σ
r αβ−aσ

∂ r αβ

+ 2 ελe 

[ 
γ σ

r αβ −aσ + γ σ
r αγ −aσ

] 
� cos �αβγ

∂ cos �αβγ

∂ r αβ

= p 1 αβγ

∂ γ σ
r αβ−aσ

∂ r αβ
+ p 2 αβγ

∂ cos �αβγ

∂ r αβ
(43)

hich finally yields to: 

∂ �3 
αβγ

∂ r αβ
= p 1 αβγ p 0 αβr αβ + p 2 αβγ n αβ (44)

∂ �3 
αβγ

∂ r αγ
= p 1 αβγ p 0 αγ r αγ + p 2 αβγ n αγ (45)

here 

p 1 αβγ = ελe 

[ 
γ σ

r αβ −aσ + γ σ
r αγ −aσ

] 
� cos �2 

αβγ

p 2 αβγ = 2 ελe 

[ 
γ σ

r αβ −aσ + γ σ
r αγ −aσ

] 
� cos �αβγ

p 0 αβ = − γ σ(
r αβ − aσ

)2 
r αβ

p 0 αγ = − γ σ(
r αγ − aσ

)2 
r αγ

(46)
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