Министерство науки и высшего образования Российской Федерации Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа теоретической механики и математической физики

Работа допущена к защите Директор ВШТМиМФ, д.ф.-м.н., чл.-корр. РАН _____А. М. Кривцов «____»____2024 г.

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

Расчет сосудов под высоким давлением при повышенных

температурах

по направлению подготовки

01.03.03 «Механика и математическое моделирование»

направленность

01.03.03_03 Математическое моделирование процессов нефтегазодобычи

Выполнил

студент гр. 5030103/00301

Руководитель

Старший преподаватель

ВШТМиМФ

О. А. Качевская

А. И. Орлов

Санкт-Петербург 2024

САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО

Физико-механический институт

Высшая школа теоретической механики и математической физики

УТВЕРЖДАЮ

Директор ВШТМиМФ

А. М. Кривцов «__»____20_г.

ЗАДАНИЕ

на выполнение выпускной квалификационной работы

студенту Качевской Ольге Андреевне, гр. 5030103/00301

- 1. Тема работы: Расчет прочности сосудов под высоким давлением при повышенных температурах.
- 2. Срок сдачи студентом законченной работы: 10.06.2024
- 3. Исходные данные по работе: актуальные научные публикации, связанные с темой исследования, справочная литература, необработанная модель сосуда.
- 4. Содержание работы (перечень подлежащих разработке вопросов): анализ ГОСТ 34233 и ASME, соответствующих теме исследования, и сравнение подходов решения, представленных в них, проведение аналитических и численных расчетов с помощью метода конечных элементов и анализ их целесообразности, анализ федеральных норм и правил в области промышленной безопасности при использовании оборудования, работающего при избыточном давлении.
- 5. Перечень графического материала (с указанием обязательных чертежей): не предусмотрено
- 6. Консультанты по работе: не предусмотрено
- 7. Дата выдачи задания 28.02.2024

Руководитель ВКР _____ А.И.Орлов, старший преподаватель ВШТМиМФ

Задание принял к исполнению 28.02.2024

Студент _____ О.А. Качевская

РЕФЕРАТ

На 93 с., 45 рисунков, 16 таблиц

КЛЮЧЕВЫЕ СЛОВА: СОСУДЫ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ ПОВЫШЕННЫХ ТЕМПЕРАТУРАХ, ASME, ГОСТ, МЕТОД УПРУГОПЛАСТИЧЕСКОГО АНАЛИЗА, СИНТЕЗ АММИАКА, КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ, КОНЕЧНО-ЭЛЕМЕНТНЫЙ АНАЛИЗ.

Тема выпускной квалификационной работы: «Расчет сосудов под высоким давлением при повышенных температурах».

В рамках работы был проведен сравнительный анализ и была предпринята попытка внедрения метода упругопластического анализа. Работа состоит из 7 частей: рассмотрение метода конечных элементов, обзор и сравнительный анализ нормативно-правовой документации, обзор производства синтеза аммиака, обзор существующих фланцевых соединений, создание модели сосуда и моделей материалов, численный анализ с использованием метода конечных элементов и сравнение двух постановок, внедрение метода упругопластического анализа с учетом федерального закона о технической безопасности.

2

THE ABSTRACT

In 93 pages, 45 figures, 16 tables

KEYWORDS: HIGH-PRESSURE VESSELS AT ELEVATED TEMPERATURES, ASME, GOST, ELASTIC-PLASTIC STRESS ANALYSIS, AMMONIA SYNTHESIS, COMPUTER MODELING, FINITE ELEMENT ANALYSIS.

Topic of the graduate qualification work: "Calculation of high-pressu vessels at elevated temperatures.".

As part of the work, a comparative analysis was carried out and an attempt was made to introduce the elastic-plastic stress analysis. The work consists of 7 parts: consideration of the finite element method, review and comparative analysis of regulatory documentation, review of ammonia synthesis production, review of existing flange connections, creation of a vessel model and material models, numerical analysis using the finite element method and comparison of two formulations, introduction of the elastoplastic analysis method considering the federal law on technical safety.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	
Глава 1. МЕТС	ЭД КОНЕЧНЫХ ЭЛЕМЕНТОВ7
1.1. Связь м	лежду теорией упругости и методом конечных элементов 7
1.2. Инерпо области	эляционные соотношения МКЭ и конечноэлементая модель и9
Глава 2. НОРМ	ИАТИВНО-ПРАВОВАЯ ДОКУМЕНТАЦИЯ15
2.1. ASME	
2.2. ГОСТ.	
Глава 3. СИНТ	`E3 АММИАКА 37
Глава 4. ФЛАН	- НЦЕВЫЕ СОЕДИНЕНИЯ 41
Глава 5. ПОСТ	САНОВКА ЗАДАЧИ И МОДЕЛИРОВАНИЕ 45
5.1. Матери	иал
5.2. Аналит	тические расчеты 50
5.3. Постро	ение Модели 53
5.4. Создан	ие Материала
5.5. Постро	ение сетки и контактов
5.6. Задани	е граничных условий74
Глава 6. РЕЗУ.	ЛЬТАТЫ
Глава 7. ФЕДЕ	ЕРАЛЬНЫЙ ЗАКОН О ТЕХНИЧЕСКОЙ БЕЗОПАСНОСТИ 90
ЗАКЛЮЧЕНИ	E91
СПИСОК ИСІ	ІОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

ВВЕДЕНИЕ.

Сосуд под давлением — это контейнер, предназначенный для хранения жидкостей или газов под давлением, значительно отличающимся от давления окружающей среды. Сосудами под давлениями являются: резервуары для хранения, теплообменники, ректификационные колонны и так далее. Конструкция сосудов под давлением зависит от различных факторов, включая тип поступающего материала, температура и давление вещества. Они могут быть спроектированы с использованием различных материалов, например, таких как сталь, алюминий или композиционные материалы. Существует два типа сосудов под давлением: «низкого давления» и «высокого давления», в зависимости от давления, на которое рассчитан сосуд.

Данные сосуды применяются в различных отраслях, в особенности в таких отраслях как нефтегазовая и химическая промышленность.

Производственный контроль за безопасной и эффективной эксплуатацией сосудов и аппаратов под большим давление и высокой температурой на любом производстве осуществляется благодаря различным ГОСТам и ПНАЭ. Однако использование устаревшей нормативно-правовой документаций приводит к совершению ошибок при проектировании, изготовлении и эксплуатации сосудов, в результат чего на производстве могут возникать различные поломки и крушения данного вида оборудования. Вследствие чего возникает необходимость в обновлении и пересчете данных стандартов.

В свою очередь для расчетов прочности сосудов и аппаратов можно использовать не только аналитические методы, но и численные, например, метод конечных элементов, применяемый на цифровых двойниках сосудов. Данный метод не только подтвердит аналитические расчеты, но и поспособствует тому, чтобы эти расчеты были более корректны и менее затратны по времени и материальным средствам.

5

В данной работе необходимо сравнить старые и новые походы к расчету прочности сосудов и аппаратов под большим давление и высокой температурой, а точнее сравнить современные ASME и отечественные ГОСТы, проверить их целесообразность при помощи метода конечных элементов, а также выявить что прочнее, какие расчеты получаются более реальными.

Глава1. МЕТОД КОНЕЧНЫХ ЭЛЕМЕНТОВ

Метод конечных элементов является самым распространённым методом приближенного решения задач. Сам метод представляет собой численный метод приближенного решения краевых задач. При помощи данного метода удобно и эффективно находить численное решение научно-прикладных задач механики твердого деформируемого тела, термодинамики и электродинамики.

1.1. Связь между теорией упругости и методом конечных элементов.

Краевые задачи приставляют собой задачу о нахождении решения заданного дифференциального уравнения (системы дифференциальных уравнений), удовлетворяющего краевым (граничным) условиям в концах интервала или на границе области. В данной работе решается прямая краевая задача теории упругости, то есть необходимо найти перемещения, напряжения и деформации, зная внешние нагрузки на тело.

Рассмотрим задачу в перемещениях для неоднородной анизотропной среды и ее определяющие соотношения в локальных формах [13]:

Рисунок 1. Тело V с приложенными объемными и поверхностными нагрузками

$$\begin{cases} \frac{\partial \rho}{\partial t} + \rho (\nabla \cdot \bar{v}) = 0 \quad (1) \\ \nabla \cdot \bar{\sigma} + \rho \bar{f} = 0 \quad (2) \\ \rho \frac{\partial U}{\partial t} = \bar{\sigma} \cdot (\nabla \bar{v})^s + \rho q - \nabla \cdot \bar{h} \quad (3) \end{cases}$$

Где (1) уравнение сплошности или уравнение баланса масс, (2) уравнение баланса количества движения, (3) уравнение баланса энергии или первый закон термодинамики.

Где \bar{v} – поле скоростей, ρ – плотность среды, $\bar{\bar{\sigma}}$ – тензор напряжений, \bar{f} – объемные силы, U – внутренняя энергия, q – скорость подвода энергии внутрь тела, \bar{h} - поток тепла внутрь тела.

Учтем то, что наша среда классическая, тогда получим закон баланса кинетических моментов: $\bar{\sigma} = \bar{\sigma}^T$. Помимо этого, данная среда будет подчиняться закону Гука: $\bar{\sigma} = \bar{X}(\bar{r}) \cdots \bar{\bar{e}}$, где $\bar{X} = X_{ijkl}\bar{e}_l\bar{e}_j\bar{e}_k\bar{e}_l$ – тензор упругости 4 ранга, $\bar{\bar{e}}$ – тензор деформации 2 ранга, $\bar{r} = x_1\bar{e}_1 + x_2\bar{e}_2 + x_3\bar{e}_3$.

Предположим, что задача квазистатическая, следовательно $\bar{v} = 0$, тогда единственное, что мы можем расписать в перемещениях это уравнение баланса сил. Также предположим, что в процессе деформации совершаются малые деформации ($|\overline{\nabla u}| \ll 1$), тогда можно записать деформации с помощью соотношения Коши-Грина:

$$\bar{\varepsilon} = \frac{1}{2} \left(\overline{\nabla u} + \left(\overline{\nabla u} \right)^T \right) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \overline{e_i} \overline{e_j} = \bar{\varepsilon}^T$$

По итогу:

$$\bar{\bar{\sigma}} = \bar{\bar{X}}(\bar{r}) \cdot \cdot \overline{\nabla u}$$
$$\nabla \cdot \bar{\bar{X}}(\bar{r}) \cdot \cdot \overline{\nabla u} + \rho \bar{f} = 0$$

Где $\overline{u} = u_k \overline{e_k}$ – вектор перемещений, $\nabla = \frac{\partial}{\partial x_k} \overline{e_k}$ – оператор Гамильтона, $\overline{f} = f_k \overline{e_k}$ – вектор объемных сил [13].

Введем граничные условия:

- 1) Главные граничные условия: $\bar{u}|_s = \bar{u}_s(\bar{r})$
- 2) Естественные граничные условия: $\bar{n} \cdot \bar{\sigma}|_s = \bar{f}_s(\bar{r})$

1.2. Интерполяционные соотношения МКЭ и конечноэлементная модель области

Для решения краевых задач методом конечных элементов проводится аппроксимация расчетной области конечными элементами, то есть сплошная среда с бесконечным числом степеней свободы заменяется на дискретную модель, состоящую из элементов, связанных между собой [1,2]. Предположим, что мы рассматриваем задачу в пространстве, и зададим каждый элемент, как линейный тетраэдр, как пример.

Рисунок 2. Линейный тетраэдральный элемент

Так как мы ищем решение уравнения в перемещениях, то введем глобальный вектор перемещений [1]:

$$\{u\}^T = \{u_x, u_y, u_z\}$$

Внутри каждого конечного элемента зададим линейную аппроксимацию перемещений:

$$u_x = A + Bx + Cy + Dz$$
, $u_y = E + Fx + Gy + Hz$, $u_z = I + Jx + Ky + Lz$

Далее найдем эти перемещения в узлах i, j, k, m:

$$u_i^x = u_x(x_i, y_i), u_i^y = u_y(x_i, y_i), u_i^z = u_z(x_i, y_i),$$

Получим вектор-столбец перемещений, состоящий из 12 компонент:

$$\{u^{node}\}^T = \{u_i^x \ u_i^y \ u_i^z \ u_j^x \ u_j^y \ u_j^z \ u_k^x \ u_k^y \ u_k^z \ u_m^x \ u_m^y \ u_m^z\}$$

Введем аналитические функции форм N_i , N_j , N_k , N_m такие, чтобы выполнялась связь между узловыми значения, а также выполнялись следующие свойства:

1. $N_i(x_i, y_i) = 1; N_j(x_j, y_j) = 1; N_k(x_k, y_k) = 1; N_m(x_m, y_m) = 1$

2.
$$N_s(x_g, y_g) = 0$$
 при $s \neq g, g = (i, j, k, m)$

3. $N_i(x, y) + N_i(x, y) + N_k(x, y) + N_m(x, y) = 1$

Таким образом мы получаем глобальный вектор перемещений:

$$\{u\}^T = \begin{cases} u_x \\ u_y \\ u_z \end{cases} = [N] \{u^{node}\}^T$$

Где $u_x = u_i^x N_i + u_j^x N_j + u_k^x N_k + u_m^x N_m$; $u_y = u_i^y N_i + u_j^y N_j + u_k^y N_k + u_m^y N_m$;

$$u_z = u_i^z N_i + u_j^z N_j + u_k^z N_k + u_m^z N_m;$$

$$[N] = \begin{bmatrix} N_i & 0 & 0 & N_j & 0 & 0 & N_k & 0 & 0 & N_m & 0 & 0\\ 0 & N_i & 0 & 0 & N_j & 0 & 0 & N_k & 0 & 0 & N_m & 0\\ 0 & 0 & N_i & 0 & 0 & N_j & 0 & 0 & N_k & 0 & 0 & N_m \end{bmatrix}$$

Так как мы рассматриваем статическую задачу теории упругости, то будем использовать метод минимума функционала потенциальной энергии

системы. Данный метод основан на том, что из всех возможных равновесных состояний, которое может принять упругая система под действием внешних статически приложенных сил, она принимает такое, в котором ее потенциальная энергия имеет минимальное значение.

Полную потенциальную энергию систему можно определить как:

$$\Pi = \Lambda - \Omega$$

Где Λ – энергия внутренних деформаций, Ω – работа внешних сил.

Определим ее для бесконечно малого объема dV:

$$d\Pi = d\Lambda - d\Omega$$
$$d\Lambda = \frac{1}{2} \{\varepsilon\}^T \{\sigma\} dV$$

Где $\{\varepsilon\}^T = \{\varepsilon_x \ \varepsilon_y \ \varepsilon_z\} = \{\frac{\partial u_x}{\partial x}, \frac{\partial u_y}{\partial y}, \frac{\partial u_z}{\partial z}, 2\left(\frac{\partial u_y}{\partial x} + \frac{\partial u_x}{\partial y}\right) \dots \dots\}$ – вектор-столбец напряжений. Тогда для конечного объема имеем:

$$\Lambda = \frac{1}{2} \int_{V}^{\Box} \{\varepsilon\}^{T} \{\sigma\} \, dV$$

Введем также матрицу градиентов, которая будет состоять из производных от функций форм, такую, что: $\{\varepsilon\} = [B]\{u^{node}\}$

Аналогично определим матрицу напряжений: $\{\sigma\} = [R]\{\varepsilon\} = [R][B]\{u^{node}\}$

В результате получим:

$$\Lambda = \frac{1}{2} \int_{V}^{\square} [B]^{T} \{u^{node}\}^{T} [R][B] \{u^{node}\} dV =$$
$$= \frac{1}{2} \{u^{node}\}^{T} \int_{V}^{\square} [B]^{T} [R][B] dV \{u^{node}\}$$

Далее перейдем к работе внешних сил, которая является суммой сосредоточенных Ω_{c} , объемных Ω_{V} и поверхностных Ω_{s} сил:

$$\Omega = \Omega_C + \Omega_V + \Omega_s$$

Данные составляющие можно вычислить по следующим формулам:

- 1) $\Omega_{C} = \{u^{node}\}^{T}\{P_{C}\},$ где $\{P_{C}\}$ вектор-столбец сосредоточенных сил
- 2) $\Omega_V = \int_V^{\square} \{u^{node}\}^T [N]^T \{P_V\} dV,$

где $\{P_V\}$ - вектор-столбец объемных сил

3) $\Omega_{S} = \int_{S}^{[I]} \{u^{node}\}^{T} [N]^{T} \{P_{S}\} dV,$ где $\{P_{S}\}$ – вектор-столбец поверхностных сил

По итогу, учитывая все вышеперечисленное, мы можем получить:

$$\Pi = \frac{1}{2} \{ u^{node} \}^T \int_V^{\square} [B]^T [R] [B] \, dV \{ u^{node} \}$$
$$- \{ u^{node} \}^T \left(\{ P_C \} + \int_V^{\square} [N]^T \{ P_V \} \, dV + \int_S^{\square} [N]^T \{ P_S \} \, dV \right)$$

В квазистатической задаче перемещения деформируемого твердого тела под действием внешних воздействий отвечают минимуму функционала потенциальной энергии, а сам минимум функционала потенциальной энергии достигается, когда его первая вариация равна нулю:

$$\frac{\delta\Pi}{\delta\{u^{node}\}^T} = 0$$

$$\frac{1}{2} \int_{V}^{\square} [B]^{T}[R][B] \, dV\{u^{node}\} - \left(\{P_{C}\} + \int_{V}^{\square} [N]^{T}\{P_{V}\} \, dV + \int_{S}^{\square} [N]^{T}\{P_{S}\} \, dV\right) = 0$$

Обозначим первое слагаемое за $[k^e]$ – матрица жесткости, а второе – за $[f^e]$ – вектор-столбец усилий.

В результате получим: $[k^e]{u^{node}} = {f^e}$

С помощью данного выражения мы сможем получить перемещения, возникающие в одном элементе (линейном тетраэдре).

Для того чтобы решить задачу деформированного тела, которое разбито на N тетраэдров, и найти перемещения всего тела нам необходимо собрать все матрицы жесткости и вектор-столбцы нагрузок в их глобальные версии [1]:

$$[K] = \sum_{e} [k^{e}]$$
$$\{F\} = \sum_{e} \{f^{e}\}$$

Однако стоит учесть, что размер матрицы жесткости элемента приводится в соответствии размерности глобальной матрицы жесткости, которая имеет размерность $N \times N$ – количество степеней свободы в системе. Строки и столбцы заполняются с учетом глобальной нумерации узлов.

В конце концов мы получаем уравнение метода конечных элементов, благодаря которому мы можем численно найти перемещения для краевой задачи деформации твердого тела:

$$[K]{u} = {F}$$

Также стоит заранее упомянуть про нелинейные расчеты, с которыми нам предстоит столкнуться [2]. Линейные структуры, структуры, которые подчиняются закону Гука, хорошо подходят для анализа конечных элементов, который основан на линейной матричной алгебре. Однако мы помним, что мы живем в нелинейном мире, а следовательно значительные классы структур не имеют линейной связи между силами и перемещениями. Существуют три основных источника нелинейности:

 Геометрические нелинейности: если структура испытывает большие деформации, ее изменение геометрической конфигурации может вызвать нелинейное поведение.

- Нелинейность материала: нелинейное отношение напряжений и деформаций, такое как пластичность металла, является еще одним источником нелинейности.
- Контакт: "изменяющийся статус" нелинейность, когда резкое изменение жесткости может произойти, когда тела впадают или выходят из контакта друг с другом.

Саму задачу можно решить системой линейный уравнений, однако если это не получается сделать, то можно перейти к серии линейных аппроксимаций с поправками. Блок механики использует для аппроксимации метод Ньютона-Рафсона.

Основная идея метода заключается в следующем: задаётся начальное приближение вблизи предположительного корня, после чего строится касательная к графику исследуемой функции в точке приближения, для которой находится пересечение с осью абсцисс. Эта точка берётся в качестве следующего приближения. И так далее, пока не будет достигнута необходимая точность.

Из-за того, что в обиход вводится аппроксимация, то обязательно нужно следить за сходимостью решения. Когда решение сходится -система находится в равновесии. Данную сходимость можно отслеживать не только по сил, а, например, еще и по моментам и другим показателям, но сходимость по силе должна присутствовать всегда. Сходимость по силе обеспечивает абсолютную меру сходимости, потому что является метой равновесия между внутренними и внешними силами.

Глава 2. НОРМАТИВНО-ПРАВОВАЯ ДОКУМЕНТАЦИЯ

В данной работе рассматриваются два нормативно-правовых акта, закрепляющих правила изготовления и проектирования сосудов – ASME и ГОСТ.

Как было сказано ранее, целью проектирования сосудов высокого давления при высоких температурах с помощью численного анализа является предотвращение различных возможных отказов и обеспечение безопасной эксплуатации сосудов и аппаратов. На практике необходимые условия безопасности на производстве достигаются путем установления ограничений на напряжения, деформации и расчетные нагрузки сосудов в пределах допустимых значений, именно этим ГОСТ и ASME похожи. Однако при избыточном статическом внутреннем давлении сосуды могут испытывать сильную пластическую деформацию, что и приводит к разрушению. Чтобы этого избежать были разработаны определенные нормы, здесь и начинаются расхождения ASME и ГОСТ.

2.1. ASME

Международные нормы и правила по котлам и сосудам под давлением ASME были основаны в 1911 г. Американским институтом инженеровмехаников с целью установки правил по технике безопасности, исключительно в отношении герметичности конструкции, с контролем конструкции котлов, сосудов под давлением, транспортных цистерн и компонентов ядерных установок, и контролем в процессе эксплуатации герметичности конструкции компонентов ядерных установок и транспортных цистерн, а также разъяснение данных правил в том случае, если возникают вопросы относительно их назначения [10,11]. Настоящие нормы и правила содержат обязательные требования, особые запреты и необязательные к выполнению рекомендации по постройке. Инструменты и методы, используемые для проектирования и анализа, изменяются с ростом технологического прогресса, и предполагает применение инженерами подходящих решений в использовании данных инструментов. Именно поэтому одним из методов, который используется в ASME, является метод конечных элементов, о котором упоминалось ранее, благодаря которому нормы всегда обновляются и становятся актуальными.

Метод оценки допускаемой предельной нагрузки и напряжений:

ASME предполагает использование 3-ех критериев для предотвращения пластической нестабильности сосудов: анализ упругих напряжений, анализ предельных нагрузок и упругопластический анализ.

При анализе упругих напряжений подразумевается, что рассчитанные напряжения подразделяются на первичные, вторичные и пиковые напряжения, которые ограничиваются введением допустимых значений. Данный метод ДЛЯ оценки как толстостенных конструкций, то предназначен есть конструкций, для которых выполняется $\frac{R}{t} \ge 4$, где R – внутренний радиус сосуда, t – толщина стенки сосуда, так и тонкостенных конструкций, то есть конструкций, для которых выполняется $\frac{R}{t} < 4$. Одним словом, для начала рассчитываются эквивалентные напряжения, а после они сравниваются с допустимым значением. Эквивалентные напряжения в точке детали — это напряжения, рассчитываемое по компонентам напряжения с использованием критерия текучести, который используется для сравнения со свойствами механической прочности материала, полученными в результате испытаний при одноосной нагрузке.

Для вычисления эквивалентных напряжений используется энергетическая теория прочности (критерий Мизеса), который вычисляют по формуле:

$$\sigma_e = \frac{1}{\sqrt{2}}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2}$$

16

где $\sigma_1, \sigma_2, \sigma_3$ — главные напряжения в рассматриваемой точке

Для определения допускаемых мембранных напряжений ASME составило специальные таблицы:

Изделие/	Температура ниже		Температура сборки и выше			e
Материал	температуры сборки					
	Предел	Предел	Предел	Предел	Предел	Предел
	прочности	текучести	прочности	текучести	длительной	ползучести
					прочности	
Все кованные,	S_T	S_y	S_T	$R_y S_y$	min (<i>F_{avg}</i> ,	$1.0S_{C avg}$
литые черные	2.4	1.5	2.4	1.5	$S_{R avg}$,	
и цветные					$0.8S_{Rmin}$)	
сплавы, за						
исключением						
аустенитных						
сталей,						
сплавов из						
никеля, меди						
и кобальта, у						
которых						
$\frac{S_y}{S_T} < 0.625$						
Все кованные,	S_T	S_y	S_T	min $\left(\frac{S_y}{S_y}\right)$	min (<i>F_{avg}</i> ,	$1.0S_{C avg}$
литые	2.4	1.5	2.4		$S_{R avg}$,	
аустенитные				$\left \frac{0.9R_yS_y}{1.0}\right)$	$0.8S_{Rmin}$)	
стали, сплавы				1.0		
из никеля,						
меди и						
кобальта, у						
которых						
$\frac{S_y}{S_T} < 0.625$						

Таблица 1. Допускаемые мембранные напряжения по ASME

Обозначения, используемые в таблице:

 F_{avg} - множитель, применяемый к среднему значению длительной прочности в 100 000 ч. При температуре, не превышающей 815°C, F_{avg} =0.67

R_y- отношение предела текучести при заданной температуре к пределу текучести при температуре сборки

 $S_{c avg}$ - среднее напряжение для обеспечения скорости ползучести 0.01%/1 000 h.

S_{R avg}- средний предел длительной прочности за 100 000 ч.

S_{R min}- минимальный предел длительной прочности за 100 000 ч.

S_T – минимальный предел прочности при температуре сборки.

 S_y – минимальный предел текучести при температуре сборки

Допускаемое напряжение S_{PL} используется для проверки местных мембранных напряжений P_L или $P_L + P_b$, где P_L – местное мембранное напряжение, P_b – изгибные напряжения. Это предельное значение вычисляется следующим образом:

$$S_{PL} = \begin{cases} 1.5S, & \frac{S_y}{S_T} > 0.7 \text{ или } T \ge T_{creep} \\ \max(1.5S, S_y), \text{ в других случаях} \end{cases}$$

Где T_{creep} – температура, при превышении которой необходимо учитывать ползучесть и длительную прочность материалов, $S = S_{tab}$ (значение для заданного материала из таблицы ниже)

Изделие/	Температура ниже		Температура сборки и выше			e
Материал	температур	ы сборки				
	Предел	Предел	Предел	Предел	Предел	Предел
	прочности	текучести	прочности	текучести	длительной	ползучести
					прочности	
Кованые или	$\frac{S_T}{S_T}$	S_y	$\min\{\frac{S_T}{S_T}\}$	$\min\left\{\frac{S_y}{\ldots}\right\}$	min (<i>F_{avg}</i> ,	$1.0S_{Cavg}$
литые	3.5	1.5	° 3.5′	1.5	$S_{R avg}$,	
изделия из			$\frac{1.1}{3.5}S_TS_T\}$	$\frac{R_y S_y}{1.5}$ или	$0.8S_{R min}$)	
черных и				$0.9 R_{y} S_{y}$		
цветных				y y y		
металлов						
Сварные	$0.85S_T$	$0.85S_y$	0.85min {	0.85min {	0.85min ($0.85S_{C avg}$
трубы из	3.5	1.5	S_T	S_y	F _{avg} ,	
черных и			3.5'	1.5'	$S_{R avg}$,	
цветных			$\frac{1.1}{3.5}S_TS_T$	$\frac{n_y s_y}{1.5}$ или	$0.8S_{Rmin}$)	
металлов				$0.9 R_{1}S_{2}$		

Таблица 2. Допускаемые напряжения по ASME для проверки местных мембранных напряжений

Для определения допускаемых вторичных напряжений S_{PS} для проверки вторичных напряжений $P_L + P_b + Q$, где Q – внешние нагрузки:

$$S_{PS} = \begin{cases} 1.5[S(T_{min}) + S(T_{max})], \frac{S_y}{S_T} > 0.7 \text{ или } T \ge T_{creep} \\ \max\{1.5[S(T_{min}) + S(T_{max})], [S_y(T_{min}) + S_y(T_{max})]\}, \text{в иных случаях} \end{cases}$$

Где *T_{min}* – наименьшая температура в цикле, *T_{max}* – наибольшая температура в цикле.

Для определения допускаемых напряжений в условиях испытаний:

Условия прочности для общих мембранных напряжений:

$$P_m \leq \beta_T S_y$$

Мембранные и изгибные напряжения $P_m + P_b$ проверяются следующим образом:

$$P_{m} + P_{b} \leq \begin{cases} \gamma_{min}S_{y}, P_{m} \leq \frac{S_{y}}{1.5} \\ \left(\frac{1 - \gamma_{min}}{\beta_{T} - \frac{1}{1.5}}\right) P_{m} - \left(\frac{1 - \gamma_{min}}{\beta_{T} - \frac{1}{1.5}}\beta_{T} - 1\right) S_{y}, \frac{S_{y}}{1.5} < P_{m} \leq \beta_{T}S_{y} \end{cases}$$

Где β_T , γ_{min} — коэффициенты влияния в выражениях прогиба узловой точки, описанные в ASME Boiler and Pressure Vessel Code. Rules for Construction of Pressure Vessels. Section VIII, Division 2 – 2021.

Нагружение	Условие прочности	Описание
WGT	Не задано	Только постоянные нагрузки
		на штуцер\опору.
		Используется в расчетных и
		рабочих комбинациях
		нагрузок, для того чтобы
		вычислить амплитуду
		напряжений.
Т	Не задано	Используется в рабочих
		комбинациях нагрузок, для
		того чтобы вычислить
		температурные деформации
		при расчете допускаемых
		нагрузок.

Проверка условий прочности:

		D
$P_S + P$	$P_m \ge 5$	Расчет только от давления,
		включая гидростатическое.
		Используется в расчетных
		комбинациях нагрузок, для
		того чтобы оценить общие
		мембранные напряжения.
		Область узла врезки при этом
		игнорируется.
	$P_L \leq S_{PL}$	Используется для того чтобы
		оценить локальные
		мембранные напряжения.
$P_s + P_d + WGT$	$P_L + P_b \le S_{PL}$	Расчет только от давления и
		постоянных нагрузок.
		Используется в расчетных и
		рабочих комбинациях
		нагрузок, для того чтобы
		оценить местные мембранные
		и изгибные напряжения.
	$\sigma_1 + \sigma_2 + \sigma_3 \le 4S$	Используется в расчетных
		комбинациях нагрузок, для
		того чтобы обеспечить защиту
		от локального разружения на
		основе результатов в упругой
		постановке. Если установлен
		соответствующий флаг, то
		данная проверка проводиться
		и для рабочих условий.

$P_s + P + DSG$	$P_L + P_b \le S_{PL}$	Используется в расчетных
		комбинациях нагрузок.
		Обеспечивает защиту от
		возникновения пластического
		шарнира.
	$P_L + P_b + Q \le S_{PS}$	Если установлен
		соответствующий флаг, то
		данная проверка проводиться
		и для расчетных условий.
$P_s + P + OPE$,	$P_L + P_b + Q \le S_{PS}$	Используется в рабочих
$P_s + P + OPE + T$		комбинациях нагрузок с
		учетом температурных
		деформаций.
$P_s + P + OPE - WGT$,	$P_L + P_b + Q + F \le 2S_a(N),$	Нагружение для расчета
$P_s + P + OPE - WGT$	$N \leq [N](S_{alt})$	амплитуды напряжений для
+ <i>T</i>		рабочих комбинаций
		нагрузок. Обеспечивает
		расчет усталостной
		прочности на основе кривой
		усталости для обработанных
		сварных швов и
		определенного пользователем
		коэффициента учета пиковых
		напряжений K_f . Оценка
		проводится в соответствии с
		разделом 5.5.3

$\Delta S_{ess} \leq \Delta S,$	Обеспечивает расчет
$N \leq [N](\Delta S_{ess})$	усталостной прочности на
	основе кривой усталости для
	не обработанных сварных
	швов и и основанного на
	вычислении амплитуды
	эквивалентных структурных
	напряжений. Этот метод
	рекомендуется для оценки
	сварных соединений, которые
	не были отшлифованы до
	получения гладкого профиля
	сварного шва. Оценка
	проводится в соответствии с
	разделом 5.5.5
	$\Delta S_{ess} \leq \Delta S,$ $N \leq [N](\Delta S_{ess})$

	2	TC		
Гарлина	-	Кпитепии	ИСПОВИИ	прочности
таолица	5.	Rphiophn	yestobilit	inpo moern

При анализе предельных нагрузок предполагается, что материал обладает идеальной упругостью и пластичностью и имеет небольшую деформацию грубой пластической деформации. за исключением Первоначально реакция конструкции на нагрузку является линейно-упругой, но по мере превышения предела текучести возникают области пластической деформации, и реакция становится нелинейной. По мере продолжения нагрузки нагружения равные приращения вызывают все большую пластическую деформацию. Предельная нагрузка соответствует моменту, когда зона пластической деформации распространится настолько, что дальнейший рост нагрузки приведет к разрушению конструкции.

При предельной нагрузке кривая деформации от нагрузки становится горизонтальной: $d\sigma/d\varepsilon = 0$, а конструкция разрушается, однако реальные конструкции могут вести себя несколько иначе, чем в модели предельного

анализа, в двух отношениях: материал может проявлять деформационное упрочнение после истечения срока годности, а также могут возникать большие деформации.

В связи с этим ASME предпочтительнее использует упругопластический анализ, который базируется на основе расчета пластических нагрузок на сосуд и основание конструкции сосуда при заданном коэффициенте безопасности. Данный метод подразумевает, что нагрузка при сжатии определяется на основе упругопластического анализа, учитывающего как приложенную нагрузку, так и характеристики деформации детали, то есть кривую «напряжениеспособные к деформации», поскольку материалы, деформационному упрочнению, могут выдерживать напряжения, превышающие предел текучести, а пластическая деформация может продолжаться при нагрузках, превышающих теоретическую предельную нагрузку на конструкцию, не приводя при этом к крушению конструкции. Изменения в конфигурации конструкции в процессе нагружения также могут влиять на несущую способность сосуда, поэтому важно учитывать не только физические, но и геометрические параметры (нелинейную геометрию).

Для того, чтобы определить предел пластической деформации для начала необходимо посчитать по методу упругих напряжений напряжения, а после рассчитать ограничивающее трехосевое натяжение и получить допустимое значение – защиту от местного отказа.

$$\varepsilon_L = \varepsilon_{Lu} \cdot \exp\left(-\left(\frac{a_{sl}}{1+m_2}\right)\left(\left\{\frac{\sigma_1+\sigma_2+\sigma_3}{3\sigma_e}\right\}-\frac{1}{3}\right)\right)$$

 $\varepsilon_{peq} + \varepsilon_{cf} \leq \varepsilon_L$

После численно, например, методом конечных элементов, считается пластическая деформация и сравнивается с допустимым значением.

В качестве материала для данного анализа можно использовать модель материала, которая включает в себя размягчение, или модель материала с идеальной упругостью, но чаще всего используют модель материала, кривая "напряжение-деформация" которой включает в себя поведение материала при упрочнении в зависимости от температуры. При использовании этой модели материала необходимо учитывать характеристики упрочнения вплоть до истинного предельного напряжения и идеальной пластичности (т.е. наклон кривых напряжение-деформация равен нулю) за пределами этого предела.

Так как для данного анализа необходима кривая «напряжениедеформация», то проводится проектирование данной кривой различными методами. Например, методами DR (Direct Route) – прямой метод или SCR (Stress Categorization Route) – метод классификации стрессовых ситуаций.

Метод SCR использует в качестве данных данные, получаемые при анализе упругих напряжений, хотя присутствуют проблемы, связанные с не единственностью выбора линий классификации напряжений, и проблемы, связанные с категоризацией, не единственностью определения первичных напряжений.

В приложении F к Стандарту ASME III содержится информация на приемлемые методы оценки "износа или несоответствия, связанного с трубопроводами или опорами труб...". В приложении F приведены пять альтернативных методов оценки оборудования, работающего под давлением, трубопроводов и их опор. Это: (1) анализ упругости, (2) анализ пластичности, (3) анализ предельного разрушения, (4) анализ пластического разрушения и (5) анализ пластической нестабильности. Каждый из пяти методов позволяет поразному подходить к оценке, используя критерии, которые конкретно соответствуют данному методу. Они соответствуют методам DR и их лучше

25

всего выполнять с использованием метода конечных элементов, так как в продуктах, реализующих этот метод поддерживаются функции и модели материалов, а в некоторых в добавок реализуются еще и нелинейный геометрические эффекты в решении, когда шаг решения обновляется на основе деформирования геометрии:

Основные методы DR:

1) Упругий метод анализа кривой «напряжения-деформации».

Данный метод реализуется при помощи метода билинейной аппроксимации кривых деформирования или методом двух касательных, является самым распространенным способом определения кривой «напряжение-деформация». Этот метод является наиболее простым и может быть выполнен с помощью ручных расчетов. Критерии для метода расчета упругости аналогичны критериям, используемым при проектном анализе, и сводятся к следующему:

$$P_m < 70\% SU$$

 $P_L + P_b < 105\% SU$
 $T < 42\% SU$

Это единственный метод, при котором может быть применено линейное масштабирование или экстраполяция известной нагрузки. Обратите внимание, что упругий метод не учитывает потерю устойчивости или другие виды разрушения при больших деформациях.

Данная аппроксимация представляет кривую деформирования как два отрезка, один из которых описывает упругие свойства модели другой пластичные. Построение модели для конкретного материала осуществляется за счет задания модуля упругости, модуля пластичности и придела текучести материала.

Рисунок 3. Пример проектирования кривой «напряжение-деформации» методом билинейной аппроксимации

В связи с выбором модулей возникает проблема выбора подходящих параметров деформации, особенно когда на сосуд воздействуют несколько нагрузок. Помимо сложности выбора нагрузки возникает еще одна проблема. Метод упругопластического анализа учитывает фактические нелинейный свойства материала и геометрию сосуда, в связи с чем могу возникнуть грубые пластические деформации, вследствие чего возникает пластическое разрушение сосудов, как было написано ранее. Для предотвращения этой проблемы учитываются механические характеристики сосудов и их несущая способность при упругопластическом анализе.

2) Пластический метод анализа кривой «напряжения-деформации».

Также взамен билинейной аппроксимации могут использоваться такие методы как, критерий двойного угла (Twice-elactic-slope method) или критерий пластической работы (plastic-work criterion), они как раз относятся к пластическим методам анализа деформационной кривой.

Все методы анализа пластичности требуют определения свойств материала, упрочняющегося при растяжении. Существует три набора критериев анализа пластичности:

1. Анализ пластичности.

 $P_{max} < 90\% SU$ $P_m < 70\% SU$ T < 42% SU

Обратите внимание, что критерий максимального напряжения *P_{max}* имеет более высокий предел, чем метод упругости, который позволяет использовать более сложный метод анализа.

Рисунок 4. Пример проекта кривой «напряжение-деформации» анализом пластичности

2. Пластическое разрушение (критерий двойного угла - Twiceelactic-slope method).

Его можно описать как нагрузку, вызывающую деформацию, которая в два раза превышает деформацию в начале текучести, что эквивалентно нагрузке в момент пересечения кривой зависимости напряжение-деформация с линией, имеющей половину длины деформации. наклон модуля Юнга.

Рисунок 5. Пример проекта кривой «напряжение-деформации» критерием двойного угла

3. Пластическая нестабильность.

Заключается в определении нагрузки на уровне 70% от максимальной нагрузки, поддерживаемой системой.

Рисунок 6. Пример проекта кривой «напряжение-деформации»

критерием пластической нестабильности

Стоит учесть, что все расчеты приводят к тому, что мы получаем приблизительные результаты, так как при их проведении не достигается истинная точка пластической нестабильности, а кривая напряженийдеформации является неполной. В связи с этим, чтобы получить полную кривую напряжений-деформаций применяют комбинацию DR и численного метода – метода конечных элементов.

2.2. ГОСТ

ГОСТ 34233-2017 был подготовлен Международным техническим комитетом по стандартизации МКТ 523 «Техника и технологии добычи и переработки нефти и газа», АО «НИИХИММАШ», ЗАО «ПХИ», АО «ВНИИНЕФТЕМАШ», 000 «НТП ЦЕНТРХИММАШ» на основе применения ГОСТ Р 52857 – 2007. Данный стандарт разработан с целью соблюдения требований безопасности оборудования, работающего под избыточным устранения противоречий давлением, И В техническом содержании стандартов, имеющих одинаковую область распространения [7,8]. Метод оценки допускаемой предельной нагрузки и напряжений:

Все расчеты данного ГОСТ выполняются на основе таких методик, как метод предельной нагрузки, условный упругий расчет, смешанны метод и др.

Метод предельной нагрузки предполагает определение расчетным путем не напряжений, а максимальной нагрузки, которую может выдержать конструкция не разрушаясь. Ограничения задаются условием прочности по предельной нагрузке, а сама предельная нагрузка соответствует моменту, когда зона пластической деформации распространится настолько, что дальнейший рост нагрузки приведет к разрушению конструкции. Достаточная точность инженерных расчетов достигается за счет упрощенной, линейной диаграммы зависимости напряжения от деформаций. Данный метод применяют для расчетов элементов теплообменных аппаратов с плавающей головкой, камер секций аппаратов воздушного охлаждения, труб сложной формы. Условие прочности: $F \leq [F] = \frac{F_{\text{пр}}}{n_F}$, n_F - коэффициент запаса прочности, $F_{\text{пр}}$ -предельная нагрузка.

В расчетах по допускаемым нагрузкам используется схематизированная диаграмма деформирования идеального жесткопластического тела, представляющая собой одну горизонтальную линию $\sigma = \sigma_{\text{тек}}$ (без учета упругих деформаций).

При $\sigma < \sigma_{\text{тек}}$ деформация $\varepsilon = 0$, то есть материал считается абсолютно жестким (недеформируемым). При $\sigma = \sigma_{\text{тек}}$ деформация $\varepsilon \to \infty$.

Возможны два состояния конструкции при использовании такой диаграммы:

- Пластический шарнир уже есть, но система еще не механизм — это статически возможное состояние. В статически возможном состоянии выполняются уравнения равновесия.

- система уже превратилась в пластический механизм это кинематически возможное состояние. В кинематически возможном состоянии выполняются уравнения неразрывности деформаций, так как разрушения конструкции не происходит.

Условный упругий расчет напряжений осуществляется за счет определения значения напряжения с учетом возможной поправки на упругопластическое деформирование материала при помощи степенной аппроксимации диаграммы растяжения сжатия материала. Данный метод используется для расчета фланцевых соединений, оценки малоцикловой усталости и т. д.

31

Под смешанной же теорией подразумевается метод, при котором напряженно-деформированное состояние рассматриваемых узлов определяют с помощью условного упругого расчета, а оценку проводят по предельному состоянию пластической балки-полоски, то есть кривая напряжений-деформаций представляет собой прямую.

В соответствие с ГОСТ 34233–2017 для оценки статической прочности места соединения штуцера с сосудом (аппаратом) используются максимальные значения:

- приведенных местных мембранных напряжений от давления *σ_{mp}*;
- приведенных общих (местные мембранные + местные изгибные + общие температурные + напряжения компенсации) напряжений от совместного действия давления и внешних нагрузок σ_h.

Для учета влияния внешних нагрузок на местные мембранные напряжения вводится дополнительный критерий для приведенных местных мембранных напряжений от совместного действия давления и внешних нагрузок σ_{ml} .

Приведенные эквивалентные напряжения определяются по критерию максимальных касательных напряжений для плоского напряженного состояния:

$$\sigma_{eqv} = \max\left\{\frac{1}{2}\left|\sigma_{\theta} + \sigma_{x} \pm \sqrt{(\sigma_{\theta} - \sigma_{x})^{2} + 4\tau_{\theta x}^{2}}\right|, \qquad \sqrt{(\sigma_{\theta} - \sigma_{x})^{2} + 4\tau_{\theta x}^{2}}\right\}$$

Условие выполнения прочности для приведенных местных мембранных напряжений от совместного действия давления и внешних нагрузок:

$$\sigma_{ml} \leq 1.5[\sigma]$$

Где $[\sigma]$ – допускаемое напряжение.

Условие выполнения прочности для общих приведенных напряжений от совместного действия внутреннего давления и внешних нагрузок:

$$\sigma_b \leq 3[\sigma]$$

32

При расчетной температуре для углеродистой стали свыше 380°С, для низколегированной свыше 420°С, для аустенитно свыше 525°С при задании значений для допускаемых напряжений необходимо учитывать ползучесть материала.

Допускаемые напряжения и коэффициенты прочности:

$$[\sigma] = \eta \min\left\{ \frac{R_{elt}}{n_{\rm T}} \text{ или } \frac{R_{p0,2/t}}{n_{\rm T}}; \frac{R_{mit}}{n_{\rm B}}; \frac{R_{m/10^n/t}}{n_{\rm A}}; \frac{R_{p1,0/10^n/t}}{n_{\rm H}} \right\}$$

Где *R_{elt}* – минимальный предел текучести при расчетной температуре,

*R*_{*p*0,2/*t*} – минимальный условный предел текучести при остаточном удлинении 0,2% при расчетной температуре,

R_{mit} – минимальное значение предела прочности при расчетной температуре,

 $R_{m/10^n/t}$ – среднее значение предела длительной прочности при растяжении для ресурса 10^n при расчетной температуре,

 $R_{p1,0/10^n/t}$ – средний 1%-ный предел ползучести при растяжении для ресурса 10^n при расчетной температуре,

*n*_т – коэффициент запаса прочности по пределу текучести,

 $n_{\rm B}$ – коэффициент запаса по пределу прочности,

n_д – коэффициент запаса прочности по пределу длительной прочности,

*n*_п – коэффициент запаса прочности по пределу ползучести,

	Коэффициенты запаса прочности							
Условия нагружения	сталей, сплавов на железоникелевой основе, алюминия, меди и их сплавов [формулы (1), (2), (5), (6), (7)]			жове, плавое 6). (7)]	алюминия, меди и их сплавов [форму- лы (3), (8)]	алюминиевых литейных сплавов [форму- лы (3), (8)]	титанового листового проката и прокатных труб [форму- лы (4), (9)]	титановых прутков и поковок [форму- лы (4), (9)]
	n _T	n _B *	n _A	n _n	n _{an}	n _{an}	n _{BT}	n _{ar}
Рабочие условия	1,5	2,4	1,5	1,0	3,5	7,0	2,6	3,0
Условия испытания:								
- гидравлические	1,1	-	-	-	1,8	3,5	1,8	1,8
- пневматические	1,2	-	-	-	2,0	3,5	2,0	2,0
Условия монтажа	1,1	-	-	-	1,8	3,5	1,8	1,8
 Для аустенитной хромоникелевой стали, алюминия, меди и их сплавов в формуле (2) n_в = 3,0. 								

Таблица 4. Коэффициент запаса прочности

Поправочный коэффициент η к допускаемым напряжениям должен быть равен единице, за исключением стальных отливок, для которых коэффициент η имеет следующие значения: 0.8 – для отливок, подвергающихся индивидуальному контролю неразрушающимися методами, 0.7 – для остальных отливок.

Помимо этого, используется ПНАЭ Г-7002-86.

Для учета приведенных эквивалентных напряжений используется та же формула, что и в ГОСТ 34233, а вот условия выполнения отличаются.

Условие выполнения прочности для приведенных местных мембранных напряжений от давления:

$$\sigma_{mp} \leq 1.3[\sigma]$$

Где [σ] переделяется точно также как и в ГОСТ.

Условие выполнения прочности для общих приведенных напряжений от совместного действия внутреннего давления и внешних нагрузок:

$$\sigma_b \leq \left\{ \left(2.5 - \frac{R_{p0,2}}{R_m} \right) R_{p0,2}; \ 2R_{p0,2}; \ R_{m/10^5} \right\}$$

При расчетной температуре для углеродистой стали свыше 380°С, для низколегированной свыше 420°С, для аустенитной свыше 525°С при задании значений для допускаемых напряжений необходимо учитывать ползучесть материала.

Линеаризация распределения напряжений проводится в соответствии с ГОСТ 59115.9. Ее следует проводить для выделения составляющих категорий из напряженного состояния общего вида. Например, для выделения общих изгибных напряжений в компоненте следует выполнять линеаризацию по всем сечению компонента. Сечение, по которому проводят линеаризацию, называется сечение приведения (СП), а линию, по которой проводят линеаризацию, - линией линеаризации (ЛП). СП следует проводить через зону компонента, где ожидается первое появление пластических деформаций. ЛП следует проводить через стенку конструкции, перпендикулярно к внутренней, внешней или срединной поверхности компонента.

Напряженное состояние в каждой точке СП и ЛП характеризуется тензором напряжений. Целью процедуры линеаризации является нахождение линейного распределения напряжений по СП или ЛП, статически эквивалентного распределению, полученному при расчете НДС в компоненте.

Как можно было заметить, все методы расчетов, представленные в ГОСТ, применяемых для сосудов, либо линейные, либо линеаризуются, одним словом, как можно больше упрощаются, в результат чего мы получаем неточный, приблизительный расчет, однако про иные методы, например, про тот же метод упругопластического анализа не сказано ничего, он просто не зарегламентирован. Данные нормативные документы, конечно, хороши тем, что можно провести быстрый анализ, а также данные нормативно-правовые документы проверены годами, а в следствие могут считаться надежными, но также и можно считать не актуальными и устаревшими

В ASME же есть довольно значимое преимущество перед ГОСТами. Оно заключается в том, что для анализа используются не только метод основанные
на допустимых напряжениях, но и на допустимых деформациях, а также в отличии от ГОСТ используется более сложная версия проекта кривой деформации, благодаря чему мы можем учесть ее, чего нельзя сделать при расчетах, сделанных по ГОСТ, вследствие чего могут довольно кардинально поменяться итоговые результаты. В результате всего у нас помимо того, что отсутствуют гармонизированные стандарты расчетов, так еще и огромные риски связанные с обеспечением безопасности, так как расчеты могут получиться не точными.

Глава 3. СИНТЕЗ АММИАКА

Чтобы задача была более практикоориентированной приурочим ее к какому-либо производству, например, к синтезу аммиака [3]. Производство аммиака считается одной из ключевых сфер химической промышленности, поскольку производство аммиака является самым выгодным методом использования атмосферного азота, который широко применяется в различных отраслях экономики. Одним из таких направлений является производство азотной кислоты, которую в основном получают путем окисления аммиака. Азотная кислота находит применение в военной сфере, где она используется для создания взрывчатых материалов, а также активно применяется в органических синтезах и ювелирном искусстве. Аммиак же находит свое место автомобильная областях, медицина, в таких как промышленность, агрокультура и прочее.

В качестве исходного сырья для промышленного получения аммиака используют воздух и природный газ. Первый вид сырья - природный газ, который представляет собой углеводородную смесь. Прежде чем природный газ начинают использовать в качестве сырья для синтеза, он должен быть обработан для удаления примесей, в том числе воды, в соответствии со 18 спецификациями товарного природного газа. Второй – азот, который получают из воздуха путем конвекции через метан или же путем глубокого охлаждения и сжатия.

Сама химическая реакция получения аммиака:

$$N_2 + 3H_2 \leftrightarrow 2NH_3 + Q$$

является обратимой, экзотермической, каталитической и идет с уменьшением объема газов, в связи с этим производство проходит при высоких давлениях и температурах. Без катализаторов синтез аммиака в промышленности осуществить невозможно. Самым активным и доступным катализатором для наиболее эффективного синтеза является пористое железо с примесями оксидов алюминия и калия. Температура зажигания железного катализатора составляет около 400С, рабочий интервал его составляет 450-500 С. При температуре свыше 550 С происходит спекание катализатора вследствие чего теряет активность. Столь высокие температуры OH свою синтеза обуславливают необходимость ведения процесса при высоком давлении 15-35Мпа, что влечет за собой увеличение энергетических затрат на сжатие азотоводородной смеси И усложнение конструкции технологического оборудования.

В состав блока синтеза аммиака входит реакционная аппаратура (колонна синтеза), теплообменники, предназначенные для охлаждения прореагировавшей азотоводородной смеси с целью конденсации аммиака и нагревания циркуляционного газа до температуры зажигания катализатора, и сепараторы, предназначенные для отделения жидкого аммиака от непрореагировавшей азотоводородной смеси.

Рисунок 7. Схема блока синтеза аммиака, построенная при помощи программы HYSYS

Наиболее сложным и ответственным аппаратом в блоке синтеза аммиака является колонна синтеза. Она работает в очень жестких условиях – высокие давления (15–35 МПа), высокие температуры (450–550°С) и агрессивная среда (наличие водорода). При высоких температурах водород может диффундировать внутрь стали и вызывать ее обезуглероживание, что может привести к уменьшению, прочности стали и разрушению корпуса. Наиболее сильно разрушению или протечке подвержены фланцевые соединения и сложные соединения фланцев с трубами и сосудами.

В современных крупнотоннажных агрегатах синтеза аммиака наибольшее применение получили колонны с полочной насадкой. С целью большего приближения температурного режима к оптимальному используются колонны синтеза с четырьмя полками. Охлаждение газовой смеси после каждого слоя катализатора осуществляется путем ввода холодного байпасного газа в количествах, необходимых для заданного снижения температуры. Конструкция четырехполочной колонны синтеза аксиального типа представлена.

Рисунок 8. Четырехполочная колонна синтеза аммиака

Предположим, что конфигурация сосуда, который мы будем в дальнейшем рассматривать, является упрощенной версией колонны синтеза, вследствие чего используем в качестве температурных параметров и параметров давления величины, соответствующие синтезу аммиака.

Глава 4. ФЛАНЦЕВЫЕ СОЕДИНЕНИЯ

При расчетах выбранного нами сосуда нас больше интересует не сам сосуд, а его фланцевые соединения. Фланцевые соединения - наиболее распространенный вид разъёмных соединений в химическом машиностроении, обеспечивающий прочность и герметичность, быструю сборку и разборку, простоту изготовления. Соединение состоит из двух фланцев (1), уплотнительного устройства (3) и крепежных элементов (болтов или шпилек, гаек, шайб) (2).

Рисунок 9. Строение соединения фланцев

По конструкции фланцы можно разделить на цельные, когда корпус аппарата и фланец работают под нагрузкой совместно, и свободные, когда корпус аппарата разгружен от действий изгибающих моментов, возникающих при затяжке фланцевого соединения [7,11]. Конструкция фланцев в значительной мере определяется давлением рабочей среды и требованиями минимальных затрат времени на сборку (разборку) соединения.

Рисунок 10. Конструкции фланцев

Существует довольно большое количество вариантов фланцевого соединения, применяемого для сосудов и аппаратов, например:

 а — фланцевое соединение с гладкой уплотнительной поверхностью типа соединительный выступ

б — фланцевое соединение с уплотнительной поверхностью типа выступ — впадина

Рисунок 11. Фланцевые соединения

В зависимости от специфики условий, при которых прокладки будут использоваться, выбираются различные материалы: металлы, такие как алюминий, медь, сталь, никель и свинец; полимеры, включая фторопласты, полиэтилен, паронит и резину; а также композиционные материалы, такие как полимеры с металлическими добавками, асбест в металлической оболочке и прочие.

Резиновые прокладки предназначены для применения при умеренных давлениях и температурах, не превышающих 50-70°С. Особенно популярным является паронит, который представляет собой смесь асбеста, каучука и различных добавок. Паронитные прокладки применяются при температурах до 450°С и давлениях до 6 МПа в широких диапазонах условий, включая горячую воду, пар, разнообразные кислоты и растворители, такие как бензин.

Асбест в форме шнура или листового материала также используется для изготовления прокладок. Прокладки из асбеста отличаются высокой термоустойчивостью до 500°С и способны выдерживать воздействие кислот.

Металлические прокладки применяют для высоких давлений.

Комбинированные уплотнения состоят из разнообразных материалов – металлических и неметаллических. Металлическая армировка делает их прочными, а гибкий неметаллический наполнитель обеспечивает надежность соединений. Широко используются асбометаллические уплотнения, где полимеры сочетаются с металлами.

Поскольку большинство фланцевых соединений подвергаются значительным температурным и давлением нагрузкам, важными критериями являются прочность и герметичность. Прочность означает для НИХ способность выдерживать нагрузки без повреждений, а герметичность – обеспечивать сохранность рабочей среды. Поскольку фланцевые соединения могут разъединяться, обеспечение герметичности в месте стыка фланцев является важной задачей, особенно в условиях, где присутствует опасность пожара, взрыва или токсичных веществ. При использовании фланцевых

соединений при высоких или низких температурах необходимо принимать во внимание риск утечки в соединении из-за сил и моментов, развившихся в соединенном трубопроводе или оборудовании.

Применение температур в диапазоне ползучести приведет к снижению нагрузок на болт, так как происходит ослабление фланцев, болтов и прокладок. Фланцевые соединения, подверженные перепаду температур, так же могут быть подвержены сниженным нагрузкам на болт. Сниженные нагрузки на болт уменьшают способность фланцевого соединения эффективно выдерживать нагрузки, не давая утечек. При температурах выше 200°C (400°F) для Класса 150 и выше 400°C (750°F) для других обозначений классов, могут возникнуть проблемы появления утечек на фланцевых соединениях, если не предпринимается попытка проследить за тем, чтобы избегать применения мощных внешних нагрузок, сильных термических градиентов или и того, и другого.

Расчет фланцевого соединения начинается с конструктивной проработки, при которой определяют основные размеры фланца и прокладки, поэтому сам расчет является проверочным и основан на тех, же методах, что и расчет сосудов и аппаратов.

Глава 5. ПОСТАНОВКА ЗАДАЧИ И МОДЕЛИРОВАНИЕ

Для получения сравнительных результатов аналитического и численного анализов требуется сосуд высокого давления с простой геометрией [5,6,15,16]. Так как мы хотим сделать задачу более практикоориентирванной, как было написано выше, то мы возьмем за основу упрощённую колонну синтез аммиака. Данная модель будет представлять из себя сосуд, который состоит из цилиндрической обечайки, конической обечайки, в качестве одного из днищ, а также эллиптического днища, а также из 3 насадок, представляющих из себя трубы с фланцевыми соединениями.

5.1. Материал

Все основные элементы резервуаров и емкостей можно разделить на три категории:

- К группам А и Б относятся основные конструкции:

- Группа А: стенки, привариваемые к ним листы днища или кольцевые окрайки, обечайки, фланцы и крышки (заглушки) люков и патрубков в стенке, привариваемые к стенке усиливающие или распределительные накладки, кольца жесткости, опорные кольца стационарных крыш.

Группа Б1 — каркасы стационарных крыш (включая фасонки),
 крыши без каркаса;

- Группа Б2 — центральная часть днища, анкерные крепления, настил стационарных крыш, плавающие крыши и понтоны, обечайки, фланцы и крышки (заглушки) люков и патрубков в крыше.

- В включает в себя вспомогательные конструкции:

- Группа В: лестницы, площадки, ограждения, переходы (за исключением распределительных накладок, привариваемых к стенке).

В государственных стандартах, регламентирующих проектирование и изготовление вертикальных и горизонтальных емкостей, указывается возможность применения тех или иных марок сталей для основных и вспомогательных конструкций.

Для подбора конкретной марки стали для изготовления резервуаров, инженеры-проектировщики проводят необходимые расчеты и анализ условий эксплуатации. Так, основными параметрами для выбора определенной марки стали являются:

- расчетное давление;
- минимальная расчетная температура;
- максимальная расчетная температура;
- коррозионная активность рабочей среды.

Для конструктивных элементов различный групп применяются различные стали:

- Группа А — основные конструкции — применяется только спокойная (полностью раскисленная) сталь. Полученная в результате раскисления сталь называется спокойной. Содержание кремния в спокойной стали не менее 0,12%, а наличие неметаллических включений и шлаков минимально. Слитки спокойных сталей имеют плотную однородную структуру, а соответственно и улучшенные показатели по механическим свойствам. Спокойная сталь отлично подходит для сваривания, а также обладает лучшей сопротивляемостью к ударным нагрузкам. Является

более однородной. Она подходит для возведения опорных металлоконструкции (благодаря ее стойкости к хрупкому разрушению), которые подвергаются сильным нагрузкам.

Группа Б применяется спокойная полуспокойная ИЛИ сталь. Промежуточной по качественным показателям — является полуспокойная сталь. Она является полураскисленной И кристаллизуется без кипения, выделяя при этом достаточное количество газа и имеет меньшее количество пузырьков, чем кипящая сталь. Поэтому, полуспокойная сталь имеет средние показатели качества (максимально приближенные к спокойной), и иногда заменяет спокойную. Стоимость полуспокойной стали немного ниже спокойной, а выход качественного проката из таких слитков на 8-10% лучше. Показатели качества полуспокойной стали ближе к спокойной.

- Группа В — наряду с вышеперечисленными сталями с учетом температурных условий эксплуатации допускается применение кипящей стали. Кипящая сталь является не полностью раскисленой. Во время разливки в изложницы она кипит из-за обильного выделения газа, поэтому она является наиболее загрязнена газами и неоднородной. Т. е. механические свойства по слитку могут отличаться, поскольку распределение химических элементов по слитку не равномерно. Она довольно хрупкая, имеет плохие показатели свариваемости и наиболее подвержена коррозии.

Исходя из нормативной базы по производству резервуаров и емкостей, можно подвести следующие итоги:

 горизонтальные резервуары (по ГОСТ 17032–2010) должны изготавливаться из углеродистой полностью раскисленной стали

(основные металлоконструкции) и углеродистой полуспокойной или кипящей стали (вспомогательные конструкции)

- вертикальные резервуары (по ГОСТ 31385–2008 и СТО 0048–2005) должны изготавливаться из спокойных низкоуглеродистых и низколегированных сталей, для вспомогательных конструкций возможно применение полуспокойных и кипящих сталей
- сосуды и аппараты (по ГОСТ 34233–2017) могут изготавливаться из углеродистых сталей, коррозионностойких и низколегированные, жаростойких и жаропрочных толстолистовой стали

Материал выбран в соответствии с ГОСТ 59115.3–2021 «Кратковременные механические свойства конструкционных материалов» и ГОСТ 7350–77 «Сталь толстолистовая коррозионно-стойкая, жаростойкая и жаропрочная». В качестве материала была выбрана сталь XH35BTЮ.

Химический состав в % материала:

С	Si	Mn	Ni	S	Р	Cr	W	Ti	Fe	Al	В
До	До	До	33-	До	До	14-	2.5-	2.4-	37.545-	0.7-	До
0.08	0.6	0.6	37	0.02	0.035	16	3.5	3.2	47.4	1.4	0.02

Таблица 5. Химический состав материала в %

								Темпера	Typa 7 %	(c)					
марка стали или сплава	Сортамент	Характеристика	293 (20)	323 (50)	373 (100)	423 (150)	473 (200)	523 (250)	573 (300)	623 (350)	673 (400)	723 (450)	773 (500)	823 (550)	873 (600)
ла-отазену		R ^T _{mr} H/mm ² (MITa)	883	883	883	883	883	883	883	883	883	883	883	883	883
08XH35BTHO-BIL XH35BTHO/	Любой	$R^{T}_{\rho 02i} H/MM^2$ (MTIa)	689	589	589	589	589	589	589	589	589	589	589	589	579
08XH35BT HO		A ^T , %	9	9	9	9	8	9	9	9	9	ø	ø	ø	9
-		Z ^T , %	8	8	8	8	8	8	8	8	8	80	89	8	8
	Прутки круглого и ква-	R ^T _m H/mm ² (MTa)	540	530	630	510	471	461	461	461	461	461	451	441	412
	дратного сечения толщиной или диаме- тоом от 30 по 170 мм	R ⁷ _{P02} , Н/мм ² (МПа)	206	196	196	186	177	177	177	167	167	167	167	167	157
	www.oct.ofd.co.to.words	A ^T , %	30	29	28	28	28	8	26	26	8	25	24	24	24
05X20H465/ 06X20H465	Бесшовные трубы холодно- и тепло-	R ^T _m H/MM ² (MTIa)	520	510	510	491	451	441	41	441	441	441	432	422	392
	деформированные наружным диаметром	R ⁷ 02, Н/мм ² (МПа)	196	186	186	177	167	167	167	157	157	157	157	157	147
	и на до 32 мм, топ- щиной стенки от 1,5 до 3 мм	A ^T , %	26	25	24	24	24	53	23	23	53	22	21	21	21
		R ^T _m H/MM ² (MTa)	686	676	999	999	647	637	627	608	I	I	1	I	I
XH78T	Халодно-горячеката- ный лист	R ⁷ _{P02} , Н/мм ² (МПа)	265	265	265	265	255	255	255	255	I	ł	1	1	1
		A ^T , %	30	30	30	30	30	90	30	30	l	1	1	ł	l
		Z ^T , %	30	30	30	90	30	8	30	30	I	1	1	1	I
		R ^T _{лу} Н/мм ² (МПа)	392	392	373	353	343	333	323	294	Ţ	I	1	1	1
Цирконий + 2,5 % ниобия	Бесшовные холодно- катаные трубы толщи-	R ⁷ _{p02} , H/ww ² (MITa)	245	235	226	216	206	196	196	167	1	I	1	1	ł
	WW & OT NON	A ^T . %	18	17	17	16	16	15	15	15	Ι	1	1	I	I
		Z ^T , %	53	53	54	55	56	57	58	60	I	-	1	I	

Физические свойства материала при различной температуре:

Таблица 6. Физические свойства материалов при различных температурах

Механические свойства материала:

Т	Е	$\alpha \ 10^{6}$	λ	ρ	с	R 10 ⁹	ν
	10 ⁵						
Град	МΠа	1/Град	Вт/(м*Град)	Кг∕м^3	Дж/(кг*Град)	Ом*м	-
20	2.15			8040	456	992	0,13143
100	2.1	12.7	15.4	8040	456	992	0,132111
200	2.02	14.1	17.5	8040	456	992	0,133571
300	1.99	15	19.2	8040	456	992	0,135179
400	1.92	15.4	20.9	8040	456	992	0,136958
500	1.85	15.8	22.6	8040	456	992	0,138526
600	1.73	16	24.7	8040	456	992	0,143007

Таблица 7. Механические свойства материала

5.2. Аналитические расчеты

Габариты сосуда:

Длина L: 3000мм

Внутренний диаметр без коррозии и утончения D: 1000мм

Сумма прибавок к расчетным толщинам стенок с: 2.8 мм

Коэффициент прочности продольного сварного шва φ_p : 1

Так как предполагается, что сосуд будет предназначен для синтеза аммиака, то расчетная температура будет равна 450С, а расчетное давление 20 МПа.

В соответствии с ГОСТ 34223.1–2017 рассчитано допускаемое давление:

$$[\sigma] = \eta \min\left\{\frac{R_{p0,2/t}}{n_{\rm T}}\right\} = 392 \text{ M}\Pi a$$

В соответствии с ГОСТ 34223.2–2017 рассчитаны толщины стенок днищ и обечаек:

Толщина стенки цилиндрической обечайки:

$$s_p = rac{pD}{2[\sigma]\varphi_p - p}; s \ge s_p + c \
ightarrow s = 90$$
мм

Условия применимости толщины стенки цилиндрической обечайки:

$$\frac{s-c}{D} \le 0.1 \rightarrow 0.086 \le 0.1$$

Допускаемое внутреннее давление для толщины стенки цилиндрической обечайки:

$$[p] = \frac{2[\sigma]\varphi_p(s-c)}{D+s-c} = 62M\Pi a$$

Толщина эллиптического днища:

$$s_{1p} = rac{pR}{2[\sigma]\varphi_p - 0.5p}; s_1 \ge s_{1p} + c \
ightarrow s_1 = 90$$
мм

Условия применимости толщины стенки эллиптического днища:

$$0.002 \le \frac{s_1 - c}{D} \le 0.1 \to 0.002 \le 0.086 \le 0.1$$

Допускаемое давление для толщины стенки эллиптического днища:

$$[p] = \frac{2[\sigma]\varphi_p(s_1 - c)}{R + 0.5(s_1 - c)} = 64 \text{M}\Pi a$$

Длина переходных частей для конических и цилиндрических обечаек:

$$a_{1p} = 0.7 \sqrt{\frac{D}{\cos \alpha} (s_{\rm T} - c)} = 222.12,$$
 где $\alpha = 30^{\circ}, s_{\rm T} = 90$ мм

Диаметр гладкой конической обечайки с тороидальным переходом:

$$D_k = D - 2(r(1 - \cos\alpha) + 0.7a_{1p}\sin\alpha) = 900$$
мм

Толщина стенки конической обечайки, нагруженной внутренним давлением:

$$s_{k.p.} = \frac{pD_k}{2[\sigma]\varphi_p - p} \left(\frac{1}{\cos\alpha}\right); s_k \ge s_{k.p.} + c \rightarrow s_k = 90$$
мм

Допускаемое внутреннее избыточное давление для толщины стенки конической обечайки:

$$[p] = \frac{2[\sigma]\varphi_p(s_k - c)}{\frac{D_k}{cos\alpha} + (s_k - c)} = 60$$
Mna

По ГОСТ 34233.4–2017 были рассчитаны необходимые усилия и нагрузки на фланцы:

Эффективная ширина для плоских прокладок:

$$b_0 = 3.8 \sqrt{b_n}$$
 при $b_n > 15 \rightarrow b_n = 100$ мм $\rightarrow b_0 = 38$ мм

1) Верхний фланец: *D* = 410мм, *D*_{сп} = 590 мм

Усилия, на прокладках в рабочих условиях, необходимое для герметичности:

$$R_n = \pi D_{
m cff} b_0 m |p| = 4.2$$
 МН, где $m = 3$ (из ГОСТ 34233.4)

Допускаемое удельное давление на прокладке из асбеста:

Равнодействующая нагрузка на фланцы от давления:

$$Q_p = 0.785 D_{cn}^2 p = 5.4 \text{MH}$$

2) Боковой фланец: *D* = 310мм, *D*_{сп} = 485 мм

Усилия, на прокладках в рабочих условиях, необходимое для герметичности:

$$R_n = \pi D_{crr} b_0 m |p| = 3.3$$
 MH, где $m = 3$ (из ГОСТ 34233.4)

Допускаемое удельное давление на прокладке из асбеста:

Равнодействующая нагрузка на фланцы от давления:

$$Q_p = 0.785 D_{cn}^2 p = 3.6 \text{MH}$$

3) Нижний фланец: *D* = 360мм, *D*_{сп} = 535 мм

Усилия, на прокладках в рабочих условиях, необходимое для герметичности:

 $R_n = \pi D_{c_{\text{П}}} b_0 m |p| = 3.8$ MH, где m = 3(из ГОСТ 34233.4)

Допускаемое удельное давление на прокладке из асбеста:

Равнодействующая нагрузка на фланцы от давления:

$$Q_p = 0.785 D_{c\pi}^2 p = 4.5 \text{MH}$$

5.3. Построение модели

В соответствии с расчетами была выполнена модель с помощью программы SolidWorks:

Рисунок 12. Модель сосуда

Рисунок 13. Модель сосуда в разрезе. Вид ОҮZ

Рисунок 14. Модель сосуда в разрезе. Вид ОҮХ

После модель была загружена в Ansys Workbench и все тела был разделены для удобства на несколько групп:

 Сосуд. В нее были включены сама емкость, в которую поступает газ, прилегающие к сосуду патрубки и соответствующие им фланцы.

Рисунок 15. Модель сосуда. Группа с сосудом и прилегающими к нему фланцами

2) Верхняя, боковая и нижняя трубы с прилегающими к ним фланцами.

Рисунок 16. Модель сосуда. Группа с трубами и прилегающими к ним фланцами

3) Шпильки и болты, которые для удобства были сделаны в виде «гантелей».

Рисунок 17. Модель сосуда. Группа со шпильками и гайками

4) Прокладки в межфланцевом пространстве.

Рисунок 18. Модель сосуда. Группа с меж фланцевыми прокладками

После был выполнена упрощение геометрии, ее зачистка геометрии и проверка на лишние точки, грани и поверхности.

5.4. Создание материала

Для создания материала используется радел Engineering Data. Всего нам понадобиться задать 3 разновидности.

1) Линейная сталь Static structural.

Данная модель будет использоваться не только для сравнения с нелинейной моделью, но и для подтверждения правильности аналитических расчетов.

Плотность: 7850 кг/м^3

Коэффициент теплового расширения:

Temperature (C)	Coefficient of thermal expansion(C-1)
100	1,2E-05
300	1,3E-05
600	1,47E-05
900	1,64E-05

Таблица 8. Коэффициент теплового расширения при различных температурах

Рисунок 19. График зависимости коэффициента теплового расширения от температуры

Модуль Юнга:

Temperature (C)	Young's Modulus (Pa)
100	21400000000
300	18600000000
600	15700000000
900	12800000000

Таблица 9. Модуль Юнга в зависимости от температуры

Рисунок 20. График зависимости модуля Юнга от температуры

Коэффициент Пуассона:

Temperature (C)	Poisson's Ratio
100	0,3
300	0,27
600	0,24
900	0,21

Таблица 10. Коэффициент Пуассона в зависимости от температуры

Рисунок 21. График зависимости коэффициент Пуассона от температуры

Предел текучести материала: 25000000 Ра Предел прочности материала: 46000000 Ра

Коэффициент теплог	проводности:
--------------------	--------------

Temperature (C)	Isotropic Thermal Conductivity
	(W m^-1 C^-1)
20	40
300	36
600	31
900	27

Таблица 11. Коэффициент теплопроводности в зависимости от температуры

Рисунок 22. График зависимости коэффициента теплопроводности от температуры

2) Нелинейная сталь ХН35ВТЮ

Плотность: 8040 кг/м^3

Коэффициент теплового расширения:

Temperature (C)	Coefficient of thermal expansion(C-1)
20	1,64E-05
50	1,64E-05
100	1,66E-05
200	1,7E-05
300	1,74E-05
400	1,78E-05
500	1,82E-05
600	1,85E-05

Рисунок 23. График зависимости коэффициента теплового расширения от температуры

Модуль Юнга:

Temperature (C)	Young's Modulus (Pa)
20	20500000000
50	20200000000
100	2000000000
200	1900000000
300	18000000000
400	17000000000
500	16500000000
600	16000000000

Рисунок 24. График зависимости модуля Юнга от температуры

Коэффициент Пуассона:

Temperature (C)	Poisson's Ratio
20	0.29747
50	0.29487
100	0.2987
200	0.26667
300	0.23288
400	0.19718
500	0.19565
600	0.19403

Таблица 14. Коэффициент Пуассона при различных температурах

Рисунок 25. График зависимости коэффициента Пуассона от температуры

Предел текучести материала: 589000000 Ра Предел прочности материала: 883000000 Ра

Коэфа	бициент	теплоп	роводно	сти:

Temperature (C)	Isotropic Thermal Conductivity	
	(W m^-1 C^-1)	
100	15,4	
200	17,5	
300	19,2	
400	20,9	
500	22,6	
600	24,7	

Таблица 15. Коэффициент теплопроводности при различных температурах

Рисунок 26. График зависимости коэффициента теплопроводности от температуры

В отличие от линейного материала у нелинейного мы специально задаем кривую зависимости деформации от напряжений через Multilinear Isotropic Hardening, а точнее часть, описывающую ее пластические свойства:

Рисунок 27. График зависимости напряжений от деформаций

3) Линейная модель прокладки (Gasket Linear Uploading)

Данная модель используется для моделирования поведения тонких уплотнительных соединений. В качестве основных данных используется модель сжатия с разгрузкой.

Рисунок 28. График модели сжатия с разгрузкой

Коэффициент т	еплопроводности:
---------------	------------------

Temperature (C)	Orthotropic	Orthotropic	Orthotropic
	Thermal	Thermal	Thermal
	Conductivity X	Conductivity Y	Conductivity Z
	direction	direction	direction
500	0.16	0.16	0.16

Таблица 16. Коэффициент теплопроводности для асбестовой прокладки

5.5. Построение сетки и материала

При решении задачи деформирования сосуда высокими давлениями и при высоких температурах будут использоваться, как и сетка, так и контакты.

Основные типы элементов:

Рисунок 29. Основные типы элементов.

Как уже было описано в разделе, посвященному методу конечных элементов, при запуске конечно-элементного расчета программа ANSYS пытается решить матричную систему уравнений, а точнее найти перемещения в узлах каждого элемента, чтобы после вычислить напряжения. Интеграл, который задает изменение энергии деформации и на котором базируется система уравнений. Интеграл решается численно в определенный точках элемента. Эти точки – точки интегрирования или гауссовы точки. В зависимости от того, какой формы и порядка элемент используется в сетке, будет зависеть какое количества точек будет в элементе и как они будут располагаться, в свою очередь от этого будет зависеть насколько точный и правильный результат мы получим, а также и насколько долго будет считать программа нашу задачу. Помимо этого, на точность и продолжительность решения будет влиять и количество элементов в целом. Чем меньше сетка, тем разница между величинами, полученных в соседних элементах будет становиться меньше. В связи с этим сетка должна эффективной и точной, то есть мелкие элементы используется для уточнения мелких геометрических деталей, а крупная сетка используется в местах, где нам не особо нужна точность. Также стоит учесть, что точность и стабильность решения ухудшается, когда элемент все больше отклоняется от идеальной формы.

Мы не будем усложнять еще больше выбранную нами задачу, поэтому остановится только на нескольких типах элементов.

Выбор элементов:

1) Гексаэдры.

Данные элементы лучше всего применять с точки зрения затрат памяти и вычислительного времени в расчете на элемент, помимо этого обычно элементов данного вида уходит меньше, чем тетраэдальных элементов. Однако строится не для всех геометрий, и само построение довольно сложное.

2) Тетраэдры.

Высокая степень автоматизации построения сетки, данную сетку можно построить на любой геометрии, а также благодаря ней можно значительно увеличить точность сетки. Однако они менее эффективны, чем гексаэдры.

В связи с преимуществами и недостатками типов элементов наиболее интересующие нас элементы конструкции – фланцевые соединения будут забиты обоими видами элементов: фланцы – тетраэдральной сеткой, а шпильки, гайки и прокладка в связи с простой геометрией – гескаэдральной сеткой. Трубы будут забиты гексосеткой, а сам сосуд крупной тетраэдральной сеткой.

Для правильности определения размеров сетки была сделана сеточная сходимость и составлена метрика элементов:

Рисунок 30. График зависимости деформаций от количества элементов.

Рисунок 31. График метрики элементов.

Помимо сетки сходимости предполагается использование И ee Контактные некой контактов. элементы можно считать «кожей», покрывающей поверхности основных элементов, которые, как ожидается, будут взаимодействовать друг с другом. В ANSYS доступны следующие контактные алгоритмы:

- Метод штрафных функций (Penalty Method);
- Расширенный метод Лагранжа (Augmented Lagrange Method);
- Метод множителей Лагранжа (Pure Lagrange multiplier method);
- Комбинированный метод штрафов и Лагранжа (Lagrange & Penalty Method);
- Метод внутренних многоточечных связей (MPC Algorithm).

Все указанные алгоритмы справедливы для любых типов контактных элементов, однако контакты типа «узел с узлом» и «линия с линией» имеют некоторые особенности применения, поэтому их мы рассмотрим отдельно.

Виды контактов:

- 1) Bounded: благодаря данному контакту поверхности закреплены друг с другом, поэтому никакие зазоры не могу открыться и не может происходить скольжение.
- 2) No separation: никакие зазоры не могут происходить, но скольжение может происходить по касательной к поверхности
- 3) Frictional: обычный контакт с трением
- 4) Frictionless: контакт с трением равным нулю или очень близким к нулю
- 5) Rough: контакт с очень большим коэффициентом трения, деталь может оторваться, но не скользить

В нашей задаче мы используем только два вида контактов: Bounded – между сварными деталями и Frictional – между фланцами и шпильками, а также между фланцами и фланцевыми прокладками.

Также к сетке и контактам необходимо добавить Gasket сетку, так как мы решили использовать это материал для большей реалистичности. Для моделирования поведения тонких уплотнительных соединений в ANSYS Workbench есть специальный инструмент Gasket, находящуюся в разделе static structuralA для задания самой сетки необходим инструмент Gasket Mesh Control. Данны инструмент работает автоматически, однако все равно нужно помнить о некоторых вещах, чтобы она построилась как можно лучше.

 Границы контакта. Поджимаемые поверхности Gasket элементов должны находиться строго между поверхностями основной модели. Чтобы избежать ненужных проблем в решении при деформации прокладок, стоит оставлять небольшие зазоры по краям.
Местное утолщение. Если у прокладки есть местное утолщение (как на рисунке ниже), то для более правильного моделирования её работы необходимо поступать так:

Рисунок 32. Утолщение прокладки.

Несмотря на то, что в реальности прокладка – это единое тело, в ANSYS утолщение и основную часть прокладки стоит моделировать разными телами с опцией общей топологии («Form new part» в DM или «Shared Topology» – в SpaceClaim). Учесть разность в толщинах можно будет, задав разные зависимости «Pressure - Closure» для разных частей.

- Трансверсальная жесткость. По умолчанию прокладки не сопротивляются сдвиговым деформациям, но её стоит задать (если она известна, конечно) для уменьшения проблем со сходимостью.
- 4. Контакты Gasket тел.
 - a. Не стоит задавать Frictional контакт на обеих сторонах прокладки. Хотя бы один лучше заменить на Bonded.
 - b. Лучшие результаты получаются для Normal Lagrange метода и Projection based алгоритма контактного определения.
 - с. Деление большого контакта на много маленьких снижает время, необходимое для решения.

В результате с учетов всего вышеперечисленного была получена следующая сетка [13,15]:

Рисунок 33. Построенная сетка

Рисунок 34. Построенная сетка на фланцевом соединении.

5.6. Задание граничных условий

Для получения решения нам для начала необходимо найти поле температур, а после поле напряжений или деформаций.

Так как мы хотим сделать задачу максимально реалистичной, и она будет нелинейной, поэтому мы будем задавать нагрузки и граничные условия в несколько этапов.

1) Конвекция и температурные нагрузки.

Так как необходимо учесть конвекцию внутри сосуда, при этом не усложнять задачу, то воспользуемся для задания температурных нагрузок блока steady-state temperature.

Сосуд был нагружен изнутри температурой 500 С, снаружи – 22 С.

Помимо температуры необходимо задать еще и коэффициенты теплоотдачи. Данные коэффициенты были рассчитаны по специальному пособию «Методы расчета процессов и аппаратов химической технологии» [4].

$$Re = \frac{V \cdot d}{v}$$

$$Nu = 0.021 Re^{0.8} P r_{x}^{0.43} \varepsilon_{e} \left(\frac{P r_{x}}{P r_{c}}\right)^{0.25}$$

$$\alpha = \frac{Nu \cdot \lambda}{d}$$

Re — число Рейнольдса, V — скорость потока газа, d — диаметр трубы/обечайки, v — кинематический коэффициент вязкости, Nu — число Нуссельта, $Pr_{\rm m}$ - число Прандтля для жидкости/газа, α — коэффициент теплоотдачи, λ — коэффициент теплопроводности.

Данный формулы были выбраны с условием того, что поток газа турбулентный и движется со средней скоростью $V = 15 \frac{M}{c}$.

Константы соответствующие смеси азота и водорода:

$$\lambda = 53 \cdot 10^{-3} \frac{B_{\rm T}}{M \cdot C}, \nu = 42.5 \cdot 10^{-6} \frac{M}{c^2}, Pr_{\rm H} = 0.813, \varepsilon_e = 1,$$
$$\left(\frac{Pr_{\rm H}}{Pr_c}\right)^{0,25} = 1$$

В результате чего получаются следующие коэффициенты теплоотдачи:

$$\alpha_{T} = 33.2 \frac{B_{T}}{M^{2} \cdot C} - для верхней трубы$$
 $\alpha_{M} = 35.1 \frac{B_{T}}{M^{2} \cdot C} - для средней трубы$
 $\alpha_{B} = 34.1 \frac{B_{T}}{M^{2} \cdot C} - для нижней трубы$
 $\alpha_{V} = 27.7 \frac{B_{T}}{M^{2} \cdot C} - для сосуда$
 $\alpha_{A} = 25 \frac{B_{T}}{M^{2} \cdot C} - для воздуха$

Рисунок 35. Приложенные нагрузки по давлению.

После того, как мы задали конвекцию и получили поле распределения температур, мы перейдем к механическим нагрузкам.

- 2) Затяжка болтов и ограничения на перемещения.
 - Bolt Pretention (Нагрузка: 200кН)
 - Displacements (на верхней трубе ограничены перемещения по оси

z, на нижней – по оси x)

- Fix support (Приложено к срезу средней трубы)

Рисунок 36. Приложенные ограничения на передвижение и затяжка болтов.

3) Нагрузка внутренним давлением.

К внутренней части сосуда было приложено давление 20 МПа.

Рисунок 37. Приложенные нагрузки по давлению.

Глава 6. РЕЗУЛЬТАТЫ

Были получены распределения температур и перемещений для линейной и нелинейной постановок на рисунках 38–41.

Рисунок 38. Результаты температурных расчетов для линейной постановки задачи.

Рисунок 39. Результаты температурных расчетов для нелинейной постановки задачи.

Рисунок 40. Поле деформаций для линейной постановки задачи.

Рисунок 41. Поле деформаций для нелинейной постановки задачи.

В ходе сравнения представленных выше результатов можно заметить, что распределения температур отличаются только распределением. В линейно постановке распределение температур менее равномерное. В свою очередь перемещения не сильно отличаются распределением, но зато отличаются значениями. При рассмотрении линейной постановки видно, что сосуд, находящийся под давлением при повышенных температурах, меньше отклоняется от исходного положения, чем в нелинейной постановке.

Чтобы проверить фланцевые соединения сосудов на прочность необходимо сравнить их полученные напряжения и деформации [12,13].

Для линейного случая в ГОСТ 34233.1–2017 предусмотрены условия статической прочности при расчетных температурах:

$$\begin{cases} \sigma_m \le [\sigma] \\ \sigma_m + \sigma_{\scriptscriptstyle H} \le [\sigma]_m \end{cases}$$

Где $[\sigma]_m$ – допускаемое условно-упругое напряжение при расчетное температуре для оценки напряжений, определяемых по суммам составляющих общих или местных мембранных и общих изгибных напряжений, $[\sigma]_m = 1.5[\sigma]$, $[\sigma]$ – допускаемое напряжение при расчете по предельным нагрузкам сосудов и аппаратов из различных видов сталей.

$$\begin{cases} \sigma_m \le 166 \text{ МПа} \\ \sigma_m + \sigma_{\scriptscriptstyle H} \le 250 \text{ МПа} \end{cases}$$

Так как было сказано ранее, что наименее прочными элементами конструкции являются фланцевые соединения, то их мы и будем проверять на

прочность. Для определения напряжений, соответствующих ГОСТ необходимо линеаризовать напряжений. В линейной постановке задачи были построены два пути: путь 1 - по направлению вверх от внутренней части фланца к внешней части, при этом он соответствует параметру S1, путь 2 – точно также от внутренней части к внешней, но только по направлению вниз. По предположению напряжения, возникающие на пути 1 должны быть больше, чем на пути 2, в соответствии с тем, как ведет себя сосуд при нагрузке.

Рисунок 42. Чертеж используемого в модели фланцевого соединения.

Рисунок 43. Пути линеаризации.

	1 сечение			2 сечение		
Nº	Точки,	Мембранные	Мембранные	Точки	Мембранные	Мембранные
точки	мм	напряжения,	+ Изгибные,		напряжения,	+ Изгибные,
		МПа	МПа		МПа	МПа
1	0	36.728	15.98	0	13.825	2.34
2	2.483	36.728	17.777	2.483	13.825	2.565
3	4.967	36.728	18.45	4.967	13.825	2.99
4	9.935	36.728	19.504	9.935	13.825	3.78
5	12.419	36.728	19.814	12.419	13.825	3.473
6	17.365	36.728	20.68	17.365	13.825	3.091
7	22.354	36.728	21.027	22.354	13.825	3.992
8	24.837	36.728	22.42	24.837	13.825	4.127
9	29.813	36.728	23.741	29.813	13.825	4.726
10	32.289	36.728	25.212	32.289	13.825	5.029
11	34.772	36.728	26.914	34.772	13.825	5.461
12	37.256	36.728	28.563	37.256	13.825	6.176
13	39.74	36.728	29.942	39.74	13.825	8.253

14	42.224	36.728	31.528	42.224	13.825	11.238
15	49.675	36.728	33.284	49.675	13.825	13.029
16	52.159	36.728	34.995	52.159	13.825	15.476
17	54.643	36.728	36.745	54.643	13.825	17.263
18	59.61	36.728	38.172	59.61	13.825	18.454
19	62.094	36.728	40.274	62.094	13.825	21.364
20	64.577	36.728	42.033	64.577	13.825	23.647
21	67.061	36.728	43.839	67.061	13.825	25.300
22	69.545	36.728	45.636	69.545	13.825	26.991
23	72.029	36.728	47.946	72.029	13.825	27.164
24	74.512	36.728	49.278	74.512	13.825	28.437
25	76.996	36.728	52.935	76.996	13.825	30.560
26	79.48	36.728	58.509	79.48	13.825	31.293
27	81.964	36.728	60.371	81.964	13.825	32.758
28	84.448	36.728	62.237	84.448	13.825	34.642
29	86.931	36.728	64.108	86.931	13.825	35.320
30	89.415	36.728	67.859	89.415	13.825	37.111
31	91.889	36.728	69.739	91.889	13.825	39.029
32	94.383	36.728	70.160	94.383	13.825	39.283
33	96.866	36.728	71.622	96.866	13.825	40.112
34	99.35	36.728	72.926	99.35	13.825	40.774
35	101.83	36.728	73.507	101.83	13.825	41.102
36	104.32	36.728	75.172	104.32	13.825	42.384
37	106.80	36.728	76.408	106.80	13.825	42.996
38	109.28	36.728	77.285	109.28	13.825	43.008
39	111.77	36.728	78.164	111.77	13.825	43.561
40	114.25	36.728	79.264	114.25	13.825	43.899
41	116.74	36.728	79.990	116.74	13.825	44.13
42	117.965	36.728	80.172	117.965	13.825	44.791
43	119.22	36.728	80.666	119.22	13.825	45.273
44	120	36.728	81.071	120	13.825	46.218

Таблица 17. Полученные линеаризованные напряжения

Как видно из полученных результатов, предположение о том, что концентрация напряжений происходит на пути 1 – верное, следовательно, в данном сечении наблюдаются самые большие напряжения. Подставим их в условия прочности:

По итогу можно сделать вывод, что сосуд проходит по двум условиям прочности, а также можно заметить, что в результате линейной постановки на сосуде не образуются зоны пластичности.

Для анализа той же самой задачи только в нелинейной постановке будет использоваться условие на пластические деформаций [14,15,16]:

$$\varepsilon_L = \varepsilon_{Lu} \cdot \exp\left(-\left(\frac{a_{sl}}{1+m_2}\right)\left(\left\{\frac{\sigma_1 + \sigma_2 + \sigma_3}{3\sigma_e}\right\} - \frac{1}{3}\right)\right)$$
$$\sigma_e = \frac{1}{\sqrt{2}}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2}$$
$$\varepsilon_{peq} + \varepsilon_{cf} \le \varepsilon_L$$

Получив из расчета такие величины как:

 $\sigma_1 = 103 \text{ МПа}$ $\sigma_2 = 132.7 \text{ МПа}$ $\sigma_3 = 192 \text{ МПа}$ $\sigma_e = 78.5 \text{ МПа}$ $\varepsilon_{Lu} = m_2 = 1.9 \cdot \left(0.93 - \frac{5.89}{8.83}\right) = 0.494$ $a_{sl} = 2.2$

$$\varepsilon_L = \varepsilon_{Lu} \cdot \exp\left(-\left(\frac{a_{sl}}{1+m_2}\right)\left(\left\{\frac{\sigma_1 + \sigma_2 + \sigma_3}{3\sigma_e}\right\} - \frac{1}{3}\right)\right) = 0.055$$

Пластические деформации, полученные численно для нелинейной модели:

Рисунок 44. Распределение пластических деформаций.

Рисунок 45. Распределение пластических деформаций на среднем фланце.

Проанализировав численные расчеты, можно утверждать, что пластических деформаций в соединении фланцев и сосуда нет, а следовательно сосуд может считаться достаточно прочным для использования.

$0 \le 0.055$

При приложенных температурных нагрузках и нагрузках давлением пластические деформации только начинают появляться, и то, только на конце средней трубы, данное явление связано с приложенной к трубе жесткой заделкой. Максимально наблюдаемая деформация:

$0.046618 \le 0.055$

В итоге сосуд в нелинейной постановке точно так же, как и в линейной можно считать достаточно прочным для использования. Однако, чтобы понять, что дает наилучшие результаты, введем некий критерий приемки, чтобы получить приемлемую базу для сравнения двух методик [14].

$$UF = \frac{Analysis Result}{Design Limit}$$
 if (> 1 fails)

87

Чем ближе полученное число к единице, тем больше тело подвергается пластическим деформациям, переход за единицу соответствует моменту разрушения сосуда.

Для линейного случая для мембранных напряжений:

$$UF = \frac{\sigma_{\text{pacyer}}}{[\sigma]} = \frac{36.728}{166} = 0.22$$

Для линейного случая для мембранных и изгибных напряжений:

$$UF = \frac{\sigma_{\text{pacyer}}}{[\sigma]_m} = \frac{81.071}{250} = 0.324$$

Для нелинейного случая:

Деформация фланца в месте втулки:

$$UF = \frac{\varepsilon_{\text{pacyer}}}{\varepsilon_L} = \frac{0}{0.055} = 0$$

Из расчетов видно, что в линейной постановке задачи мы получаем, что сосуд уже подвергается пластическим деформациям, а при нелинейных, более реалистичных и точных расчетах – пластические деформации отсутствуют, что больше соответствует реальности. В итоге, можно сказать, что попытка внедрения метода упругопластического анализа прошла успешна, и она показала лучшие результаты по сравнению с привычными нам методами расчета по ГОСТ. Вследствие чего можно также утвердить, что сосуд, посчитанный нелинейным анализом (методом упругопластических деформаций), будет явно прочнее, нежели сосуд, посчитанный линейным анализом.

Помимо всего выше сказанного, можно выявить хорошую применимость в производстве. Во-первых, благодаря нелинейным расчетам, проведенных по методу упругопластического анализа можно попробовать уменьшить материалоемкость, а во-вторых, тем самым можно повысить экономическую эффективность, то есть покупать сосуды и материалы для них дешевле, или же повышать производительность производства не за счет изменения геометрии сосуда, а за счет повышения температурных параметров и повышения

Глава 7. ФЕДЕРАЛЬНЫЙ ЗАКОН О ТЕХНИЧЕСКОЙ БЕЗОПАСНОСТИ

был разработан для Данный закон регулирования отношений, разработке, принятии, применении возникающих при И исполнении обязательных требований к продукции, в том числе зданиям и сооружениям (далее - продукция), или к продукции и связанным с требованиями к продукции процессам проектирования (включая изыскания), производства, строительства, монтажа, наладки, эксплуатации, хранения, перевозки, реализации и утилизации [9].

Специально для сосудов и аппаратов в соответствии с эти законом были разработаны технические регламенты ТР ТС 010/2011 и ТР ТС 032/2013. Однако в этих регламентах прописаны только ГОСТы, соответствующие сосудам и аппаратам, работающих под избыточным давлением. С одной стороны, так как метод упругопластического анализа все-таки хоть немного, но прописан в ГОСТ 34233–2017, но с другой он совсем не зарегламентирован, вследствие чего его не совсем можно использовать, так как это будет являться нарушением закона.

Чтобы избежать данной проблемы есть несколько вариантов. Первый, и самый простой, ЭТО регламентирование И подтверждение метода упругопластического анализа на основе аналитических расчетов И экспериментальных данный. Второй способ, как можно внедрить этот метод, использовать численные расчеты вместо экспериментальных данных, так как провести численный расчет намного экономнее и безопаснее чем проводить реальный эксперимент. В конце концов можно сказать, что ответственность за выбор, внедрять упругопластический анализ или нет, и каким способом это делать, лежит полностью на плечах заказчика.

90

ЗАКЛЮЧЕНИЕ.

В рамках данной выпускной квалификационной работы был проведен сравнительный анализ нормативно-правовых актов, в результате которого было выявлено, что методы применяемые в ASME более применимы к реальной модели и намного точнее, чем методы, представленные в ГОСТ.

В ходе работы была рассчитана и построена модель сосуда с фланцевыми соединениями, был выбран и смоделирован подходящий материал с учетом многих физико-механических свойств.

Для численного моделирования использовался программный пакет ANSYS, а сама модель была рассчитана при помощи метода конечных элементов.

В результате проделанной работы и полученных результатов было выявлено, что попытка применения стандарта ASME и сравнение результатов с ГОСТ помимо того, что показала значительные преимущества ASME, а точнее использованного в нем упругопластического анализа, но и продемонстрировала ряд преимуществ для производства.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ.

- 1. Витохин Е. Ю. / Вычислительная механика: Учебное пособие СПб.: ПОЛИТЕХ-ПРЕСС,2022.-53с.
- Каменев С. В. / Основы метода конечных элементов в инженерных приложениях: учебное пособие; Оренбургский гос. ун-т. – Оренбург: ОГУ, 2019.-110с.
- Морозов Л. Н., Буров А. В./ Расчет гетерогенных химических процессов в производствах аммиака, метанола и карбамида: учебное пособие /; Иван.гос.хим.-технол. ун-т. – Иваново,2013.-76 с.
- Романков П. Г., Фролов В. Ф., Флисюк О.М. / Методы расчета процессов и аппаратов химической технологии: Учебное пособие для вузов. -2-е изд., испр.-СПб.: ХИМИЗДАТ,2009.-544 с.
- Вожова Н. В. / Определение предельного давления в пересекающихся цилиндрических оболочках на основе упругопластического анализа – 2011
- Пятницкая Д. А. / Анализ отклика нестандартных элементов колонн высокого давления – 2015
- 7. ГОСТ 34233–2017 Сосуды и аппараты. Методы расчета на прочность.
 М.: Стандартинформ, 2019
- КОСТ 59115–2021 Обоснование прочности оборудования и трубопроводов атомных энергетических установок М.: Стандартинформ, 2021
- Руководство по основным методам проведения анализа в программе ANSYS. Справочник по тепловому анализу в ANSYS. Руководство по решению спряженных задач в ANSYS.
- 10. Федеральный закон о техническом регулировании, с 23 декабря 2021
- 11. Moss Denis R. / Pressure vessel design manual
- 2013 ASME Boiler and Pressure Vessel Code. VIII. Rules for construction of pressure vessels.

- 13. ASME B16.5 Фланцы для труб и сланцевые фитинги.
- 14. Askestrand Frode Tjelta, Gudmestard Ove Tobias / OMAE 2013-10684 A comparison study of pressure vessel design using different standards
- 15. LIU Peng-Fei, ZHENG Jin-yang, MA Li, MIAO Cun-Jian, WU Lin-Lin / Calculations of plastic collapse load of pressure vessel using FEA, 2008
- 16. Porter Michael A., Reinhardt Wolf D., Martens Dennis H. / Comparison of limit load, linear and nonlinear FEA of typical vessel nozzle